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A b s t r a c t Objectives: The authors discuss the usability of an automated tool that
supports entry, by clinical experts, of the knowledge necessary for forming high-level concepts
and patterns from raw time-oriented clinical data.

Design: Based on their previous work on the system for forming high-level concepts´RESUME

from raw time-oriented clinical data, the authors designed a graphical knowledge acquisition
(KA) tool that acquires the knowledge required by . This tool was designed using´ ´RESUME

Protégé, a general framework and set of tools for the construction of knowledge-based systems.
The usability of the KA tool was evaluated by three expert physicians and three knowledge
engineers in three domains—the monitoring of children’s growth, the care of patients with
diabetes, and protocol-based care in oncology and in experimental therapy for AIDS. The study
evaluated the usability of the KA tool for the entry of previously elicited knowledge.

Measurements: The authors recorded the time required to understand the methodology and the
KA tool and to enter the knowledge; they examined the subjects’ qualitative comments; and they
compared the output abstractions with benchmark abstractions computed from the same data
and a version of the same knowledge entered manually by experts.´ ´RESUME

Results: Understanding required 6 to 20 hours (median, 15 to 20 hours); learning to use´ ´RESUME

the KA tool required 2 to 6 hours (median, 3 to 4 hours). Entry times for physicians varied by
domain—2 to 20 hours for growth monitoring (median, 3 hours), 6 and 12 hours for diabetes
care, and 5 to 60 hours for protocol-based care (median, 10 hours). An increase in speed of up to
25 times (median, 3 times) was demonstrated for all participants when the KA process was
repeated. On their first attempt at using the tool to enter the knowledge, the knowledge
engineers recorded entry times similar to those of the expert physicians’ second attempt at
entering the same knowledge. In all cases using knowledge entered by means of the KA´ ´RESUME,
tool, generated abstractions that were almost identical to those generated using the same
knowledge entered manually.

Conclusion: The authors demonstrate that the KA tool is usable and effective for expert
physicians and knowledge engineers to enter clinical temporal-abstraction knowledge and that
the resulting knowledge bases are as valid as those produced by manual entry.
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F i g u r e 1 Temporal abstraction in a clinical domain. Raw patient data are plotted over time at the bottom. External
events (interventions) and the abstractions computed from the data are plotted as intervals at the top. BMT indicates
a bone-marrow-transplantation event (external intervention); PAZ, a prednizone/azathioprine therapy protocol for
treating chronic graft-versus-host disease (CGVHD), a complication of BMT. Solid dots indicate platelet counts; trian-
gles, granulocyte counts. The staggered interval bar (‘‘PAZ protocol’’) indicates an event interval; the hatched right-
pointing arrow (‘‘expected CGVHD’’), a context interval; and the solid interval bars, abstraction intervals. M[n] indicates
bone marrow toxicity (myelotoxicity) grade n.
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Abstraction of Time-oriented Clinical Data

Caring for patients often requires integration and in-
terpretation of a substantial amount of data over time
and abstraction of those data into higher-level con-
cepts and patterns that are meaningful for that do-
main. We refer to this common task as temporal ab-
straction.1 It is impossible to consider data trends,
evolution of processes, or causality without an explicit
representation of time, especially in clinical domains
that involve care for patients who have chronic illness
(e.g., cancer, AIDS, or diabetes), in particular when
they require monitoring and therapy planning (Fig-
ure 1).

As we show in the next section, performance of the
temporal-abstraction task requires access to a consid-
erable amount of highly specified, task-specific clini-
cal knowledge. In this paper, we focus on the issue of
acquiring this knowledge from expert physicians us-
ing an automated graphical tool. We discuss how we
designed the tool and how we evaluated its usability
for entry of the required knowledge by a group of
expert physicians and knowledge engineers.

Summarization and interpretation of large volumes of
raw time-stamped data into meaningful abstractions
that hold over time periods is essential for effective
clinical decision making. Examples include deciding,
during therapy under a particular clinical guideline,
whether a patient who had previous bone marrow
transplantation has had more than two episodes of
bone marrow toxicity of severity grade 1 or higher,
each lasting at least one week. Notice that the value
of a temporal abstraction, such as the severity classi-
fication of bone marrow toxicity, is often specific to
the context of therapy under a particular clinical
guideline (Figure 1).

Thus, in Figure 1, the definitions of the bone marrow
toxicity levels, such as grade 2, are specific to the par-
ticular context in which the hematologic data were
acquired—namely, patients who have undergone
bone marrow transplantation and who are on a pred-
nizone/azathioprine (PAZ) protocol for prophylaxis
or therapy for chronic graft-versus-host disease
(GVHD). In this case, the level is a context-specific
function of the platelet and granulocyte toxicity levels,
which in turn are functions, respectively, of the plate-
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let and granulocyte raw counts. Furthermore, as much
as possible (using knowledge about the relevant he-
matology parameters), the abstractions are aggregated
into intervals, such as periods of one or more weeks.
Such a conceptual representation is at a level useful
for residents and attending physicians who need suc-
cinct summaries of patient data for such purposes as
support of a therapy decision. (An overview of our
temporal-abstraction framework is presented in the
next section.)

The ability to automatically create interval-based ab-
stractions of large numbers of time-stamped clinical
data in a context-sensitive manner has many useful
applications, which include:

n Automated summary of time-oriented electronic
patient records

n Support of recommendations by intelligent medical
decision-support systems2

n Monitoring the execution of therapy plans

n Generation of context-specific abstractions and
maintenance of several interpretations of the same
clinical data within different meaningful contexts

n Explanation of recommended actions by intelligent
medical decision-support systems

n Representing intentions of therapy plans, such as
goals of clinical guidelines, as temporal patterns to
achieve or avoid, thus supporting automated qual-
ity-assessment3

n Support of intelligent visualization and exploration
of time-oriented clinical data and their multiple-
level abstractions, enabling interactive data mining
in patient records4

Abstractions must be specific to the medical domain
and context in which the data were acquired, because
only then can they reduce considerably the informa-
tion overload on the care provider. To reduce that
overload further, succinct summaries must include
not only data abstractions that hold over time points,
such as ‘‘bone marrow toxicity of grade 2 at 11:00 A.M.

on July 17, 1998,’’ but also conclusions that hold over
time intervals, such as ‘‘six months of a pattern of qui-
escent GVHD, in the context of post-bone-marrow
transplantation.’’

Domain-specific abstraction of time-oriented clinical
data requires acquisition and disciplined maintenance
of complex types of knowledge about domain-specific
time-oriented properties of the particular data. Ex-
amples of such domain-specific knowledge include
functions that classify raw data or intermediate con-

clusions into more abstract concepts, specification of
constraints that define meaningful temporal patterns,
and knowledge of whether similar abstractions can be
joined over time or should be considered separate ep-
isodes.

