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ON THE SIZE OF PERMUTATION NETWORKS AND CONSEQUENCES FOR
EFFICIENT SIMULATION OF HYPERCUBE ALGORITHMS ON

BOUNDED-DEGREE NETWORKS †‡

JURAJ HROMKOVIČ § , PRZEMYS LAWA KANAREK ¶, RALF KLASING ‖, KRZYSZTOF LORYŚ ¶, WALTER

UNGER ∗∗, AND HUBERT WAGENER ††

Abstract. The sizes of permutation networks and planar permutation networks for special sets of permutations are
investigated. Several asymptotically optimal estimations for distinct subsets of the set of all permutations are established
here.

The two main results are:

(i) an asymptotically optimal switching network of size O(N log log N) for shifts of power 2.
(ii) an asymptotically optimal planar permutation network of size Θ(N2 · (log log N/ log N)2) for shifts of power 2.

A consequence of our results is the construction of a 4-degree network which can simulate each communication step of
any hypercube algorithm using edges from at most a constant number of different dimensions in one communication step in
O(log log N) communication steps. An essential improvement of gossiping in vertex-disjoint path mode in bounded-degree
networks follows.

Key words. Network design and communication, Communication networks, Permutation networks, Switching net-
works, Parallel algorithms

AMS subject classifications. 68M07, 68M10, 90B18, 94C15

1. Introduction and Definitions. The study and the comparison of the computational power of
distinct interconnection networks as candidates for the use as parallel architectures for existing parallel
computers is an intensively investigated research branch of current computation theory. One of the
fundamental approaches helping to search for the best (most effective) structures of interconnection
networks is the study of the communication facilities of networks (i.e., of the complexity (effectivity) of
solving fundamental communication tasks).

The basic communication tasks are routing (for an extensive survey see [31]), broadcasting, and gossiping
(for an overview see [12, 19, 22, 23]). Our paper is devoted to the search for effective, realistic 1-to-1
routing (permutation) networks. The effectivity in our paper is mainly interpreted as the minimal size
of a network realizing a given subset of permutations (one-to-one routing tasks). By realistic we mean
that we consider only networks with bounded degree (usually with degree 4).

Our study of the sizes of permutation networks for distinct subclasses of permutations has been moti-
vated not only by searching for efficient bounded-degree networks for special routing tasks, but mainly
by looking for realistic networks in the class of bounded-degree networks with very high (or even with
the highest possible) communication facilities supporting different fundamental computing and commu-
nicational tasks. For instance, the study of permutation networks for shifts 2i is well-motivated by the
simulation of hypercube algorithms in networks of bounded degree.

The study of permutation networks is of importance in several research contexts. Starting with the initial
work by Beneš [3, 4] and Waksman [41] in the context of telephone networks, permutation networks have
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‖LaBRI - Université Bordeaux 1 - CNRS, 351 cours de la Libération, 33405 Talence cedex, France. E-Mail:

Ralf.Klasing@labri.fr
∗∗Lehrstuhl für Informatik I, RWTH Aachen, D-52056 Aachen, Germany. E-Mail: quax@I1.Informatik.RWTH-

Aachen.DE
††Department of Mathematics and Computer Science, University of Magdeburg, D-39016 Magdeburg, Germany

1



2 JURAJ HROMKOVIČ ET AL.

been investigated over the past 40 years in different contexts (e.g. telephone networks, interconnection
networks for parallel computer architectures, packet routing, VLSI design, optical switching networks,
multistage networks, rearrangeable networks), and constitute still nowadays an active field of research.
(Some recent publications and surveys in this area are e.g. [1, 2, 5, 6, 7, 8, 9, 11, 14, 15, 16, 33, 34, 35], and
the references contained therein.) Our study reconsiders the classical result that any permutation can be
realized by a permutation network of size Θ(N log N) [3, 4, 38, 41]. We are interested in the question
whether for important subclasses of permutations it is possible to beat the lower bound Ω(N log N) and
derive improved realizations. Efficient planar permutation networks for these subclasses of permutations
are also derived. The subclasses of permutations we consider are all permutations of N elements, all shifts,
shifts of power two, and shifts by Fibonacci numbers. We will discuss further below the importance of
these subclasses of permutations, and the implications that our results have in various applications.

This paper is organized as follows. In this section, we give the basic definitions and the overview of the
achieved results. Section 2 contains the exact formulation of the results, and further references to related
work. We also give the proofs of theorems which do not have long technical proofs. Section 3 presents
the main technical proofs of the paper.

Section 2 is divided into three subsections. Subsection 2.1 is devoted to permutation networks for all
permutations of N elements, all shifts, shifts of power two, and shifts by Fibonacci numbers. The main
results of this subsection are the constructions of a switching networks of size O(N log log N) for the

shifts 2i for i = 1, 2, . . . , log2 N , and the construction of a switching networks of size O
(

N · 2 2
√

log log N
)

for Fibonacci shifts. (Switching networks are very regular permutation networks of degree 4.) The result
for shifts of power of two is asymptotically optimal. Previously, switching networks of size O(N log N)
were known for the shifts of power two and for Fibonacci shifts [3, 4, 41], and it was known that size
Ω(N log log N) is necessary for both of these sets of permutations [38].

Subsection 2.2 is devoted to planar permutation networks. Here, one needs to distinguish between vertex-
disjoint and edge-disjoint permutation networks. For instance, for the vertex-disjoint path mode one needs
networks of size Θ(N3) to realize all permutations [29], but we show that the size O(N2) is necessary
and sufficient for the realization in the edge-disjoint path mode. Moreover, five random permutations
are as hard as the set of all permutations for planar realization in the edge-disjoint path mode. Finally,
the main result of this subsection shows that the optimal planar permutation network for shifts of power
two has the size in Θ(N2 · (log log N/ log N)2). To the best of our knowledge, our paper is the first to
investigate planar permutation networks for shifts of power two.

The last Subsection 2.3 shows various applications of the results of the previous sections. The smallest
known delay to simulate hypercubes of N nodes on bounded-degree networks is log2 N [31]. Constant
delay is possible if the communication steps of the hypercube algorithm consist only of communication
via edges of one dimension and additionally any two consecutive communication steps correspond to
communication in two consecutive dimensions [31, 39, 40]. Here, using the permutation networks for
shifts 2i, we obtain the delay 6d · log log N for the simulation of hypercube algorithms communicating
via edges of d arbitrary dimensions in one communication step. Note that this simulation may be even
considered to be an improvement of the O(1)-delay simulation from [39] because our simulation is static
while the simulation of [39] is dynamic. This means that during the whole simulation every processor of
our network simulates the work of exactly one processor of the hypercube. In [39] after each simulation
step the processors change their roles in simulating the hypercube processors. This means that each
processor has to submit the whole content of its memory to some of its neighbours after each simulation
step. A consequence beyond the simulation are quick gossip algorithms for bounded-degree networks in
vertex-disjoint path mode. This is an essential improvement of the results established in [24, 25, 26, 28]
for gossiping in disjoint-path modes.

1.1. Definitions and Simple Observations. Now, we give the fundamental definitions. Let ΠN

denote the set of all permutations of N elements. For any set A, |A| denotes the cardinality of A. Fi

denotes the i-th Fibonacci number for any positive integer i, i.e. F0 = 0, F1 = 1, Fi+1 = Fi + Fi−1 for
i ≥ 1. Let shiftN (i) : {0, . . . , N − 1} → {0, . . . , N − 1} be the permutation x 7→ (x + i) mod N .

Definition 1.1. Let A be a subset of ΠN , and k be a positive integer. We say that a graph G = (V, E) is
a vertex-disjoint (edge-disjoint) k-permutation network for A if the following conditions hold:
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(i) the degree of G is bounded by k,
(ii) V contains 2N special vertices x1, x2, . . . , xN , y1, y2, . . . , yN ,

(x1, x2, . . . , xN are called inputs, y1, y2, . . . , yN are called outputs of G)
(iii) for every permutation π = (i1, i2, . . . , iN ) ∈ A there exist N vertex-disjoint (edge-disjoint) paths

x1, . . . , yi1 ; x2, . . . , yi2 ; . . . ; xN , . . . , yiN
in G.

The size of G, denoted size(G), is |V |. The depth of G (according to A), denoted depth(G), is
max{distance between xi and yj | i, j ∈ {1, . . . , N}, π(i) = j for some π ∈ A} − 1, where the distance
between two nodes is the length of the shortest path that connects two nodes.

A k-permutation network G = (V, E) for A is leveled if V can be partitioned into r = depth(G) + 2
nonempty subsets V0, V1, . . . , Vr+1 (called levels of G or layers of G) such that

(a) V0 = {x1, . . . , xN}, Vr+1 = {y1, . . . , yN};
(b) Vi ∩ Vj = ∅ for i 6= j, i, j ∈ {0, . . . , r + 1};
(c) for every edge e ∈ E, there exists i ∈ {0, . . . , r} such that e connects one vertex from Vi with one

vertex from Vi+1;
(d) for every permutation π = (i1, i2, . . . , iN ) ∈ A there exist N vertex-disjoint (edge-disjoint) paths

x1, u1,1, . . . , u1,r, yi1 ; . . . ; xN , uN,1, . . . , uN,r, yiN
in G with ui,j in Vj for every j = 1, . . . , r.