In this paper, we first summarize briefly our previous
work on a computational method for forming high-
level concepts from raw time-oriented clinical data
(the knowledge-based temporal abstraction method)
and on a software system that implements´ ´RESUME,
that method. Then, we present a graphical knowl-
edge-acquisition (KA) tool that we have developed re-
cently, which acquires the knowledge required by

Finally, we describe an evaluation of the us-´ ´RESUME.
ability of the KA tool by expert physicians and knowl-
edge engineers for entry of clinical temporal-abstrac-
tion knowledge in three clinical domains—the
monitoring of children’s growth, the care of patients
with diabetes, and protocol-based care. In all three do-
mains, we had benchmark knowledge bases (entered
by a knowledge engineer using a text editor), data
sets, and resultant abstraction from these data sets,
based on our previous work. Those knowledge bases
had been elicited and entered manually by knowledge
engineers. We describe the quantitative and qualita-
tive results of enabling expert physicians to enter the
same knowledge by direct interaction with the new
graphical KA tool, and analyze our results.

Background

Knowledge-based Temporal Abstraction

In this section, we describe briefly our previous work
on the knowledge-based temporal-abstraction method,
its implementation as a software system, and several
applications using it. We emphasize the ontology
(terms, properties, and relations) of the method and
its knowledge requirements. These requirements in-
fluenced substantially the design of the KA tool that
we describe in the next section. We present only a bare
sketch of the computational framework, since it has
been described elsewhere.1,5 We emphasize, however,
the domain-specific knowledge that is required by our
methodology and that needs to be acquired from
expert physicians.

The temporal-abstraction task6 is an interpretation task.
The input to that task is time-stamped clinical mea-
surable data (e.g., hemoglobin values), external events
(typically, clinical interventions such as administra-
tion of medications), and the user’s goals (e.g., ther-
apy for insulin-dependent diabetes, which can change
the context for the abstraction process). The output of
that task is a set of interval-based abstractions of the
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data (e.g., a two-week interval of level-2 bone marrow
toxicity in the context of PAZ therapy). These abstrac-
tions interpret past and present states and trends that
are relevant in the context of the care-provider’s goals
(see Figure 1).

The Knowledge-based Temporal-abstraction
Problem-solving Method

We have developed a general problem-solving
method7 for interpreting data in time-oriented do-
mains, with clear semantics for both the problem-solv-
ing method and its domain-specific knowledge re-
quirements—the knowledge-based temporal-abstraction
method.1,6 This method comprises a knowledge-level8

representation of the temporal-abstraction task and
the knowledge required to solve that task. The knowl-
edge-based temporal-abstraction method has a formal
model of input and output entities, their relations, and
properties associated with these entities.1

The knowledge-based temporal-abstraction method
decomposes the temporal-abstraction task into five
parallel subtasks, which are solved respectively by
five temporal-abstraction mechanisms (nondecompos-
able computational modules).

The temporal-abstraction mechanisms produce output
abstractions of several abstraction types—state (e.g.,
MODERATE ANEMIA), gradient (e.g., INCREASING BLOOD

PRESSURE), rate (e.g., FAST-CHANGING HEART RATE), and
pattern (e.g., the linear pattern QUIESCENT-ONSET

GRAFT-VERSUS-HOST DISEASE or the periodic pattern
WEEKEND POST-LUNCH HYPERGLYCEMIA).

The temporal-abstraction mechanisms require four
domain-specific knowledge types for any particular
domain; these knowledge types need to be acquired
from expert physicians in each domain—structural
knowledge (e.g., ABSTRACTED-FROM [derived-from] re-
lations); classification knowledge (e.g., definition of a
parameter range as LOW, or a specification of a pat-
tern); temporal-semantic knowledge (e.g., unlike two
consecutive periods of anemia, two episodes of 9-
month pregnancies cannot be summarized as an epi-
sode of an 18-month pregnancy, since they are not
concatenable, a temporal-semantic property9); and tem-
poral-dynamic knowledge (e.g., persistence of some
characterization over time when data are unavailable,
which can be represented by a function that specifies
maximal gaps that can be bridged to connect two in-
tervals into one larger one10). As we show when we
discuss the KA tool that we designed for acquisition
of temporal-abstraction knowledge, physicians’ un-
derstanding of the role of each knowledge type is im-
portant for elicitation of that knowledge from these

experts. The understanding can be general, however,
and the experts do not need to know the computa-
tional details of the processes using the knowledge.

The knowledge needed to abstract time-oriented data
in any particular clinical domain is represented as the
temporal-abstraction ontology (a theory of terms and re-
lations) of that domain. A temporal-abstraction ontol-
ogy includes a parameter ontology, which is a theory of
the relevant parameters and their temporal properties
in the domain and the relations among these param-
eters (e.g., IS-A, ABSTRACTED-FROM); a pattern ontology,
which defines all patterns and their relations to other
patterns, parameters, and events (e.g., a linear pattern
can have a COMPOSED-FROM relation to two abstrac-
tions; for practical purposes, it can be viewed as an
ABSTRACTED-FROM relation); an event ontology, which
includes external events (e.g., medications), their in-
terrelations (e.g., PART-OF relations), and their proper-
ties; a context ontology, which includes interpretation
contexts (e.g., the temporal context defined by the ef-
fect of a drug) and relations (e.g., SUBCONTEXT) among
interpretation contexts11; an abstraction-goal ontology,
which includes the user’s potential goals for the ab-
straction process (these can induce contexts—e.g.,
monitoring of diabetes therapy) and their IS-A rela-
tions; and all relations between inducing propositions
and induced contexts (e.g., INDUCED-CONTEXTS).

The Knowledge-based Temporal-´ ´RESUME

abstraction System

In our previous research, we implemented the knowl-
edge-based temporal-abstraction method as the

system5,12 in the CLIPS language.13´ ´ ´ ´RESUME RESUME

generates temporal abstractions, given time-stamped
data and events and the domain’s temporal-abstrac-
tion ontology.

The system is not a rule-based system but´ ´RESUME

rather is an implementation of a problem-solving
method. The problem-solving method assumes dur-
ing run time the existence of certain types of domain-
specific clinical knowledge, which can be represented
in various forms (e.g., classification rules, persistence
functions, and temporal-semantic properties). Part of
the implementation of the computational aspect of the
original system happened to use rules,12 but´ ´RESUMe

unlike those in rule-based expert systems, these rules
were used simply as a high-level programming lan-
guage construct, referred to the assumed domain-spe-
cific knowledge that parameterizes the rules, and
were the same for all application domains. Indeed,
other parts of the implementation incorporated object-
oriented design and methods.
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The internal organization of the knowledge assumed
by the system (i.e., the clinical domain’s tem-´ ´RESUME

poral-abstraction ontology) does not use rules either,
but rather uses classes (e.g., events, parameters, lab-
oratory parameters) and instances (e.g., properties of
platelets in the context of PAZ therapy) of knowledge,
represented in a frame-based language.5 Slots in the
classes or instances typically correspond to various
knowledge types and subtypes (e.g., temporal-seman-
tic properties) and may include various types of rep-
resentations, such as a classification table.