Let G be a leveled edge-disjoint 4-permutation network for A with some levels V0, V1, . . . , Vr+1 for an
r ≥ 0. We say that G is a switching network for A if

(1) for every node u ∈ V0, u has exactly one edge to a node in V1;
(2) for every node u ∈ Vr+1, u has exactly one edge to a node in Vr;
(3) for every node u ∈ Vi, i = 1, . . . , r, one of the following conditions holds:

(a) u has exactly two edges to nodes in Vi−1 and exactly two edges to nodes in Vi+1 (then u is
called a switch);

(b) u has exactly one edge to nodes in Vi−1 and exactly one edge to nodes in Vi+1 (then u is
called an idle node).

Let G be a leveled vertex-disjoint 4-permutation network for A with some levels V0, V1, . . . , Vr+1 for an
r ≥ 0. We say that G is a regular permutation network for A if

(1) for every node u ∈ V0, u has one or two edges to nodes in V1;
(2) for every node u ∈ Vr+1, u has one or two edges to nodes in Vr;
(3) for every node u ∈ Vi, i = 1, . . . , r, u has one or two edges to nodes in Vi−1 and one or two edges

to nodes in Vi+1;
(4) |Vi| = N for every i ∈ {0, 1, . . . , r + 1};
(5) for every 0 ≤ i ≤ r + 1, the nodes in Vi can be labeled by (i, 0), (i, 1), . . . , (i, N − 1) in such a way

that for every 0 ≤ i ≤ r, 0 ≤ j ≤ N − 1, there is an edge between the nodes (i, j) and (i + 1, j).

In Figure 1 we give an example of a switching network of depth 2 and 9 inputs. Note that the model of
switching networks appears very frequently in the literature (see e.g. [3, 4, 38, 41]). In Section 3, we will
introduce the more commonly used switch-wire form of the switching-network model.

The next observation relates the depth of a switching networks to its size.

Observation 1.2. Let A be a subset of ΠN . Let G be a switching network for A. Then depth(G) · N
2 +

2N ≤ size(G) ≤ depth(G) · N + 2N .

The next observation shows that switching networks can be efficiently simulated by regular permutation
networks.

Observation 1.3. Let A be a subset of ΠN . Let G be a switching network for A of depth d. Then there
is a regular permutation network G′ for A of depth d − 1 and size N(d + 1).

Proof. Let G = (V, E) with levels V0, V1, . . . , Vr+1 for some r ≥ 0. Define G′ = (V ′, E′) as follows: V ′ = E
and (e1, e2) ∈ E′ iff e1 is an edge between levels Vi and Vi+1, e2 is an edge between levels Vi+1 and Vi+2

for some 0 ≤ i ≤ r − 1, and e1 and e2 are incident to each other. This is the well-known line-digraph
construction [18] if one interprets G as being directed from the inputs to the outputs.

Figure 2 depicts how the switching network of Figure 1 is transformed to a regular permutation network
as described in Observation 1.3.
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Fig. 1. A switching network

Fig. 2. A regular permutation network

Finally, note that condition (d) of the leveled permutation networks defined in Definition 1.1 assures that
the edges of the network are used in one direction only (from xi’s to yi’s). We call attention to the fact
that almost all permutation networks constructed here are leveled and of degree at most 4. On the other
hand, the lower bound proofs are general, i.e, they work for unrestricted constant-degree networks.

Definition 1.4. Let A be a subset of ΠN , and k be a positive integer. We define

Size-vdk(A) = min{size(G) | G is a vertex-disjoint k-permutation network for A},
Size-edk(A) = min{size(G) | G is an edge-disjoint k-permutation network for A},
Plsize-vdk(A) = min{size(G) | G is planar and G is a

vertex-disjoint k-permutation network for A},
Plsize-edk(A) = min{size(G) | G is planar and G is an

edge-disjoint k-permutation network for A}.

Observation 1.5. Let A be a subset of ΠN , and k be a positive integer. Then Size-vdk(A) = Θ(Size-edk(A)).

Proof. Each edge-disjoint k-permutation network G1 can be simulated by some vertex-disjoint k-permutation
network G2 in such a way that size(G2) ≤ k · size(G1), as follows.

In order to construct G2 from G1, each vertex v (except for inputs and outputs) of degree d(v) in G1

is replaced by a complete graph Kd(v)(v) (of d(v) nodes) in G2. An edge (v, w) in G1 is added as an
edge between (some vertex in) Kd(v)(v) and (some vertex in) Kd(w)(w) in G2 such that each vertex in G2

receives only one such edge. A path (of the realization of A) in G1 routed through a vertex v (i.e. using
edges (u, v), (v, w)) is now routed through Kd(v)(v) in G2 accordingly (i.e. using the edge between Kd(u)(u)
and Kd(v)(v), the edge inside Kd(v)(v), and the edge between Kd(v)(v) and Kd(w)(w)).
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Observation 1.6. Let A be a subset of ΠN . Then Size-ed4(A) = O(N · |A|).
Proof. Let A = {A0, A1, . . . , Aq − 1} ⊆ ΠN . Consider the network G consisting of the q + 1 layers
V0, V1, . . . , Vq (of N nodes each) in which the connections between layer Vi and layer Vi+1 realize the
permutation Ai (0 ≤ i ≤ q − 1). (More precisely, for every 0 ≤ i ≤ q, let the nodes in Vi be labeled by
(i, 0), (i, 1), . . . , (i, N − 1). Then, for every 0 ≤ i ≤ q − 1, the vertex (i, j) in Vi is connected with vertex
(i + 1, j) and with vertex (i + 1, Ai(j)) in Vi+1.) Then G is an edge-disjoint 4-permutation network for
A of size O(N · |A|).
In what follows, we use the following notation.

SN ⊆ ΠN . . . the set of all shifts,
i.e. {shiftN (i) | 0 ≤ i < N},

Pow 2N ⊆ SN . . . the set of all shifts of the power of 2,
i.e. {shiftN (2i)|0 ≤ i < ⌈log N⌉},

FibN ⊆ SN . . . the set of all shifts by Fibonacci numbers,
i.e. {shiftN (Fi) | 0 ≤ i ≤ k} where k is the largest integer with the
property Fk ≤ N .

Definition 1.7. For each positive integer N , let AN , BN be subsets of ΠN . We say that B = {BN |
N = 1, 2, . . .} is a kernel of A = {AN | N = 1, 2, . . .} if BN ⊆ AN for each N = 1, 2, . . . and
Size-edk(BN ) = Ω(Size-edk(AN )) for any constant k ≥ 4. We say that B is a planar e-kernel [v-kernel]
of A if BN ⊆ AN for each N = 1, 2, . . . and for any constant k ≥ 4 Plsize-edk(BN ) = Ω(Plsize-edk(AN ))
[Plsize-vdk(BN ) = Ω(Plsize-vdk(AN ))]. A kernel (planar e-kernel, planar v-kernel) B of A is called
(asymptotically) minimal if, for every kernel (planar e-kernel, planar v-kernel) C = {CN | N =
1, 2, . . .} of A, |CN | = Ω(|BN |).

2. Results.

2.1. On the Size of Permutation Networks for Special Subclasses of Permutations. Since
there is no asymptotical difference between Size-vdk(A) and Size-edk(A) for any permutation set A (see
Observation 1.5), we shall consider only the edge-disjoint path mode in this subsection. It is well-known
that

Size-edk(ΠN ) = Θ(N log N) = Size-edk(SN ).

To see the upper bound Size-edk(ΠN ) = O(N log N), it is sufficient to take the well-known permutation
network [3, 4, 41]. To see the lower bound Size-edk(SN ) = Ω(N log N), one has to apply the following
lower bound method of [38] to SN .

Lemma 2.1 ([38], Theorem 2.2.1). Let A be any subset of ΠN . If A fulfils the following property

(i) Each input is assigned to |A| different outputs by the |A| permutations.

then Size-edk(A) = Ω(N · log2 |A|).
Thus, we obtain that SN is a kernel of ΠN . But SN is not a minimal kernel of ΠN because a random set
A ⊆ ΠN with |A| ≤ log2 N has Size-edk(A) = Ω(N · |A|) with probability tending to 1 with growing N
and |A| [43]. (A summary of the argument of [43] is provided in the Appendix.) Since each A ⊆ ΠN has
Size-ed4(A) = O(N · |A|) (see Observation 1.6), the random sets of log2 N permutations are minimal
kernels of ΠN .

In [24], it has been conjectured that Pow 2N and FibN are kernels of SN . We now show that this is not
the case.

Theorem 2.2. The set of permutations Pow 2N can be realized by a (edge-disjoint) switching network of
depth 6 log log N + 3 and size 6N log log N + 5N .

Proof. The proof of this theorem is given in Section 3.

Theorem 2.3. Size-ed4(FibN ) = O(N · 2 2
√

log log N ).

Proof. The proof of this theorem is given in Section 3.
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Fig. 3. PE5 and the realization of the permutation (5,4,1,3,2)

Corollary 2.4. The set of permutations Pow 2N can be realized by a regular (vertex-disjoint) permuta-
tion network of depth 6 log log N + 2 and size 6N log log N + 4N .

Corollary 2.5. Size-edk(Pow 2N ) = Θ(N · log log N) for any constant k ≥ 4 independent of N .

Proof. The upper bound is in Theorem 2.2 and the lower bounds follow from the fact that Pow 2N fulfils
Property (i) of Lemma 2.1.

Note that especially Theorem 2.2 brings a crucial contribution for the simulation of hypercube algorithms
in bounded-degree networks of degree 4 for several fundamental computing problems. More about this
can be found in Subsection 2.3.

2.2. On the Size of Planar Permutation Networks. It is well-known that Plsize-vdk(ΠN ) =
Θ(N3) [10, 29]. Our first result shows that there is an essential difference between edge-disjoint paths
mode and vertex-disjoint paths mode for planar permutation networks.

Theorem 2.6. For any constant k ≥ 4 independent of N

Plsize-edk(ΠN ) = Θ(N2) = Plsize-edk(SN ).

Proof.

Upper Bound

Consider the following network PEN = (V, E) defined by V = { vi,j | 1 ≤ i < N , 1 ≤ j ≤ N} ∪
{ xi, yi | 1 ≤ i ≤ N} and {vi,j, vk,l} ∈ E iff (i + 1 = k and j = l) or (i = k and j mod N = l − 1).
Furthermore {xi, v1,i} ∈ E for 1 ≤ i ≤ N and {vN−1,i, yi} ∈ E for 1 ≤ i ≤ N . Observe that PEN is
planar (see Figure 3).

Furthermore, it is well-known that any permutation π ∈ ΠN can be built from t transpositions with
t ≤ N − 1. Assume the permutation π is built from t transpositions τj (1 ≤ j ≤ t), where the positions
aj and bj with aj < bj are exchanged in τj , i.e., τj = (1, 2, ..., aj − 1, bj, aj + 1, ..., bj − 1, aj, bj + 1, ..., N).
Let πj (0 ≤ j ≤ t) be the permutation defined by the first j transpositions i.e. πj = τ1 · τ2 · ... · τj . Thus
π0 = id and πt = π holds (where id is the identity permutation, i.e. id = (1, 2, . . . , N)).

We will now define the N edge-disjoint paths Pi (connecting xi with yπ(i)) for 1 ≤ i ≤ N step by step.

In step j a path P j
i (connecting xi with vj+1,πj(i)) will be defined using the path P j−1

i . In the final step
the path Pi will be defined using the path P t

i .
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Note that for 1 ≤ j ≤ t and 1 ≤ i ≤ N :

πj−1(i) 6∈ {aj, bj} ⇔ πj(i) = πj−1(i)
πj−1(i) = aj ⇔ πj(i) = bj > aj

πj−1(i) = bj ⇔ πj(i) = aj < bj

We define for 1 ≤ j ≤ t and 1 ≤ i ≤ N :

P 0
i = (xi, v1,i)

P j
i = P j−1

i , vj+1,πj(i) if πj−1(i) 6∈ {aj, bj}
P j

i = P j−1
i , vj,aj+1, vj,aj+2, ..., vj,bj

, vj+1,bj
if πj−1(i) = aj

P j
i = P j−1

i , vj,bj+1, vj,bj+2, ..., vj,n, vj,1, ..., vj,aj
, vj+1,aj

if πj−1(i) = bj

Pi = P t
i , vt+1,π(i), vt+2,π(i), ..., vN−1,π(i), yπ(i)

This is illustrated in the example of Figure 3: The nodes marked by a circle are the nodes vj,aj
, vj,bj

corresponding to aj , bj (1 ≤ j ≤ t). They send the message from the top edge to the right hand side edge
and the message from the left hand side to the bottom edge. The other nodes send the message from
the top edge to the bottom edge and the message from the left hand side to the right hand side edge. In
Figure 3 the permutation (5, 4, 1, 3, 2) is carried out:

π0 = (1, 2, 3, 4, 5) π1 = (5, 2, 3, 4, 1) τ1 = (5, 2, 3, 4, 1) a1 = 1 b1 = 5
π2 = (5, 4, 3, 2, 1) τ2 = (1, 4, 3, 2, 5) a2 = 2 b2 = 4
π3 = (5, 4, 1, 2, 3) τ3 = (3, 2, 1, 4, 5) a3 = 1 b3 = 3

π = (5, 4, 1, 3, 2) π4 = (5, 4, 1, 3, 2) τ4 = (1, 3, 2, 4, 5) a4 = 2 b4 = 3

The two paths from x3 to xπ(3) = y1 and from x4 to xπ(4) = y3 in the realization of the permutation are
depicted in the figure.

It is now easy to check that:

1. An edge of the form (vj,πj(i), vj+1,πj(i)) (1 ≤ i ≤ N, 1 ≤ j ≤ t) is only used in the path Pi.
2. An edge of the form (vj,π(i), vj+1,π(i)) (1 ≤ i ≤ N, t ≤ j < N − 1) is only used in the path Pi.
3. An edge of the form (vj,i, vj,i′) is only used by one of the paths P1, P2, ..., PN .

It follows from 1.–3. that the paths P1, P2, ..., PN are edge-disjoint. From the construction of P1, P2, ..., PN

it also follows that Pi connects xi with yπ(i) for all 1 ≤ i ≤ N . Thus we conclude Plsize-ed4(ΠN ) ≤
N · (N + 1).

Lower Bound

We first introduce some additional definitions. Let A ⊆ ΠN . The permutation graph of A is G(A) =
(V, E), where V = {x1, . . . , xN , y1, . . . , yN} and, for every π = (i1, i2, . . . , iN) ∈ A, E contains the edges
(x1, yi1), . . . , (xN , yiN

). Let (V1, V2), V1 ∪ V2 = V , |V1| = |V2| = N , be a bisection of G(A). The bisection
width of G(A) according to (V1, V2) and π, bw(G(A), (V1,V2), π), is the number of edges defined by
π and leading between V1 and V2. bw(G(A), (V1,V2)) = max{bw(G(A), (V1, V2), π) | π ∈ A}. The
balanced bisection width of G(A) is bw(G(A)) = min{bw(G(A), (V1, V2)) | (V1, V2) is a bisection of
G(A)}.

Now, we present the lower bound proof. It is based on an extended planar separator theorem [29]. The
precise construction is as follows. Let A ⊆ ΠN . Let G = (V̄ , Ē) be a planar, edge-disjoint k-permutation
network for A. Let a(G) ⊆ V̄ be the input and output nodes of G. Let all nodes in a(G) be coloured by
red, and all other nodes in V̄ − a(G) be coloured by blue. (Note that the nodes of a(G) are exactly the
nodes of G(A).) Let n := size(G). Then, according to an extended planar separator theorem [29], there
exists a constant c (independent of n) and c · k√n edges of G such that their removal from G bisects G
into two equal-sized components G1 and G2, where each Gi (i = 1, 2) contains N red nodes and at least
⌊n/2⌋ − N blue nodes. This bisection of G determines the bisection of G(A) into H1 and H2, where
V (H1) = a(G) ∩ V (G1), V (H2) = a(G) ∩ V (G2). For π ∈ A, let Eπ be the set of edges of G(A) between
V (H1) and V (H2) defined by π. According to the definition of bw(G(A)), there exists π0 ∈ A such that
|Eπ0

| ≥ bw(G(A)). To realize π0 in G, there must exist bw(G(A)) edge-disjoint paths between the red
nodes of G1 on one side and the red nodes of G2 on the other side. Clearly, this is only possible if

c · k√n ≥ bw(G(A)).

Thus, we obtain
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Fig. 4. A shift by 2 realized by PS5

size(G) = n ≥ (bw(G(A)))2 / (c · k)2. (∗)

It remains to determine a lower bound on bw(G(A)) for A = SN . For this purpose, we apply the standard
technique described in [31], i.e., we first embed the complete graph of 2N nodes, K2N , into SN such that
the congestion of each edge of SN is small. Consider an embedding f : V (K2N ) → V (SN ). We specify a
path path(x, y) between two arbitrary nodes x, y in SN as follows:

a) path(xi, yj) = (xi, yj) for all i, j ∈ {1, . . . , N},
b) path(xi, xj) = (xi, yk, xj), k = (j − i)/2, for all i, j ∈ {1, . . . , N}, i < j,
c) path(yi, yj) = (yi, xk, yj), k = (j − i)/2, for all i, j ∈ {1, . . . , N}, i < j.

a) contributes 1 to the congestion of an edge e ∈ E(SN ), b) and c) each contribute at most 2. Hence,
the congestion of each edge of SN is at most 5. Each bisection of SN defines a bisection of K2N . As the
bisection width of K2N is N2 and the embedding f has congestion 5, the bisection width of SN is at least
N2/5. As |SN | = N , it follows that bw(G(SN )) ≥ N/5. Combining this result with (∗) yields

n ≥ N2/(25 · c2k2) .

Thus, we obtain Plsize-edk(SN ) = Ω(N2).

Again, we see that SN is a planar e-kernel of ΠN . But the next result showing that SN is no planar
v-kernel of ΠN underlines the difference between these two communication modes.

Theorem 2.7. Plsize-vd4(SN ) ≤ N · (N + 2).

Proof. We define the network PSN = (V, E) by V = { vi,j ; 0 ≤ i, j < N} ∪ { xi, yi ; 1 ≤ i ≤
N} and {vi,j , vk,l} ∈ E iff i + 1 = k and l ∈ {j, (j + 1) mod N}. Furthermore {xi, v0,i−1} ∈ E
for 1 ≤ i ≤ N and {vN−1,i−1, yi} ∈ E for 1 ≤ i ≤ N . Observe that PSN is planar (see Figure
4). The messages from the nodes { xi ; 1 ≤ i ≤ N} are shifted to the nodes { yi ; 1 ≤ i ≤ N}.
The i − th message (1 ≤ i ≤ N) uses the path P s

i when a shift by s (0 ≤ s < N) is carried
out, where P s

i = (xi, v0,i−1, v1,(i+min(1,s)−1) mod N , v2,(i+min(2,s)−1) mod N , . . . , vj,(i+min(j,s)−1) mod N , . . . ,
vN−1,(i+min(N−1,s)−1) mod N , y(i+s−1) mod N+1). Again it is easy to observe that these paths are vertex-
disjoint (see Figure 4).