Applications of the System´ ´RESUME

As part of our previous research, we tested the
system in several different clinical do-´ ´RESUME

mains—protocol-based care (experimental therapy
for patients who have AIDS and those who have
chronic graft-versus-host disease, and prevention of
AIDS-related complications),6,12 the monitoring of chil-
dren’s growth,6,14 therapy for patients who have in-
sulin-dependent diabetes,5 support for application of
clinical guidelines,2 and assessment of the quality of
guideline-based care, when the intentions of the
guideline designers are expressed as temporal ab-
stractions to be achieved or avoided and the patient
data are abstracted for comparison with the guide-
line’s intentions.3

Methods

Design and Evaluation of the Knowledge-
acquisition Tool

Our methodology in this study had three phases—
design of a new KA tool to enter and maintain tem-
poral-abstraction knowledge; evaluation of the usa-
bility of that tool for knowledge entry, which
consisted of having a group of expert physicians and
a group of knowledge engineers create, using the tool,
knowledge bases in three clinical domains, when
given a text-based declarative specification of the
knowledge in an object-oriented language; and deter-
mination whether the abstractions created by the

system using the resulting knowledge bases´ ´RESUME

and a benchmark set of data in each domain were
valid, by comparison of these abstractions to the out-
put of for the same data set, using the origi-´ ´RESUME

nal, text-based, manually entered knowledge.

Construction of the Knowledge-acquisition Tool

We developed a graphical KA tool to automate the
process of entry of temporal-abstraction knowledge
by expert physicians in multiple clinical domains. The
goal of the tool is to minimize intervention by knowl-
edge engineers, a well-known limiting factor in the

development of knowledge-based systems, and to fa-
cilitate the maintenance of the knowledge base, once
acquired, by the same or other domain experts (or, in
some cases, by knowledge engineers). We constructed
the KA tool using software tools from the Protégé
project.15–18 As a software artifact, the KA tool is tech-
nically an automated tool. More accurately, it is a semi-
automated tool in two senses—in its mode of genera-
tion and in its mode of use. First, it is a software tool
that is generated automatically by the Protégé system
and provides multiple automated support services for
KA; however, custom tailoring of the final interface is
performed manually by the developer of the KA tool,
using one of the Protégé tools. Second, the resultant
KA tool is an automated graphical tool, but it requires
(unlike, for example, machine-learning techniques
that learn only from data) interaction with a human
domain expert (i.e., an expert physician) who enters
the domain-specific knowledge using the dialog im-
plicit in the structure of the KA tool.

The Protégé System

The Protégé framework15–18 is a workbench for con-
structing and using ontologies, for creating domain-
specific knowledge-acquisition tools derived from on-
tologies, and for entering of domain knowledge into
these knowledge-acquisition tools. The current system
(Protégé/Win) runs in a Windows 95 or Windows NT
environment and is in routine use at more than a
dozen academic and commercial sites worldwide.

The Protégé approach assumes that domain ontolo-
gies (e.g., the ontology of the protocol-based-care do-
main) and the knowledge bases derived from them
will serve as input to a problem-solving method.
Problem-solving methods are reusable, because they
encode stereotypic problem-solving strategies, such as
classification, constraint satisfaction, or skeletal plan-
ning. The knowledge-based temporal-abstraction
method is an example of a problem-solving method.
We have applied the Protégé methodology to multiple
domains, from automated support of guideline-based
therapy to the determination of ribosomal structure.19

Thus, a major advantage of the Protégé approach is
the production, given the relevant problem-solving
method (e.g., the knowledge-based temporal-abstrac-
tion method) and domain ontology (e.g., protocol-
based care), of automated knowledge-acquisition
tools, tailored to the selected problem-solving method
and domain. The tools allow knowledge-base authors
to define instances of the classes in the ontology by
various methods, such as by filling out graphical
forms or by drawing pictures on the computer screen.
Figure 2 summarizes the complete development pro-
cess of an application within the Protégé framework.
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F i g u r e 2 Application development in the Protégé
framework. The developer selects a problem-solving
method for the task. On the basis of the knowledge re-
quirements of the method (the method’s ontology) he or
she transforms, or custom tailors, a domain ontology into
an application ontology. The domain-specific terms and
relations in the application ontology are mapped to those
in the domain-independent method ontology. From the
application ontology, Protégé generates a domain- and
task-specific graphical knowledge-acquisition tool for en-
try of domain knowledge, which is translated into objects
in the implementation system.

Design of the Knowledge-acquisition Tool with
the Protégé System

The first phase in our experiment was the creation of
the temporal-abstraction KA tool in the Protégé
framework. In preparation for the knowledge-entry
evaluation phase and the output evaluation phase,
this phase was performed by the designers of the KA
tool (Y.S. and H.C.) and involved two steps:

n Creation and editing of the KA tool target (method)
ontology, which is similar in this case to that of the
knowledge-based temporal-abstraction method un-
derlying the system, but is different in sev-´ ´RESUME

eral practical aspects, and

n Custom tailoring of the layout of the default graph-
ical KA tool, which is generated automatically by
Protégé.

Once a layout specification exists, the layout-inter-
preter module of the Protégé system can display it
and enable users to start creating knowledge bases
using the KA tool.

Figure 3 shows the KA tool ontology, displayed in the
Protégé ontology editor.

In general, there are four major classes of concepts in
the KA tool ontology—abstraction goals, contexts,
events (interventions), and measured or derived pa-
rameters. (The class of patterns was represented in the
KA tool as a subclass of the Parameter class). The

system uses the knowledge entered as in-´ ´RESUME

stances of these classes to interpret patient data. Be-
sides these four major classes, the KA ontology in-
cludes also multiple auxiliary classes that are useful
for the construction of the major classes. The design
of the KA tool ontology, which directly affects the in-
terface generated by the Protégé system, reflects a del-
icate tradeoff between avoiding a too-complex struc-
ture and avoiding an overcrowded interface.

After we designed the KA tool ontology, the Protégé
system generated a default graphical interface for ac-
quisition of instances of that ontology. Typically, dif-
ferent classes in the ontology correspond to separate
windows in the graphical interface, whereas slots of
classes correspond to panels in each window. Using
the Protégé layout-editing tools, we could easily cus-
tom tailor the interface by modifying sizes and rear-
ranging relationships of windows and panels, chang-
ing certain labels, and so on.

The top level of the resultant KA tool, after we defined
the ontology and customized the graphical layout
within Protégé layout editor, is shown in Figure 4.
Every knowledge-acquisition or knowledge-mainte-
nance session starts at that top level. There are six
panels in this frame. Four of them are the four major
ontology classes. In addition, there are two help pan-
els, which exist in almost all the frames in the KA tool.
The Description panel of each frame provides do-
main-independent help for the expert who enters the
knowledge. It typically explains the meaning of each
frame or of specific slots in that frame and may con-
tain instructions on how to fill out the frame. The De-
scription panel is a slot maintained at the level of the
KA tool ontology, and it therefore shows up in every
frame generated from that ontology. The Comment
panel is used by the expert to document the particular
domain-specific knowledge that the expert enters.