ON THE SIZE OF PERMUTATION NETWORKS 9

Corollary 2.8. For any constant k ≥ 4 independent of N

Plsize-vdk(SN ) = Θ(N2).

Proof. The result is a direct consequence of Theorem 2.6 and Theorem 2.7 (and the fact that Plsize-vdk(A) ≥
Plsize-edk(A) for any A ⊆ ΠN ).

Again, as in the general case (Subsection 2.1), SN is no minimal e-kernel of ΠN . In the following, we
show that there are e-kernels of ΠN of size 5.

Theorem 2.9. Let N = m2, Am = {0, 1, . . . , m−1}×{0, 1, . . . , m−1}, and let BN = {π1, π2, π3, π4, π5}
⊆ ΠN be the following permutations on Am:

π1(x, y) = (x, y),
π2(x, y) = (x, x + y),
π3(x, y) = (x, x + y + 1),
π4(x, y) = (x + y, y),
π5(x, y) = (x + y + 1, y),

where the + is modulo m. Then, for any constant k independent of N ,

Plsize-edk(BN ) = Θ(N2).

Theorem 2.10. Let RN be a set of 5 random permutations from ΠN . Then, with probability tending to
1 with growing N

Plsize-edk(RN ) = Θ(N2),

for any constant k independent of N .

Proofs of Theorem 2.9 and 2.10. Let A = BN [A = RN ]. Applying the upper bound of Theorem 2.6,
we obtain Plsize-edk(A) = O(N2). The lower-bound proof uses the same technique as the lower-bound
proof of Theorem 2.6. Let G be a planar, edge-disjoint k-permutation network for A. Using the same
notation as in Theorem 2.6, we have

size(G) ≥ (bw(G(A)))2 / (c · k)2 (∗)

for some constant c (independent of size(G)) [cf. the proof of Theorem 2.6]. Since G(A) is an expander
[17, 36], G(A) has bisection width linear in N . As |A| = 5, bw(G(A)) is also linear in N . It follows from
(∗) that Plsize-edk(A) = Ω(N2).

Finally, we consider the set Pow 2N . Despite the fact that Pow 2N is no planar e-kernel of ΠN , the
following result shows that Pow 2N requires almost the same size for planar realization as ΠN .

Theorem 2.11. For any constant k independent of N

Plsize-edk(Pow 2N) = Θ(N2 · (log log N)2/(log N)2) .

Proof. The proof of this theorem is given in Section 3.

2.3. Application of Permutation Networks to Hypercube Simulation and Gossiping. The
aim of this section is to show the consequences of Theorem 2.2 for other tasks than routing of messages.
The main idea of the use of Theorem 2.2 is in the simulation of hypercube algorithms in degree-bounded
networks.

Given a network G, a network communication algorithm in G [23, 31] is a synchronized parallel
algorithm executing alternately communication steps and computing steps. In each computing step,
each processor of the network G executes some computation on its local data. In each communication
step, each processor of G can exchange some message with one of its neighbours via an adjacent edge
(i.e. each processor may communicate with at most one neighbour in one communication step).

A hypercube algorithm is a network communication algorithm where the network G is the (binary)
hypercube of dimension m. The (binary) hypercube of dimension m, denoted by Hm, is the network
whose nodes are all binary strings of length m and whose edges connect those binary strings which differ in
exactly one position. For each i, 1 ≤ i ≤ m, an edge (a1a2 . . . ai−10ai+1 . . . am, a1a2 . . . ai−11ai+1 . . . am),
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a1, a2, . . . , ai−1, ai+1, . . . , am ∈ {0, 1}, is said to be in dimension i. An illustration of H3 is shown in
Figure 5.

000
001

010 011

100
101

110
111

Fig. 5. The hypercube H3

We distinguish three classes of hypercube algorithms:

(1) general hypercube algorithms, as described above
(2) leveled hypercube algorithms [31, 44], which communicate in every communication step via

edges of one fixed dimension of the hypercube
(3) normal hypercube algorithms [31, 39, 40] are leveled ones with the additional condition that

every two consecutive communication steps use two consecutive dimensions of the hypercube.

Additionally, we define d-leveled hypercube algorithms as hypercube algorithms using edges of at
most d different dimensions in each communication step.

Any communication step of a normal hypercube algorithm running on a hypercube of size N can be
simulated by two communication steps by the Shuffle-Exchange network of size N . For general algo-
rithms, the best simulation of one communication step of the hypercube by bounded-degree networks
uses log2 N steps. Using the network from Theorem 2.2 we can construct a 4-degree network simulating
one communication step of any leveled hypercube algorithm in 6 · log2 log2 N steps.

Theorem 2.12. There is a 4-degree network of size 6·N ·log log N which can simulate any communication
step of any d-leveled hypercube algorithm on a hypercube of N nodes in 6 · d · log log N communication
steps.

Because almost all common hypercube algorithms are leveled, we obtain several efficient parallel algo-
rithms running on bounded-degree networks as a consequence of Theorem 2.12. Note that our simulation
beats the previous ones in the delay. All the previous simulations of the general and the d-leveled hyper-
cube algorithms by degree-bounded networks had delay O(log N) [31], while we have delay O(log log N).
Another positive property of our network is its size 6 · N log log N , i.e., we do not need to pay too much
with the increase of the size for this small delay. Moreover, Theorem 2.12 can be considered as an im-
provement of the O(1)-delay simulation of normal hypercube algorithms [39] because the simulation given
by Theorem 2.12 is static, which means that during the whole simulation every processor of our permu-
tation network simulates the work of at most one processor of the hypercube. The simulation of normal
hypercube algorithms [39] is dynamic. For this particular simulation it is even forced that each processor
has to submit the whole content of its memory to some of its neighbours after each simulation step. If
this content is essentially larger than the communication messages exchanged, then communicating the
content may cause a delay larger than 6 · log log N .

Another application of the previous theorems is related to gossiping (all to all broadcasting) in edge-
disjoint (vertex-disjoint) paths mode.
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Gossiping (all to all broadcasting) is one of the basic communication tasks in network communication.
It can be described as follows. Assume that each vertex (processor) in a graph (network) has some piece of
information. The cumulative message of G is the set of all pieces of information originally distributed
in all vertices of G. To solve the gossip problem for a given graph G, a communication strategy such
that all vertices in G learn the cumulative message of G must be found.

The meaning of a “communication strategy” depends on the communication mode. A communication
strategy is realized by a communication algorithm consisting of a number of communication steps
(rounds). The rules describing what can happen in one communication step (round) are defined exactly
by the communication mode. Here, we consider the following two modes:

• One-way [Two-way] vertex-disjoint paths mode (1VDP mode [2VDP mode])
One round can be described as a set {P1, . . . , Pk} for some k ∈ IN , where Pi = xi,1, . . . , xi,ℓi

is a simple path of length ℓi − 1, i = 1, . . . , k, and the paths are vertex-disjoint. The executed
communication of this round in one-way mode consists of the submission of the whole actual
knowledge of xi,1 to xi,ℓi

via path Pi for any i = 1, . . . , k. [The executed communication of this
round in two-way mode consists of the complete exchange of the actual knowledge between xi,1

and xi,ℓi
for any i = 1, . . . , k]. The inner nodes of path Pi (nodes different from the end points

xi,1 and xi,ℓi
) do not learn the message submitted from xi,1 to xi,ℓi

[exchanged between xi,1 and
xi,ℓi

] they are only used to realize the connection from xi,1 to xi,ℓi
.

The complexity of a communication algorithm A is measured as the number of rounds of A. For any
graph G, the one-way (two-way) vertex-disjoint gossip complexity of G is the number of rounds
(complexity) of the optimal gossip algorithm for G in the 1VDP (2VDP) mode.

Let CM denote the complete graph of M nodes. In [24] it is shown that there are bounded-degree
networks of size M whose

(i) two-way vertex-disjoint gossip complexity is r2(CM ) + O(log log M), where r2(CM ) = log2 M is
the two-way gossip complexity of the complete graph CM on M nodes.

(ii) one-way vertex-disjoint gossip complexity is r1(CM )+O(log log M), where r1(CM ) ≈ 1.44 log2 M
is the one-way gossip complexity of CM .

Thus, one can gossip in bounded-degree networks almost as quickly as in complete graphs using the
vertex-disjoint paths mode. (Note that there are no bounded-degree networks in which gossiping in the
standard communication modes –in which communication is only allowed via single edges and not via
paths– can be performed only about O(log2 log2 n) rounds slower than the optimal gossip algorithms on
complete graphs [23].) In [24] it has been conjectured that the additional log log M steps are necessary
to gossip in bounded-degree networks. Theorems 2.2 and 2.3 surprisingly provide networks which can
gossip even faster.

Theorem 2.13. There is a 4-degree network of size M = 12N log log N + 7N for any positive integer
N ≥ 16 with two-way vertex-disjoint paths gossip complexity smaller than r2(CM )+log log log M +const.

Theorem 2.14. There is a 4-degree network of size M = O
(

N · 2 2
√

log log N
)

for every positive integer

N ≥ 16 with one-way vertex-disjoint paths gossip complexity smaller than r1(CM ) + 1.13
√

log log M +
const.

Proofs of Theorems 2.13 and 2.14. To see the connection between Theorems 2.2 and 2.3 and gossiping in
the two-way mode and one-way mode resp., we first recall the concept of three-phase gossip algorithms
introduced in [24, 25].