In the current version of our KA tool, using the Pro-
tégé/Win system, users create and edit only knowl-
edge instances, whose type (e.g., Event or Parameter)
must be one of those determined in the KA tool on-
tology. Domain-specific classes, such as Laboratory
Parameters, are typically created by the knowledge
engineer designing the KA tool. The knowledge en-
gineer creates these classes because the addition of
such domain-specific classes to the KA tool ontology
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F i g u r e 3 The ontology of the temporal-abstraction knowledge-acquisition tool. This ontology was used by the Protégé
system to generate a default graphical layout for that tool; it drives the knowledge-acquisition process.

requires the use of the generic ontology editing tools,
which is more suitable for the knowledge engineers
than for the domain experts. Once a class is defined
in the ontology, a ‘‘tailorable’’ interface is generated
for it automatically, and instances of the new class can
be acquired.

Once the user of the KA tool decides to edit a knowl-
edge instance that belongs to one of the major classes
(e.g., a particular parameter) or create a new one, the
KA tool will create an instance of that class. Using the
conventions of automatically generated interfaces in
Protégé, users can use the ‘‘New’’ button (Figure 5) to
define new instances or ‘‘Select’’ to select an instance
that has already been defined. They can use the ‘‘Edit’’
button to modify a previously defined instance. The
‘‘Clear’’ button deletes a previously defined instance
from the list.

Figure 5 shows the process of acquisition of knowl-
edge regarding a state parameter—Systemic toxicity in

the protocol-based care domain, in the context of ther-
apy according to the CCTG522 experimental AIDS-
therapy protocol. We can see that this parameter is
abstracted from the parameters Temperature, Chills,
and SkinoExam, all of which have been defined pre-
viously by the expert, or exist in the knowledge base,
as primitive (raw-data) parameters. The state abstrac-
tion, like all abstract parameters, has a Persistence func-
tion property (represented as a slot in the knowledge
instance) (see legend for Figure 6). The Necessary con-
texts slot, which has the value CCTG522.ctx, defines
the context or combination of contexts in which the
abstraction is relevant. The two open subwindows
show the values of an Allowed value list slot and the
State mapping function slot. In the Allowed value list
window we can see that the list of values legitimate
for the parameter whose properties are being acquired
is being defined. In the State map many to 1 window,
the expert defines the values of the systemic toxicity
parameter as a function of the values of the primitive
parameters in the Abstracted from slot.
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F i g u r e 4 The entry screen (top level) of the
temporal-abstraction knowledge-acquisition
tool. Shown are the four main ontological clas-
ses and two Help panels.

Figure 6 shows the acquisition of persistence knowl-
edge from a domain expert—in this case, for the
bone-marrow-toxicity (myelotoxicity) parameter. Per-
sistence knowledge enables interpolation between
points or intervals of clinical data and their abstrac-
tions and thus supports the creation of intervals that
summarize the data as succinctly as possible, without
concatenation of intervals that are too far apart.

For each given parameter (here, myelotoxicity) and
context (in this case, therapy by the PAZ protocol), a
persistence table can be specified by the expert. The
table is, conceptually, a three-dimensional function;
for ease of elicitation, however, it is displayed in the
KA tool as a series of two-dimensional tables. For each
layer (one value from the allowed values of the param-
eter) of the three-dimensional conceptual table, the
expert specifies one two-dimensional table. This table
lists the maximal temporal gap that can be bridged to
connect two intervals (over both of which the clinical
parameter has that value) to create a longer interval

with the given value. The input arguments in each
two-dimensional table are the duration of each inter-
val before and after the gap; the output is the maximal
duration of the gap that still allows aggregation of the
intervals (see Figure 6). This methodology, which con-
forms to the global-persistence-function model,10 has
certain theoretic advantages (e.g., given certain con-
ditions, the resultant intervals do not depend on the
order of arrival of data or performance of computa-
tions) as well as simplicity in specification.

Like many other properties, persistence tables are of-
ten inherited from higher-level classes (e.g., properties
of the hemoglobin parameter or even of the hemato-
logic class of parameters in general) but can be mod-
ified for each context (e.g., therapy by PAZ).

Figure 7 shows the acquisition of a pattern parameter
—Improving hemoglobin CCTG in the protocol-based
AIDS-therapy domain. This pattern is linear; that is,
it is composed of a single sequence of components (as
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F i g u r e 5 Acquisition of a state-abstraction parameter with the temporal-abstraction knowledge-acquisition tool. The
Systemic toxicity parameter is abstracted, in the context of therapy by the CCTG522 AIDS therapy protocol, from values
of the Temperature, Chills, and SkinoExam parameters. The classification scheme defined by the expert is shown in the
table displayed in the bottom-right subwindow. In this case, the expert has chosen to define the classification function
using a maximum OR table; that is, after the toxicity value is determined individually for each input parameter (i.e., in
each row), the KA tool selects the maximum value (i.e., the column whose output toxicity grade is maximum). The
resultant output values of the Systemic toxicity parameter (Gradeo0, Gradeo1, etc.) are constrained by the Allowed value
list, shown in the top-right subwindow. The values in this list (like the allowed values for each of the input parameters)
have been defined by the user as part of the essential knowledge about each clinical parameter.

opposed to a periodic pattern, which is typically com-
posed of a repeating abstraction or linear pattern). To
facilitate acquisition and maintenance, we define lin-
ear patterns by listing a set of one or more compo-
nents that are instances of any of the four major clas-
ses, and defining local constraints on each component
and global constraints between pairs of components.
Each component (e.g., an abstract parameter) holds
over a corresponding time interval. Local constraints
include fuzzy intervals for the start time, end time,
and duration, as well as a range of values for the pa-
rameter (or attribute of the event, such as dose of a
drug). Global constraints include qualitative and

quantitative temporal relations as well as value rela-
tions. Currently, the KA tool interface assumes that
patterns are composed of up to four components,
whose names, such as Input interval 1 (see Figure 7),
are predefined for ease of acquisition. However, the
number of components could be increased easily in
the KA tool ontology, thus automatically modifying
the resultant KA tool interface. The user can define
more than one set of components that can fit the same
top-level pattern (i.e., a disjunction of either of several
sets of local and global constraints), but each set of
constraints defines a conjunction of predicates, all of
which should hold.
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F i g u r e 6 Specification of the persistence properties of the grade 1 value of the Myelotoxicity (bone marrow toxicity)
parameter in the context of the PAZ protocol, as used in the temporal-abstraction knowledge-acquisition tool. The
expert has selected the Gradeo1 layer of the (conceptually) three-dimensional persistence table, and specifies, in the
bottom-right subwindow, a two-dimensional table that defines the maximal gap that allows concatenation of two
intervals of grade 1 bone marrow toxicity, as a function of the duration (Interval length) of the interval before the gap
and the duration of the interval after the gap. The lengths of the two intervals are the indices of the two-dimensional
table; the value of the parameter (in this case, Gradeo1) is the layer index for the three-dimensional table.