Let G be any graph. Let a(G) be any subset of nodes of G. We call a(G) the set of accumulation
nodes, and every node in a(G) is called an accumulation node. A three-phase gossip algorithm
for G according to a(G) works in the following three phases:

1. Accumulation Phase
Divide G into |a(G)| connected components, each component containing exactly one accumulation
node of a(G). These components are called accumulation components. Each v ∈ a(G)
accumulates the information from the nodes lying in its component.
{After the first phase, the nodes in a(G) together know the cumulative message of G.}
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2. Gossip Phase
Perform a gossip algorithm among the nodes in a(G) in the given (one-way or two-way) vertex-
disjoint paths mode (i.e., all nodes in V (G) − a(G) are considered to have no information, and
they are only used to build disjoint paths between receivers and senders from a(G)).
{After the second phase, every node in a(G) knows the cumulative message of G.}

3. Broadcast Phase
Every node in a(G) broadcasts the cumulative message in its component.
{After this, all nodes of G know the cumulative message of G.}

In order to construct a really effective gossip algorithm, we shall search for an a(G) in G such that

a) Phase 2 can be performed (almost) as quickly as gossiping in a complete graph of a(G) nodes.
b) The maximal size of a component is as small as possible, which minimizes the time for the first

and third phase.

Obviously, every second phase of a three-phase algorithm A corresponds unambiguously to a gossip
algorithm C in a complete graph of |a(G)| nodes. We say that C is implemented in the second
phase of A. Note that all algorithms designed so far for disjoint-path modes are three-phase algorithms
with second phases implementing an optimal (or almost optimal) gossip algorithm on graphs of |a(G)|
nodes.

We now start with the proof of Theorem 2.13. Corollary 2.4 yields a regular vertex-disjoint 4-permutation
network G = (V, E) for Pow 2N of size 6N log log N + 4N and depth d = 6 log log N + 2. Let r = d + 2.
Let V1, V2, . . . , Vr be the levels of G. For 1 ≤ i ≤ r, let Vi = {(i, 0), (i, 1), . . . , (i, N − 1)} such that for
every 1 ≤ i ≤ r − 1, 0 ≤ j ≤ N − 1, there is an edge between the nodes (i, j) and (i + 1, j). Define G′ as
follows:

G′ = (V ′, E′) with

V ′ = {(i, j) | i ∈ {1, 2, . . . , r − 1, r,−(r − 1),−(r − 2), . . . ,−1}, 0 ≤ j ≤ N − 1}
E′: 1 ≤ i ≤ r − 1: {(i, j), (i + 1, j′)} ∈ E′ iff {(i, j), (i + 1, j′)} ∈ E,

{(r, j), (−(r − 1), j′)} ∈ E′ iff {(r − 1, j), (r, j′)} ∈ E,
1 ≤ i ≤ r − 2: {(−i, j), (−(i + 1), j′)} ∈ E′ iff {(i, j), (i + 1, j′)} ∈ E.

G′ can be viewed as two copies of G put back-to-back to each other. Let the levels of G′ be denoted by
V ′

1 , V ′
2 , . . . , V ′

r−1, V
′
r , V ′

−(r−1), V
′
−(r−2), . . . , V

′
−1. The purpose of using G′ rather than G in the following

construction is that all the permutations which can be routed in G from V1 to Vr can be routed in G′

from V1 to V−1 and from V−1 to V1.

Now, we construct a three-phase algorithm for G′ by choosing as accumulation nodes the vertices
(1, i), (−1, i), 0 ≤ i ≤ N − 1, at level V ′

1 and V ′
−1 of G′. As accumulation components we take the

paths {(1, i), (2, i), . . . , (r, i)} and {(−(r − 1), i), (−(r − 2), i), . . . , (−1, i)} for all 0 ≤ i ≤ N − 1. Then
Phase 1 and Phase 3 of the three-phase algorithm take ⌈log2 r⌉ rounds each. In Phase 2 of the three-phase
algorithm, we simulate the Knödel algorithm [22] on all accumulation nodes as follows: Instead of having
a direct communication between i and shiftN (2i) in round i of the Knödel algorithm, we communicate
via the vertex-disjoint paths given by the realization of Pow 2N on G′. Hence, Phase 2 takes ⌈log N⌉ + 1
rounds. Therefore, the whole 3-phase algorithm takes

⌈log N⌉ + 1 + 2 · ⌈log r⌉
≤ log N + 2 · log log log N + O(1)

≤ r2(CM ) + log log log M + O(1)

rounds. This completes the proof of Theorem 2.13.

The proof of Theorem 2.14 is completely analogous to the proof of Theorem 2.13. Instead of using the
regular vertex-disjoint 4-permutation network for Pow 2N from Theorem 2.2, we use the regular vertex-
disjoint 4-permutation network G for FibN from Theorem 2.3. Now, we construct a three-phase algorithm
like above, implementing the well-known Fibonacci algorithm [22] in the gossip phase.
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3. Proofs.

3.1. The Proof of Theorems 2.2 and 2.3. In what follows we slightly alter the formalism of the
description of switching networks to make tracing its performance easier (this is the so-called switch-wire
form of the switching-network model): we enumerate inputs by 0, 1, . . . , N − 1 and give the same labels
to the edges coming out of these nodes. Then we spread the enumeration to the rest of edges maintaining
the following property: if an incoming edge of a switch s has a label p, then also one outcoming edge of
s is labelled p. When we reach the last layer we give the labels of edges to the adjacent output nodes. So
the output vertices receive labels 0, 1, . . . , N − 1. Notice that the edges with a label p (0 ≤ p ≤ N − 1)
form a path from the input p to the output p consisting of exactly r + 1 edges. We call this path a wire
p. In Figure 6 we present the example from Figure 1 with some node labels and wires 3 and 6 marked
with dashed lines.

0 1 2 3 4 5 6 7 8

3

3

3

6

6

6

3 6

Fig. 6. The labeling of the network

Now we can present a graph G in a bit different way. We draw wires as vertical parallel lines ordered
according to the numbering. Then consecutive layers are drawn from top to bottom. Every switch, whose
edges were named p and q is marked as a horizontal bar connecting wires p and q. An idle node is marked
as a dot on the appropriate wire (see Figure 7). Assuming the layer is given, let 〈p, q〉 denote the switch
joining wires p and q. To represent a switching network, it also suffices to list all switches in each layer
(Figure 8).

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

V1 = {〈0, 2〉, 〈1, 5〉, 〈3, 4〉, 〈6, 8〉}

V2 = {〈2, 3〉, 〈4, 7〉, 〈5, 6〉}.

Fig. 7. A switching network in the switch-wire form Fig. 8. Layers of the network

The switching network works as follows. Initially we set every switch in the network: the switch s = 〈p, q〉
is active if it exchanges p with q and vice versa, otherwise s is inactive. After the network is set, we
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assign items v0, v1, . . . , vN−1 (in what follows, we usually take v0 = 0, v1 = 1, . . . , vN−1 = N − 1) to the
inputs and then send this sequence, step by step, through the layers V1, V2, . . . , Vr. If a switch s = 〈p, q〉
is active and the wires p and q bring items vi and vj , respectively, then s puts vi on the wire q and vj

on the wire p and sends them to further layers of the network. If the switch is inactive, then the items
follow the wires they came. When the items v0, v1, . . . , vN−1 reach the output layer Vr+1, the process is
finished. Hence everything G does is to permute the positions of the input items. (See Figure 9 for an
example performance of a switching network; in the figure the active switches are drawn in a solid line
while the inactive ones are drawn in a dashed line.)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

v v v v v v v v v876134250

v v v v v v v v v

v v v v v v v v v

0 1 2 3 4 5 6 7 8

0 5 4 2 7 1 6 3 8

Fig. 9. An example performance of the network

Let Perm(G) be the set of permutations that can be obtained as the output of the network G by some
settings of the switches of G. A set A of permutations is realizable by G if A ⊆ Perm(G). Let Shiftk
denote the permutation shiftN (k).

In order to present some simple but useful (in our construction) network, let us define

Symt = {〈i, (t − i) mod N〉 | 0 ≤ i < N},

for t = 0, 1, . . . , N − 1. Regarding 〈i, j〉 and 〈j, i〉 as the same switch we obtain that Symt is a network
of depth 1. We can consider Symt as a cyclic symmetry on the interval {0, 1, . . . , N − 1} with the center
at t/2. As a shift is a cyclic equivalent of a translation, we can reformulate the classical fact saying that
each translation is a composition of two symmetries in the following way:

Lemma 3.1. Every shift can be performed by a network of depth 2.

Proof. Suppose we have to shift items 〈0, 1, . . . , N −1〉 by k (0 ≤ k < N). Notice that for any 0 ≤ i < N :

Symk ◦ Sym0(i) = Symk(−i mod N) = (i + k) mod N,

where ◦ denotes the composition of permutations. (For two permutations π1, π2, the composition π2 ◦ π1

is the permutation that first performs π1 and then π2, i.e. π2 ◦ π1(i) = π2(π1(i)).) Consider the network
consisting of the two layers: Sym0 (the first layer) and Symk (the second layer). Then this network (with
all switches set active) performs the permutation Symk ◦ Sym0, i.e. the cyclic shift by k.

A cycle is the permutation Shift1 of its elements. Since every permutation is a composition of disjoint
cycles, we get easily the next Corollary:

Corollary 3.2. Every permutation can be performed by a network of depth 2.

Example 3.3. A sample construction of a network performing a permutation. Let us consider a
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permutation

P =

(

0 1 2 3 4 5 6 7 8 9 10 11
3 7 2 1 5 8 0 6 9 10 11 4

)

.

P is a composition of disjoint cycles:

P = (0, 3, 1, 7, 6)(2)(4, 5, 8, 9, 10, 11).