Thus, in Figure 7 we can see that the first component
is called Moderate anemia. It is defined as a hemoglobin
state (Hbostate) abstraction (a state abstraction of the
hemoglobin-value raw parameter) whose local con-
straints include the moderate-anemia value as well as
a maximum duration of 15 days and a minimum du-
ration of 1 hour. The second interval, Normal Hb, is a
hemoglobin-state abstraction whose local constraints
include a normal-hemoglobin value. There are two
global constraints:

n Moderate anemia is before Normal Hb. This constraint
is represented as an interval constraint: It defines
the qualitative temporal relationship between two
intervals.

n Less than two days passed between the end of the
Moderate anemia period and the beginning of the
Normal Hb period. This is an example of a gap con-
straint: It defines the temporal gap between two in-
tervals.
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F i g u r e 7 Specification of a temporal-pattern abstraction, as used in the temporal-abstraction knowledge-acquisition
tool. The pattern of improving hematologic state in the context of therapy by the CCTG522 AIDS therapy protocol is
composed of two components (input interval 1 and input interval 2), an interval of moderate anemia followed within
two days by an interval of normal hemoglobin values. Both intervals are state abstractions of the Hemoglobin-value raw
parameter. In the bottom-left subwindow, the expert defines the local constraints on interval 1. In the top-right sub-
window, the expert defines a global qualitative temporal constraint over both intervals. In the bottom-right subwindow,
the expert specifies a quantitative temporal constraint over the two intervals.

The Knowledge-acquisition Tool Filter

As we mentioned in the above section, the ontology
of the KA tool is not a precise image of the ´ ´RESUME

system’s ontology. For instance, the Protégé/Win sys-
tem cannot represent all arbitrary data types. Thus, a
mapping between the ontologies is needed. For this
and other significant reasons (such as knowledge val-
idation and optimization of the representation), we

developed a postprocessor module, the KA tool filter,
that processes the output of the KA tool. Following
the automated filter processing, the resultant knowl-
edge base can be read directly into the system,´ ´RESUME

which can use that knowledge to interpret domain-
specific data.

The KA tool filter is completely domain independent,
since it refers to the data structures of the domain-
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independent KA tool and system. The main´ ´RESUME

task of the filter is to map the objects created by the
KA tool to objects. For example, the filter cre-´ ´RESUME

ates a three-dimensional table required by ´ ´RESUME

from a set of lists, each representing one layer (or a
two-dimensional table) created by the KA tool. The
filter translates the KA tool output to a format that
the system can understand, performs integrity´ ´RESUME

checking, and adds data structures (e.g., back point-
ers) that facilitate run-time computations by the

system.´ ´RESUME

The Knowledge-acquisition Tool’s Online
Manual

In addition to the two help slots described in the de-
sign section, we have created an extensive World
Wide Web–based set of hypertext (HTML) files as an
online manual. The manual help expert physicians
understand the KA tool and the underlying knowl-
edge-based temporal-abstraction methodology and its
ontology. The hypertext files were available to the ex-
perts during the evaluation; all experts said that the
files were useful.

Evaluation of the Knowledge-acquisition Tool

We conducted an experiment using as subjects three
domain experts and three knowledge engineers. Our
goal was to evaluate the usability of the KA tool for
the specific purpose of entering existing (previously
elicited) temporal-abstraction knowledge. Thus, we
intentionally isolated the processes of knowledge en-
try and editing from the process of eliciting that
knowledge, although the KA tool is probably helpful
in the latter process, too. The reason for that separa-
tion is that the process of eliciting domain-specific
knowledge often requires initial interviews of the do-
main experts by a knowledge engineer, to structure
the knowledge before entry. Evaluation of the com-
plete cycle of acquisition of temporal-abstraction
knowledge is part of another, ongoing study.

The Knowledge Bases

We had previously acquired (through a series of in-
terviews) and had entered manually temporal-ab-
straction knowledge for three clinical domains—the
monitoring of children’s growth,6,14 the care of pa-
tients with diabetes,5 and protocol-based care.6,12 We
also had a small set of clinical data in each of these
domains and the results of the abstraction of´ ´RESUME

those data (which were validated by domain experts),
using the manually entered knowledge. In the current
study, we used these three knowledge bases, the three

representative data sets, and the respective output ab-
stractions computed from them by as the gold´ ´RESUME

standards for verification and validation of the ac-
quired knowledge bases.

In the domain of monitoring children’s growth, two
knowledge engineers (Y.S. and M. Kuilboer, MD, a
collaborator in that domain) had previously con-
ducted three interviews (about four hours overall)
with a pediatric endocrinologist (D.M.W.), mainly to
elicit and to structure manually the parameter ontol-
ogy for that domain and to limit the scope of the re-
sultant temporal-abstraction system.14 Then, two more
hours of the expert’s time were used for manual filling
in the various tables (e.g., classification, interpolation).
Finally, the knowledge was entered manually into the

knowledge base, which is in the CLIPS lan-´ ´RESUME

guage, by the two knowledge engineers, a task that
required ten more person-hours. The resultant knowl-
edge base was tested on a data set representing three
clinical cases, and the output abstractions correlated
well with the abstractions created by the expert for
the same data. We used these cases for the gold-stan-
dard data set.

In the domain of protocol-based care, we tested in
previous experiments the knowledge representation
capabilities of using the temporal-abstraction´ ´RESUME

aspects (as opposed to the therapy-planning aspects)
of two protocols—the California Collaborative Treat-
ment Group CCTG-522 experimental protocol for
AIDS therapy [CCTG, personal communication], and
the PAZ protocol for treating patients who have
chronic GVHD (a complication of bone-marrow trans-
plantation), which was developed by investigators at
the Fred Hutchinson Cancer Center at the University
of Washington in Seattle.20 In the domain of protocol-
based care, reading the protocols and performing in-
terviews with domain experts to elicit, structure, and
acquire the temporal-abstraction knowledge portion
of the protocols manually required ten hours (five
hours for each protocol). About 16 additional hours (8
per protocol) were needed for one author (Y.S.) to en-
ter the knowledge manually into CLIPS using a text
editor. The abstractions created the knowledge and a
data set that included a simulated patient whose rec-
ord was constructed from two clinical cases, one in
each protocol; they were judged by participating cli-
nicians as correct according to the protocols, although
no formal evaluation was done. We used the simu-
lated case as the gold-standard data set for validation
purposes.

Previously, we applied the knowledge-based tempo-
ral-abstraction methodology to the task of monitoring
patients who have insulin-dependent diabetes melli-
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Table 1 n

Hours Required for Manual Acquisition and Entry of Temporal-abstraction Knowledge in Three Domains
Monitoring

Growth
Providing

Diabetes Care
Providing

Protocol-based Care

Structuring interview of knowledge engineers with domain expert 6 8 10

Manual entry by knowledge engineer using text editor 10 12 16

tus.5 Two endocrinologists (L.V.B. and F. Kraemer,
MD), who are experts in therapy for insulin-depen-
dent diabetes, were the domain experts for that ex-
periment. Creating the ontologies on paper (through
elicitation interviews) required four two-hour meet-
ings with the experts. In addition, 12 more hours were
needed for a knowledge engineer (Y.S.) to enter the
knowledge manually (with the assistance of a text ed-
itor).

A formal evaluation of the knowledge base was per-
formed. The data used for the evaluation study were
taken from a set of electronic clinical records of pa-
tients who have insulin-dependent diabetes and who
were followed for several months. The data included
mostly glucose and insulin codes. Special events (e.g.,
physical exercise and larger-than-usual meals) were
sometimes reported, too, as were symptoms of hy-
poglycemia. The resultant abstractions in-´ ´RESUME

cluded 80.4 percent (132 of 164) of the temporal ab-
stractions that were agreed on by two endo-
crinologists for the set of patients used in that study.5

When one of the experts, who eventually collaborated
with us in the KA phase of the current study, had
originally examined the detailed output for the first
three cases, he agreed with 97 percent of the abstrac-
tions created by The high specificity was not5´ ´RESUME.
surprising, since the diabetes domain’s temporal-ab-
straction ontology reflected, at least partially, that
expert’s knowledge. We used these cases for the gold-
standard data set.

Table 1 summarizes the characteristics of the knowl-
edge elicitation and manual entry processes for the
three knowledge bases used for the study.

Evaluation of the Usability of the Knowledge-
acquisition Tool for Knowledge Entry

To evaluate the feasibility of entering temporal-ab-
straction knowledge through the graphical KA tool,
we provided three of the authors who are expert phy-
sicians (L.V.B., an endocrinologist; H.K., an oncologist;
and D.P.S., an immunologist) and three knowledge
engineers (all graduate students in computer science
or medical informatics) with the manually entered,
text-based versions of the three knowledge bases de-

scribed in the previous section. The knowledge was
represented declaratively as a unordered set of frames
and slots that summarized the class definitions in the
object-oriented CLIPS language13 version of the
knowledge bases (which is the format in which the

system accesses these knowledge bases). The´ ´RESUME

frames were highly declarative and self-explanatory,
and corresponded to the class hierarchy that was typ-
ically elicited from the domain expert from which the
knowledge was originally acquired.

Since the domain experts were familiar to some extent
with the concept of class hierarchies, and since we
provided them with syntactic assistance when neces-
sary, we preferred using the CLIPS-like, frame-based
representation to trying to create a natural-language
representation of the temporal-abstraction knowledge
bases, which were most naturally expressed as frames
and slots, even when acquired manually from the
original domain experts. The knowledge engineers
were comfortable with the format (all were familiar
with knowledge-based systems). Thus, the input
forms given to participants simulated the stage in
which the knowledge has been structured (either in
the expert’s mind or through assistance by a knowl-
edge engineer) and needs to be entered into the semi-
automated KA tool. Notice that, although the knowl-
edge was given to the participants as a set of
encapsulated instances, they had to solve the realistic
problem of how best to use the automated KA tool to
enter the instances. In particular, they had to deter-
mine where in the KA tool dialog (e.g., as a gradient
abstraction) and how (e.g., as the value of the tem-
poral-persistence slot) each instance should be en-
tered. The relations among instances in the given text
did not necessarily reflect links that might be useful
in the automated KA tool, since the knowledge rep-
resented in the text was originally elicited by inter-
views and was entered manually (using the ´ ´RESUME

system’s internal format) by knowledge engineers
who did not have the KA tool available at that time.

All participants were given copies of the text-based
knowledge bases, instructions on downloading the
Protégé/Win system from the Web, diskettes with the
temporal-abstraction KA tool, one or more papers on
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the system (in particular, a paper about its´ ´RESUME

clinical evaluation5), and a pointer to the Web-based
KA tool manual. They were then asked to enter at
their convenience two or three knowledge bases using
the graphical KA tool without outside assistance. In
every case, we asked the participants to enter the
growth knowledge base first, because we judged that
task to be the least demanding. None of the physi-
cians was an expert in that domain. Each physician
then entered knowledge in a second domain (proto-
col-based care in oncology and AIDS, or diabetes
care), the domain in which he is an expert. One author
(H.C.), who was also one of the designers of the KA
tool, provided online and live assistance in under-
standing the KA tool’s functionality during the initial
learning phase.

We asked all participants to record the time it took
them to understand the essence of the knowledge-
based temporal-abstraction methodology and, in par-
ticular, the ontology of the system (excluding´ ´RESUME

any computational details); to familiarize themselves
with the KA tool; and to enter the knowledge in each
knowledge base into the tool. In 10 of 14 knowledge-
entry cases, we asked the participants, several weeks
or months later, to enter the knowledge bases again,
simulating a scenario likely to occur if the tool were
used on a regular basis, so the experts would then
have familiarity with both the domain and the KA
tool. In several cases, the subjects performed the first
entry using a slightly older version of the KA tool that
did not have cut-and-paste editing facilities for strings
and whole instances. In all these cases, a second entry
was performed, and the two designers of the KA tool
(Y.S. and H.C.) tested the entered knowledge bases
using the gold-standard set of data and compared the
abstractions created with these knowledge bases to
the gold-standard set of abstractions created with the
manually entered knowledge.

Although we did not provide domain-specific assis-
tance beyond explaining the syntax and semantics of
the text knowledge bases, we did provide in our meet-
ings with the experts and in the online manual several
guidelines to effective use of the KA tool. In theory, a
user can define any instance of a major class in the
KA tool ontology on the fly in each of the subframes
by using the ‘‘New’’ button (see Figure 5). However,
to avoid confusion and re-creation of instances that
already exist (possibly with a slightly different name),
we encouraged both expert physicians and knowl-
edge engineers to adhere to the following approach
when creating or maintaining a knowledge base:

n Analyze the specific domain knowledge and categorize it
into the framework provided by the KA tool (contexts,

events, parameters). In this study, most of the analysis
had been done, of course, when the original knowl-
edge base was elicited; nevertheless, becoming fa-
miliar with the various knowledge classes in the
given text knowledge base was important for facil-
itating efficient entry.

n Define context instances first, so that they can be selected
in the future from other frames. Examples include the
regularoinsulinoeffect interpretation context.

n Define the set of event instances. Examples include
regularoinsulinoadministration. Events might be
able to generate (induce) predefined contexts at run
time, such as the regularoinsulinoeffect interpreta-
tion context. The precise temporal relationship can
be specified when the event is defined.

n Define the set of abstraction goals. These goals exist
only for the induction of interpretation contexts at
run time (e.g., the goal of care for insulin-depen-
dent diabetes induces the top-level diabetes-care in-
terpretation context, in which glucose and insulin
data are interpreted accordingly).

n Define parameter knowledge instances. This task is typ-
ically the main and most complex KA process, and
it contributes the most to the knowledge base. Pa-
rameters have multiple properties, usually within a
predefined interpretation context, which can be se-
lected at acquisition time. Thus, the meaning of
‘‘grade 2 systemic toxicity’’ depends on the context.
Furthermore, certain values of certain abstractions
(e.g., ‘‘tachycardia’’ for the rate abstraction of the
pulse) can be specified as generating another inter-
pretation context, which would be useful for ab-
straction of other data types. That context also
would be best selected from an existing context list.