(The three disjoint cycles of P are as follows: 0 7→ 3 7→ 1 7→ 7 7→ 6 7→ 0, 2 7→ 2, 4 7→ 5 7→ 8 7→ 9 7→ 10 7→
11 7→ 4, where i 7→ j stands for P (i) = j. The cycle notation for permutations used in this example is a
standard notation, see e.g. in [30].) We build a separate Shift1 network for each cycle (see Figure 10).

1 7 6 20 3 4 5 8 9 10 11

03176 2 11 10 9 8 5 4

1 7 6 20 3 4 5 8 9 10 11

6 0 1 7 2 8 9 1011 4 53

Fig. 10. The separate networks for each cycle

Then, rearranging the wires according to their numbering, we obtain the network given in Figure 11. 2of

Example

0 8 9 10 11731 5 642

0 1 8 9 10 115 7642 3

6 1 2 7 11 10 0 3 9 8 5 4

6 3 2 0 11 4 7 1 5 8 9 10

Fig. 11. The final network for permutation

The next problem we consider is to perform all shifts of the input 〈0, 1, . . . , N − 1〉, namely {Shiftt | 0 ≤
t < N}. Evidently, this can be done by Waksman-Beneš network, of depth 2⌈log N⌉− 1. However, it can
be improved.

Lemma 3.4. There is a network of depth ⌈log N⌉ + 1 performing cyclic shifts by 0, 1, . . . , N − 1.
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Proof. Let q = ⌊log N⌋. Consider the network consisting of q + 2 layers: Sym1, Sym2, Sym4,. . . , Sym2q+1 .
We claim that this network may perform all required cyclic shifts. Let 0 ≤ t ≤ N−1 and t = tqtq−1 · · · t1t0
be a binary representation of t. Thus

Shiftt = ◦q
i=0(Shift2i)ti ,

where Shiftks denotes Shifts applied k times. Notice that for any 0 ≤ i < N :

Sym2i+1 ◦ Sym2i(i) = Sym2i+1((2i − i) mod N) = (2i+1 − (2i − i)) mod N

= (i + 2i) mod N = Shift2i(i).

Hence

Shiftt = ◦q
i=0(Sym2i+1 ◦ Sym2i)ti

= (Sym2q+1)tq ◦ (◦q
i=1(Symti

2i ◦ Sym
ti−1

2i )) ◦ Symt0
1

= (Sym2q+1)tq ◦ (◦q
i=1(Sym2i)ti+ti−1) ◦ Symt0

1 .

Because Sym2
k = Symk ◦Symk is an identity, it follows that Shiftt is a composition of different symmetries

from the set {Sym2i | 0 ≤ i ≤ q+1}. To perform Shiftt it is enough to activate only layers corresponding to
these symmetries. It is easy to check that ⌈log N⌉+1 symmetries suffice to perform all required shifts (one
has to improve the construction slightly for N being a power of 2, otherwise obviously q+2 = ⌈log N⌉+1).

For later use we mention one more simple but useful construction.

Lemma 3.5. Every set of shifts S can be performed by a network of depth |S | +1.

Proof. Let S = {Shiftti
| 1 ≤ i ≤ m}. We build a network consisting of layers: Sym0, Symt1 , Symt2 , . . . ,

Symtm
. As Shiftti

= Symti
◦ Sym0, to realize Shiftti

it suffices to set the switches of the layers 0 and ti
active and the remaining switches inactive.

3.1.1. Shifts by powers of 2. The first step towards our final result for shifts by powers of 2 is
the following construction. Let G′ be an N -wire network performing shifts by a1, a2, . . . , ak. For any
integer m = 1, . . . , N , we build a network G(N, m, G′) which performs shifts by ai, for i = 1, . . . , k, and
by m · ai, for all ai ≤ ⌊N

m⌋.
To make the construction of G(N, m, G′) more clear we arrange its wires in an array A(N, m) = {aij |
0 ≤ i < m, 0 ≤ j < ri}, where ri = ⌊N/m⌋ + 1 if 0 ≤ i < (N mod m), and ri = ⌊N/m⌋ otherwise. It
may be convenient to imagine that we are looking at the wires from the top, so each of them is seen as a
dot. The wires are placed according to the row-major order, i.e. the first r0 wires are placed in the first
row, the next r1 wires are placed in the second row, etc. For example, for N = 21 and m = 4 see the
arrangement of wires in Figure 12.

r =60

r =52

r =53

r 5=110

14

8

13

m = 4

15

2019181716

11

6

0 1 2 3 4 5

97

12

Fig. 12. The top view of the arrangement of the wires of the network

Notice that all columns have length m, except the last one in the case when m does not divide N . Then
this column has length N mod m.
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For the construction of G(N, m, G′) we need a block performing the following permutation π:

Definition 3.6. For all 0 ≤ i < N , let

π(i) = (i modm) ·
⌊

N

m

⌋

+

⌊

i

m

⌋

+ min(i modm, N mod m).

It is not evident that π is a permutation. We omit an easy but a bit tedious proof of this fact, giving
instead an intelligible description of how π transforms the domain. Let σ be the sequence of elements
{0, . . . , N − 1} taken from the table A(N, m) in column-major order. Then π is the permutation which
for any i takes the ith element of σ. For the above example σ = 〈0, 6, 11, 16, 1, . . . , 15, 20, 5〉.
A crucial property of π follows immediately:

Proposition 3.7. Let Gπ and Gπ−1 be switching networks, which perform permutations π and π−1,
respectively. Then

(i) for any k ∈ {0, .., N − 1}, Gπ moves the item from the wire k to the wire placed at aij, with
i = k modm and j = ⌊ k

m⌋,
(ii) for any i ∈ {0, .., m − 1} and j ∈ {0, .., ri}, Gπ−1 moves the item from the wire placed at aij to

the wire i + jm.

Now we define G(N, m, G′). It consists of the following four blocks; each block comprises of a group of
layers performing a certain permutation:

• Gπ- distributive block
This block performs permutation π on the wires 0, 1, ..., N − 1.

• Grec- recursive block
This block consists of a single copy of G′.

• Gcor- correction block
This block consists of rm−1 independent subnetworks performing Shiftm−(N mod m)−1 inside
columns of A (except for the last one, if m does not divide N). Let Bshi denote the network
acting on the ith column (i = 0, . . . , rm−1 − 1).

• Gπ−1- redistributive block
This block performs permutation π−1 on all wires 0, 1, ..., N − 1.

Notice that all blocks, except Grec, perform a single permutation, so by Corollary 3.2 each of them
consists of at most two layers.

Lemma 3.8. For any N of the form 2l there exists an N -wire switching network of depth 4⌈log log N⌉+5
performing shifts by all powers of 2 less than N .

Proof. In order to show this, we assume first, that N = 22r

for some natural r, and then we extend the
construction to all powers of two. The key fact is that if N = m2 (let us remind that m is the greatest
power of 2 not exceeding

√
N , so this is the case for N = 22r

), then the permutation π consists of disjoint
transpositions (actually, in this case, A is a square matrix and π is its transposition) and therefore both
π and π−1 can be performed by one-layer networks. Suppose that we can construct an m-wire network H
performing shifts by some a1, . . . , ak. Now, let the blocks of the network G be as follows: Gπ transposes
A, Grec consists of m copies of H acting on separate rows of A, Gcor performs Shift1 on each column of
A independently and Gπ−1 = Gπ. Thereby we obtain a network G which can perform any shift ai and
m · ai. The idea of the network performance is visualised by Figures 13 and 14. As one can see in the
case of short shifts (see Figure 13) only the blocks Grec and Gcor are set active, and to obtain a long
shift (see Figure 14) we activate only the blocks Gπ, Grec and Gπ−1 . By this construction we obtain an
N -wire network G of depth(G) = depth(H) + 4 thus its iteration results in the N -wire network Hr of the
depth 4(r − 1) + 3, for any N , of the form 22r

(r ≥ 1).

The above method can be easily extended to any power of two. Let N = 2s and s = 2r + p, for some
p < 2r. Then we chose m = 2p and put the wires into an array A of size 2p × 22r

. Afterwards, we repeat
the above construction with H = Hr in each row of the recursive block. Since now π is no longer a
composition of disjoint transpositions we need 2 layers for π and 2 layers for π−1. Thus we have proved
the lemma.

Lemma 3.9. If m < N and G′ is an N -wire network performing shifts by a1, a2, . . . , ak, then G(N, m, G′)
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H

H

H

H

H

111
t

m ...

...

...

m ...

0 1 ...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

m ...

0 1 ...

m ...m-t ...

m-t ... 0 1 ...

Every row is shifted by

t,

then

the first t columns are

shifted down

and we are done.

Fig. 13. Short shifts, i.e. t ∈ {a1, a2, . . . , ak}.

. ..
. ..
.

0
1 . .

.

0 1 ...

...
.

...

...

. ...

...

0 1 ...

...

.. ..
.

..

.
..

.

.

...

..

.

..

.
1
0 ...

m π π-1

t

H

H

H

H

H

A is transposed then every row is

shifted by t

and A is trans-

posed again,

which ends the

process.

Fig. 14. Long shifts, i.e. by m · t, where t ∈ {a1, a2, . . . , ak}.

can perform shifts by a1, a2, . . . , ak and by m · ai for all ai ≤ ⌊N
m⌋.