These suggestions represented insights that we gained
while designing the KA tool and can be seen as part
of the methodology for best use of a KA tool gener-
ated by a Protégé system. The suggestions were not
relevant for entering the knowledge using a text edi-
tor.

Results

The usability of the KA tool can be described by quan-
titative and qualitative measures.

Quantitative Measures

Table 2 summarizes the results of the experiment with
respect to how long it took to learn the conceptual
methodology and use of the KA tool (both a one-time
cost) and to make first-pass and second-pass entries
of all three knowledge bases for all participants.
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Table 2 n

Hours Required to Learn the KA Tool and Underlying Methodology and Use It for Semi-automated Entry
of Temporal-abstraction Knowledge in Three Clinical Domains

Expert Physicians

1 2 3

Knowledge Engineers

1 2 3

Understanding the ontology 6 20 6 20 20 15

Understanding the KA tool 6 4 2 2 5 3

Monitoring growth
First entry
Second entry

6
2

20*
3

2
—

1
—

3
1.5

25*
1

Providing diabetes care
First entry
Second entry

12
6

—
—

—
—

2.5
—

—
—

2
2

Providing protocol-based care
First entry
Second entry

—
—

60*
10

10
5

5
—

6
2

5
1

NOTE: Where two entries are given, the first is for first entry to the knowledge base and the second is for second entry to the same
knowledge base.
*First entry to the knowledge base using an older version of the KA tool (e.g., no cut-and-paste editing functionality).

Understanding the ontology sufficiently for´ ´RESUME

use of the KA tool, as judged by the participants, re-
quired from 6 to 20 hours (median, 15 to 20 hours).
Notice that the knowledge engineers often took more
time than the domain experts, since they wanted to
understand the computational details in addition to
the terms. Learning to use the KA tool, as judged by
the participants, required from 2 to 6 hours (median,
3 to 4 hours); there did not seem to be significant dif-
ferences between domain experts and knowledge en-
gineers. Acquisition times for the three physicians
varied by domain—from 2 to 20 hours for growth
monitoring (median, 3 hours), 6 and 12 hours for di-
abetes care (only one expert physician entered knowl-
edge into this domain), and from 5 to 60 hours for
protocol-based care (median, 10 hours).

An increase in speed by a factor of up to 25 (median,
a factor of 3) was shown for all participants when the
KA process was repeated. The knowledge engineers
recorded first-pass entry times similar to those re-
corded by the expert physicians on their second pass.

To assess the validity of the resulting knowledge
bases, we ran the system on the representative´ ´RESUME

data sets in each domain, using each knowledge base.
In all cases using the entered knowledge,´ ´RESUME,
generated an output that was judged by the two
knowledge engineers (Y.S. and H.C.) to be almost
identical to the output that it generated using the
manually entered knowledge. In two cases, one ab-
straction was missing because the domain expert
omitted a classification function or one of its values;
otherwise, the output was identical. This result is not

as surprising as it might seem, since all participants
were given well-structured knowledge bases and the
gold-standard cases included a relatively small num-
ber (typically 10 to 20) of raw time-stamped clinical
parameters and events. Nevertheless, the results dem-
onstrated that the knowledge bases acquired by use
of the KA tool were as valid as the manually entered
ones. We also verified the contents of the acquired
knowledge by manual examination of the CLIPS in-
stances generated by the KA tool and by comparison
of these instances to the gold-standard knowledge
bases, with similar results.

Qualitative Measures

The domain experts often needed significant support
(provided by Y.S. and H.C. as well as by the papers
and the online manual) during the initial phase of un-
derstanding the methodology and ontology.´ ´RESUME

The interpolation (persistence) functions, in particular,
needed several explanations. The KA tool interface,
however, was considered intuitive by all experts and
knowledge engineers. All experts reported that, once
they became familiar with the KA tool, they could en-
ter any of our sample knowledge bases in several
hours. A common comment was that it would have
been useful if the knowledge, once entered, could
have been used immediately to create abstractions on
a sample data set, with the abstractions being visu-
alized in some way. In this way, the knowledge could
have been verified easily during entry time without
painstaking checks. The online manual was cited by
all expert physicians as highly useful.
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Discussion

The temporal-abstraction task is common, in various
direct or indirect forms, in many clinical applications,
including patient monitoring, therapy planning, qual-
ity assessment, and visualization and exploration of
time-oriented clinical data. Thus, automating this task
as much as possible is highly desirable. Several re-
searchers have previously examined the temporal-ab-
straction task or facets of it,21–23 usually without em-
phasizing the aspect of supporting acquisition and
maintenance of the required knowledge. The knowl-
edge-based temporal-abstraction method, with its
well-defined ontology, can provide support for both
performance of the temporal-abstraction task and cre-
ation of a formal framework that facilitates acquisition
and maintenance of temporal-abstraction knowledge.
However, it requires significant amounts of domain-
specific knowledge to be effective. Thus, it is impor-
tant to facilitate the process of acquisition of temporal-
abstraction knowledge. In the past two decades, a
common solution proposed by researchers was the
use of semi-automated KA tools, although not many
were evaluated for usability or were considered usa-
ble when evaluated.24

We created, prior to this study, a highly preliminary
prototype of the current KA tool, using the Protégé-II
system, a previous Protégé version which ran on a
NeXT machine.25 No formal evaluation was per-
formed at that time, although the experiment was en-
couraging. We have now demonstrated that the cur-
rent temporal-abstraction KA tool, which we
developed using the Protégé/Win system, it usable
and effective, at least for both expert physicians and
knowledge engineers to enter clinical temporal-ab-
straction knowledge in three clinical domains for
which we had benchmark knowledge and data. Fur-
thermore, the resulting knowledge bases were verified
by comparison with the knowledge previously en-
tered manually and were judged as valid as these
knowledge bases are, in that they computationally
produced almost the same abstractions when used by
the system to interpret a small set of data in´ ´RESUME

each domain.

The evaluation described here did not include the cru-
cial step of elicitation of the knowledge from the orig-
inal domain experts who provided it and the struc-
turing of that knowledge. As was shown in Table 1,
that step required a significant amount of time, spread
over several meetings of a knowledge engineer with
a domain expert. We consider that step, however, to
be both unavoidable and justifiable in the case of com-
plex knowledge-based systems aiming at provision of
nontrivial conclusions based on large amounts of do-

main-specific knowledge. Similarly, we consider the
one-time cost of understanding the ontology´ ´RESUME

and the KA tool interface reasonable for recurring,
high-value tasks such as monitoring patients who
have chronic diseases. In such domains, the resultant
knowledge base is highly reusable, both for abstrac-
tion and for other purposes, such as visualization and
exploration of the resultant abstractions.4 There was a
partial overlap between the domain experts who par-
ticipated in the elicitation phase and the knowledge-
entry phase, which somewhat strengthened the results
by presenting an almost complete, realistic life cycle
of development of the knowledge base by the same
expert. This overlap occurred for only one domain (di-
abetes) and one expert (L.V.B.).