Proof. It is obvious that if we set all switches in blocks Gπ, Gcor and Gπ−1 inactive, then G(N, m, G′) will
perform exactly the same shifts as G′. Therefore it can perform shifts by all ai’s and it remains to show
how to perform Shiftm·t for m ≥ 2, t ∈ {a1, a2, ..., ak} and t ≤ ⌊N

m⌋. We set the switches in G(N, m, G′)
as follows:

• Gπ is set to perform π,
• G′ is set to perform Shiftt,
• inside Gcor, networks Bsh0, Bsh1, ..., Bsht−1 are set to perform Shiftm−(N mod m)−1 of their

columns; Bsht, ..., Bshrm−1−1 are inactive,
• Gπ−1 is set to perform π−1.

We check that in this state the network performs Shiftm·t. Let x be the input item on a wire s (s =
0, . . . , N − 1), j = ⌊ s

m⌋ and i = s mod m. By Proposition 3.7, the distributive block Gπ moves x to the
wire aij . We show that the next blocks send it to the wire (s + tm) mod N . We consider the following
cases:

Case 1. j + t < ri.
G′ sends x to ai,j+t, where it stays until the block Gπ−1 , because the subnetworks Bshl are not
active for l ≥ t. Finally Gπ−1 sends it to i + (j + t)m = i + jm + tm = s + tm.

Case 2. j + t ≥ ri.
Notice that now s + tm = i + (j + t)m ≥ i + rim ≥ N and G′ moves the element to the next row
and some positions horizontally while GBsh moves it only vertically.
Let ai′j′ be the wire where x is sent. Note that j′ = j + t−ri and i′ = ((i+1)+m−(N mod m)−
1) mod m.

Subcase 2a. If i < N mod m, then
i′ = i+m−(N mod m) and ri = ⌊N

m⌋+1. So i′+j′m (the label of the wire where x is sent by
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Gπ−1) is equal to i+m−(N mod m)+(j+t−⌊N
m⌋−1)m = i+jm+tm−⌊N

m⌋m−(N mod m) =
s + tm − N .

Subcase 2b. If i ≥ N mod m, then
i′ = i−(N mod m). Since now ri = ⌊N

m⌋, we have i′+j′m = i−(N mod m)+(j+t−⌊N
m⌋)m =

s + tm − N .

Thus we have shown that in both cases the contents of the wire s is moved to the wire (s + tm) mod N .

To obtain an efficient network accomplishing shifts by powers of 2 we apply the construction of Lemma
3.9 recursively with an appropriate choice of parameters.

Lemma 3.10. For any N and k ≤ N there exists an N -wire switching network of depth 6 log log k + 3
performing shifts by all powers of 2 less than k. (Notice that the depth of the network is independent of
N .)

Proof. We prove the lemma by induction on k. Using Lemma 3.5, it is easy to construct an N -wire
network of depth 3 performing shifts by 1 and 2.

Now assume that k > 4 and suppose that for any k0 < k there is a network G̃(k0) of depth 6⌈log log k0⌉+
3 performing all shifts {2l | 2l ≤ k0}. Let m = max{2l | 2l ≤

√
k} and let G̃(k) be the network

G(N, m, G̃(⌊ k
m⌋)). We claim that G̃(k) has the required properties.

By Lemma 3.9, G̃(k) can be set to perform all shifts from the set

{

2l | 1 ≤ 2l ≤
⌊

k

m

⌋}

∪
{

m · 2l | 1 ≤ 2l ≤
⌊

k

m

⌋}

=

=

{

2l | 1 ≤ 2l ≤
⌊

k

m

⌋

or m ≤ 2l ≤ m ·
⌊

k

m

⌋}

.

Directly by the definition of m, we have
√

k/2 < m ≤
√

k and
√

k ≤ ⌊ k
m⌋ < 2

√
k.

Therefore m ≤ ⌊ k
m⌋ and G̃(k) realizes the shifts by 2l, for 1 ≤ 2l ≤ m · ⌊ k

m⌋.

Since there is no power of 2 between m · ⌊ k
m⌋ and k, we have proved that G̃(k) can perform all required

shifts.

It follows from the construction that

depth(k) ≤
{

3 for k ≤ 4

2 + depth(⌊ k
m⌋) + 2 + 2 for k > 4

So in general

depth(k) ≤ 6 + depth(2
√

k),

which can be solved to

depth(k) ≤ 6 log log(k) + 3.

3.1.2. Fibonacci shifts. Let us recall the definition of the Fibonacci sequence:

Definition 3.11. F0 = 0, F1 = 1, and Fk+1 = Fk + Fk−1 for k ≥ 1.

To apply the construction of Section 3.1.1, we expose the multiplicative nature of Fibonacci numbers.
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Proposition 3.12. Let r ≥ 0, a > 0 be arbitrary natural numbers. Then

Fr+a = Fa · Fr+1 + Fa−1 · Fr.

Proof. The proof is a simple induction (see e.g. [30], page 80).

Below we use the following notation. If S is some set of numbers and t is a number, then t·S = {t·s | s ∈ S}
and S↓N= {t | t ∈ S and t < N}. Also for sets of numbers S, T , let S + T = {s + t | s ∈ S and t ∈ T }.
In Section 3.1.1, we have described a construction that for every N -wire network G, performing shifts
SN , and arbitrary natural m < N , yields a network performing shifts SN ∪ (m · SN)↓N at the cost of
6 additional layers. Thus, assuming that we have already constructed a network G′ performing shifts
{F0, F1, . . . , Fa}, using the above idea we construct G(N, Fr, G

′) realizing shifts (Fr · {F0, F1, . . . , Fa})↓N

and G(N, Fr+1, G
′) realizing shifts (Fr+1·{F0, F1, . . . , Fa})↓N . If we put G(N, Fr+1, G

′) after G(N, Fr , G
′),

then together they may realize any shift from the set

(Fr · {F0, F1, . . . , Fa})↓N +(Fr+1 · {F0, F1, . . . , Fa})↓N⊃

⊃ {F1Fr+1 + F0Fr, F2Fr+1 + F1Fr, . . . , FaFr+1 + Fa−1Fr}↓N=

= {Fr+1, Fr+2, . . . , Fr+a}↓N ,

In order to perform all shifts {F0, F1, . . . , Fm}, we split this set into a number of smaller intervals

{F0, F1, . . . , Fr} ∪ {Fr+1, Fr+2, . . . , F2r} ∪ · · · ∪ {F⌊m
r
⌋r+1, . . . , Fm}

and use the network for {F0, F1, . . . , Fr} with six layers extra to perform shifts of each of these intervals.

Now, we describe the above idea more formally and estimate the size of the constructed network. Let a
and k be arbitrary integers and let B(a) be a network that may perform shifts by any x ∈ {Fi | 0 ≤ i ≤ a}.
For any integer c ≥ 2, let Gc = G(N, c, B(a)) and let Gc

π, Gc
cor, Gc

π−1 denote respectively its distributive,
correction and redistributive blocks. Notice that all Gc’s have the same second block, namely B(a).
Now, for any sequence c1, . . . , ck of positive integers, we define G(N, 〈c1, . . . , ck〉, B(a)) to be a network
consisting of the following sequence of blocks: 〈Gc1

π , Gc2
π , . . ., Gck

π , B(a), Gc1
cor, Gc2

cor, . . ., Gck
cor ,Gc1

π−1 ,
Gc2

π−1 , . . ., Gck

π−1〉.
Lemma 3.13. For any sequence c1, . . . , ck of positive integers, G(N, 〈c1, . . . , ck〉, B(a)) may perform
shift by any element of {Fi | 0 ≤ i ≤ a} ∪ {ci · Fj | 1 ≤ i ≤ k and 0 ≤ j ≤ a}↓N . The depth of
G(N, 〈c1, . . . , ck〉, B(a)) is bounded by 6k + depth(B(a)).

Proof. To perform shifts by Fi, (i = 0, . . . , a), we set all blocks except B(a) inactive, and we set B(a) to
perform the required shift.

To perform shift by ci · Fj < n, for some i and j from the permitted intervals, we set B(a) to perform
shift by Fj and from among the remaining blocks we activate only Gci

π , Gci
cor and Gci

π−1 . Then by Lemma
3.9 we get the required shift.

Because each of the distributive, correction and redistributive blocks is of depth 2,

depth(G(N, 〈c1, . . . , ck〉, B(a))) ≤ depth(B(a)) + 6k.

We define H(N, 〈k, r〉, B(r)) to be a network consisting of blocks: G(N, 〈F1·r ,. . ., Fk·r〉, B(r)) and
G(N, 〈F1·r+1, . . . , Fk·r+1〉, B(r)).

Lemma 3.14. H(N, 〈k, r〉, B(r)) performs shifts by {Fl | 0 ≤ l ≤ (k + 1)r}↓N and its depth is 2(6k +
depth(B(r))).

Proof. To perform shift by Fl, for l ≤ r, we set one copy of B(r) to perform this shift and leave all other
blocks inactive.
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Let now r < l ≤ (k + 1)r and Fl < n. Let l = ir + j, where 1 ≤ i ≤ k and 1 ≤ j ≤ r. By Proposition
3.12,

Fl = Fir+1 · Fj + Fir · Fj−1.

Since, by Lemma 3.13, block G(N, 〈F1·r , . . ., Fk·r〉, B(r)) can perform shift by Fir · Fj−1 and block
G(N, 〈F1·r+1, . . . , Fk·r+1〉, B(r)) can perform shift by Fir+1 · Fj , the network H(N, 〈k, r〉, B(r)) can per-
form shift by Fl.

The estimation of the depth of the network obviously follows from Lemma 3.13.

Lemma 3.15. For any integers n and m, there exists an N -wire switching network of depth O(22
√

log m)
performing shifts by {F0, F1, . . . , Fm}↓N .