In addition to eliminating the interviewing aspect of
the elicitation phase, provision of the knowledge (to
the experts using the KA tool) as text-based CLIPS
classes eliminated much of the structuring aspect of
that elicitation and provided a well-defined common
ground. The object-oriented CLIPS format attempted
to mimic the typical results of an elicitation process
(i.e., an informal set of paper forms representing a set
of domain-specific classes and objects with certain re-
lations among them). All experts were familiar, in this
particular case, with the ideas (if not details) of clas-
ses, objects, and slots (additional knowledge was
available in the KA tool manual). However, the input
format potentially could have positive (facilitating)
and negative (detrimental) effects on the ease of the
knowledge-entry process. On the positive side, the or-
ganization into classes and slots might have assisted
the experts in determining how to structure the
knowledge in the KA tool. On the negative side,
CLIPS is a computer language with which medical
experts are unfamiliar; furthermore, the format of the
knowledge represented in the text given to the experts
was similar to that found in actual files (i.e.,´ ´RESUME

filtered knowledge, postprocessed from the KA tool),
rather than to the format and general ‘‘look and feel’’
of the interface they eventually used in the KA tool.
(It was that way because, to start the KA process when
no knowledge had been acquired yet through the KA
tool, we used the knowledge originally entered man-
ually into The experts might have done even´ ´RESUME.)
better using, for instance, diagrams of their own
knowledge as the input to be entered into the KA tool.

We represented the knowledge given to the partici-
pants using a uniform formal input format. The
knowledge-entry methodology supported by the KA
tool is also structured. Thus, the resulting knowledge
instances were in an almost canonic form, leading to
little variability in the representation once users un-
derstood the correct way to enter the knowledge. An
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experiment including the elicitation of the same type
of knowledge de novo from different experts might
have led to significant variability in the resulting
knowledge bases. For example, in a previous experi-
ment in the domain of caring for patients who have
insulin-dependent diabetes, we noted significant dif-
ferences between two experts with respect to their rec-
ommended management of the same patients.5 How-
ever, the two experts had been in agreement with high
correlation with respect to the temporal abstractions
that could be extracted from the patients’ records,
thus leaving open the possibility that temporal-ab-
straction knowledge is more likely to be a common
ground than management knowledge, which often
depends on subjective factors such as physician and
patient preferences.5

Because of the different goal and design of this study,
we did not aim to measure interauthor variability
among the participating physicians or knowledge en-
gineers. That goal was used, for instance, in the study
of Giuse et al.26 within the framework of the QMR
diagnostic system. That team focused on the creation,
by seven internists, of a disease profile for a single
disease (acute perinephric abscess), a profile compris-
ing mainly sensitivity and positive predictive values
for a series of findings. Unlike that study, ours used
subjects who started with the same knowledge base
in three different clinical domains. We also did not
measure the rate of change in the knowledge base
during maintenance, an assessment undertaken in an-
other study within the QMR framework.27 Rather, we
assessed the usability of the KA tool for entry and
maintenance of highly complex types of knowledge
implied by a particular problem-solving method.

The significant increase in speed (up to an order of
magnitude) in knowledge entry times from the first
pass to the second, especially in the case of the expert
physicians, was interesting and suggests that any
amount of training with the KA tool might have a
significant positive effect on usability. There are sev-
eral possible explanations for the increase in speed.
First, the physicians might have become familiar with
the domain’s details (thus simulating a domain
expert). Second, they might have become proficient in
the use of the KA tool. Third, in several cases the first-
pass knowledge entry used a slightly older version of
the KA tool, which did not make it possible to cut and
paste strings or whole knowledge instances, thus
probably explaining the most marked improvements
in entry time. (We estimate that cut-and-paste editing
functionality would have been useful for entry of
about 50 percent of the knowledge instances). Fourth,
at least in the specific instances acquired, understand-
ing the conceptual and mechanical underpinnings of

the KA tool might have posed a major learning task,
whereas entering temporal-abstraction knowledge
might have been simpler. Thus, the second entry
would be much faster. Such a conclusion would be
highly encouraging with respect to the probability of
success in entry of future knowledge or editing of ex-
isting knowledge by domain experts. The conclusion
seems confirmed by our informal ongoing observa-
tions of the experts who wished to modify a knowl-
edge base and who reported that the task was easy.

The knowledge-entry times of all participants in the
study—even those of the expert physicians (in their
second attempt, when they were more familiar with
the tool)—were shorter than those required for the
original manual entry for all knowledge bases by

experts (Y.S. and Dr. Kuilboer). Admittedly,´ ´RESUME

the participants were starting from a more explicit de-
scription of the knowledge. Nevertheless, from the
conceptual point of view, the participants’ point of de-
parture was similar to that of the knowledge engi-
neers who entered the knowledge manually—that is,
the knowledge had already been elicited and organ-
ized in a textual form and had to be entered in a way
that was usable by the system. Thus, the KA´ ´RESUME

tool provided a significant advantage over manual re-
visions of program code, even though the latter were
performed by the original developer of the ´ ´RESUME

system and a knowledge engineer (Dr. Kuilboer) who
knew that system.

The graduate-student knowledge engineers required
shorter entry times than the expert physicians, in ei-
ther their first or second pass, even though none of
them had a medical background, probably because of
their familiarity with knowledge-based systems and
software tools. That domain experts are often unfa-
miliar with such tools has been noted previously as a
major obstacle to the achievement of a KA process
that does not require a knowledge engineer in the
loop.24 We consider the involvement of knowledge en-
gineers in the development of large knowledge bases
to be unavoidable, but we seek to minimize that in-
volvement. In this study, the expert physicians down-
loaded the Protégé tools and the KA tool manual from
the Web and worked at their convenience on their
own personal computers, thus demonstrating that dis-
tributed entry of clinical temporal-abstraction knowl-
edge by domain experts is certainly feasible.

Future Work

Determination of the actual time and other costs in-
volved in a complete development of a knowledge
base de novo, including in particular the knowledge
elicitation and structuring steps, is of considerable in-
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terest. Thus, we are now conducting a further study
that includes the knowledge structuring process.

In addition, we are improving the expressiveness of
the KA tool and the underlying computational frame-
work. In particular, we are enhancing the expressive-
ness of the language for specification of linear pat-
terns. We are also adding a highly expressive
language for fuzzy periodic (and, in general, episodic)
patterns.28 Such patterns are common in domains such
as diabetes, where diurnal and weekly patterns are
the norm; they are also useful, in many clinical do-
mains, for interpretation and summarization purposes
and for automated discovery in large time-oriented
clinical databases.
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