Proof. Let d, k ∈ IN satisfy dk ≥ m. We define a sequence of N -wire networks as follows:

• H̃(d) - a network performing shifts {F0, F1, . . . , Fd},
• H̃(dk) = H(N, 〈d − 1, dk−1〉, H̃(dk−1)) for k > 1.

By a simple induction on k using Lemma 3.14 one can show that H̃(dk) may perform all shifts from the
set

{Fl | 0 ≤ l ≤ d · dk−1}↓N = {Fl | 0 ≤ l ≤ dk}↓N

for every k > 0. The depth of H̃(dk) is equal to:

depth(H̃(dk)) =

{

d + 1 for k = 1

2(depth(H̃(dk−1)) + 6(d − 1)) for k > 1

The first equation comes from Lemma 3.5, the second one follows from Lemma 3.14. Hence

depth(H̃(dk)) = 2k−1 · (d + 1) + (2k − 2) · 6(d − 1).

Now, we fix the values of k and m appropriate to be able to perform all required shifts and to minimize
the depth of the network. To perform shifts {F0, F1, . . . , Fm} we need dk ≥ m, so let k = ⌈ log m

log d ⌉ and

d = ⌈2
√

log m⌉. Thus log m
log d ≤ k < log m

log d + 1 and 2
√

log m ≤ d < 2
√

log m + 1. So

depth(H̃(dk)) ≤ 2
log m

log d (d + 1) + (21+ log m

log d − 2) · 6(d − 1) ≤

≤ 2
log m√
log m (d + 1) + (2

1+ log m√
log m − 2) · 6(d − 1) = 2

√
log m(d + 1) + (21+

√
log m − 2) · 6(d − 1) ≤

≤ 2
√

log m(2
√

log m + 2) + 6 · 2
√

log m(21+
√

log m − 2) =

= 22
√

log m + 2 · 2
√

log m + 12 · 22
√

log m − 12 · 2
√

log m ≤ 13 · 22
√

log m.

As dk ≥ m we obtain an O(22
√

log m) depth network performing shifts {F0, F1, . . . , Fm}.
Lemma 3.15 combined with the fact that there are logarithmically many Fibonacci numbers in {0, 1, . . . , N−
1} gives us the final result concerning Fibonacci numbers.

3.2. The Proof of Theorem 2.11. We first prove the lower bound of Theorem 2.11. The lower
bound uses the same technique as the lower-bound proof of Theorem 2.6. Leighton has mentioned in [31,
Exercise 3.8] that the balanced bisection width of the hypercube of N nodes is in Ω(N log log N/ log N).
The technical proof of this fact is contained in [27]. As the set of all hypercube shifts [i.e., input node
xa1...ai−10ai+1...ad

has to be connected to output node ya1...ai−11ai+1...ad
for i = 1, 2, . . . , d, d = log2 N ]

is a subset of Pow 2N , it follows that bw(G(Pow 2N )) = Ω(N log log N/ log N). Let G be a planar,
edge-disjoint k-permutation network for Pow 2N . Using the same notation as in Theorem 2.6, we have
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size(G) ≥ (bw(G(Pow 2N)))2 / (c · k)2

for some constant c (independent of size(G)) [cf. the proof of Theorem 2.6]. It follows that Plsize-edk(Pow 2N ) =
Ω(N2 · (log log N)2/(log N)2). This completes the proof of the lower bound of Theorem 2.11.

To prove the upper bound of Theorem 2.11, we proceed in the following two steps:
Let Gr(a, b) denote the (a × b)-grid.

1. First, we show that, for m being a power of two, m input nodes and m output nodes can be laid

out on the row {[1, i] | 1 ≤ i ≤ 2m} in Gr(
⌊

67 · m · log2 log2 m+1
log2 m

⌋

+ 1, 2m) such that all shifts of

power 2 can be realized. The layout of the input and output nodes also satisfies the condition
that the input nodes are mapped to the nodes {[1, 2i − 1] | 1 ≤ i ≤ m}, the output nodes are
mapped to the nodes {[1, 2i] | 1 ≤ i ≤ m}, and if the input node xv, v ∈ {0, 1}l, is mapped to
[1, 2i − 1], 1 ≤ i ≤ m, then the output node yv is mapped to [1, 2i], and vice versa.

2. Then, we demonstrate how this result can be used to show that
Plsize-edk(Pow 2N) = O(N2 · (log log N)2/(log N)2) .

We start by verifying the first claim.

Lemma 3.16. Let m = 2l for some l ∈ IN . Then m input nodes and m output nodes can be laid

out on the row {[1, i] | 1 ≤ i ≤ 2m} in Gr(
⌊

67 · m · log2 log2 m+1
log2 m

⌋

+ 1, 2m) such that all shifts of power

2 can be realized. The layout of the input and output nodes also satisfies the condition that the input
nodes are mapped to the nodes {[1, 2i − 1] | 1 ≤ i ≤ m}, the output nodes are mapped to the nodes
{[1, 2i] | 1 ≤ i ≤ m}, and if the input node xv, v ∈ {0, 1}l, is mapped to [1, 2i − 1], 1 ≤ i ≤ m, then the
output node yv is mapped to [1, 2i], and vice versa.

Proof. We first define the layout of the input nodes {xv | v ∈ {0, 1}l} and the output nodes {yv | v ∈
{0, 1}l} on the row {[1, i] | 1 ≤ i ≤ 2m} (see Figure 15) .

x y x y x y

. . .. . .

0 0 1 1 m−1 m−1

output node
input node

Fig. 15. The layout of the input and output nodes in the grid

Let v = vl−1vl−2 . . . v0 ∈ {0, 1}l . Let b ∈ IN such that l/2 ≤ b · 2b ≤ 2l. v is divided into ⌊l/b⌋ blocks of
length b and 1 block of length l mod b if b ∤ l, namely

v = B⌈l/b⌉−1(v)B⌈l/b⌉−2(v) . . . B0(v)

where Bj(v) = v(j+1)b−1v(j+1)b−2 . . . vjb ∈ {0, 1}b for 0 ≤ j ≤ ⌊l/b⌋ − 1

and B⌈l/b⌉−1(v) = vl−1vl−2 . . . v⌊l/b⌋·b ∈ {0, 1}l mod b if b ∤ l .

[If v is clear from the context, then Bj(v) is simply referred to as Bj .]

A blockpattern is a bitstring P ∈ {0, 1}b. For 0 ≤ i ≤ 2b − 1 , let bin(i) ∈ {0, 1}b be the binary
representation of i. Then, Pi = bin(i) is called the i-th blockpattern. Let v ∈ {0, 1}l, 0 ≤ i ≤ 2b − 1 .
If Bj(v) 6= Pk for all 0 ≤ j ≤ ⌊l/b⌋− 1, 0 ≤ k < i, and ∃ 0 ≤ j ≤ ⌊l/b⌋− 1 : Bj(v) = Pi, then Pi is called
the leading blockpattern of v. Let v ∈ {0, 1}l. Let Pi, 0 ≤ i ≤ 2b − 1, be the leading blockpattern of
v. Then, bd(n⌊l/b⌋−1(v), n⌊l/b⌋−2(v), . . . , n0(v)) ∈ {0, 1}⌊l/b⌋, where

nj(v) =

{

1 if Bj(v) = Pi

0 else
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for 0 ≤ j ≤ ⌊l/b⌋ − 1, is called the block diagram of v.

For 0 ≤ i ≤ 2b − 1, 1 ≤ k ≤ ⌊l/b⌋, let

Gi = {v ∈ {0, 1}l | Pi is the leading blockpattern of v} ,
Gi,k = {v ∈ {0, 1}l | v ∈ Gi and there are exactly k indices j1, j2, . . . , jk ∈

{0, 1, . . . , ⌊l/b⌋ − 1} such that Bji
(v) = Pi}.

Now, the input nodes {xv | v ∈ {0, 1}l} and the output nodes {yv | v ∈ {0, 1}l} are laid out on the row
{[1, i] | 1 ≤ i ≤ 2m} such that:

a) The input nodes are mapped to the nodes {[1, 2i−1] | 1 ≤ i ≤ m}, the output nodes are mapped
to the nodes {[1, 2i] | 1 ≤ i ≤ m}. If the input node xv, v ∈ {0, 1}l, is mapped to [1, 2i − 1],
1 ≤ i ≤ m, then the output node yv is mapped to [1, 2i], and vice versa.

b) The node xv1
, v1 ∈ Gi, is placed before the node xv2

, v2 ∈ Gi+1, for 0 ≤ i ≤ 2b − 2 .
c) For 0 ≤ i ≤ 2b − 1 :

The node xv1
, v1 ∈ Gi,k, is placed before the node xv2

, v2 ∈ Gi,k+1, for 1 ≤ k ≤ ⌊l/b⌋ − 1 .
d) For 0 ≤ i ≤ 2b − 1, 1 ≤ k ≤ ⌊l/b⌋ :

The node xv1
, v1 ∈ Gi,k, is placed before the node xv2

, v2 ∈ Gi,k, if bd(v1) < bd(v2) according
to the lexicographical order on {0, 1}⌊l/b⌋ [i.e., bin−1(bd(v1)) < bin−1(bd(v2))].

Let f : {0, 1}l → {1, 2, . . . , m} such that 2f(v) − 1 is the final layout position of the input node xv [and
2f(v) is the final layout position of the output node yv] on the row {[1, i] | 1 ≤ i ≤ 2m} for all v ∈ {0, 1}l.

Let 0 ≤ T ≤ log2 m. We now show how the 2T -shift can be realized.

Communication between vertices is established by a set of canonical paths. We say that vertices v = [1, j]
and w = [1, k] communicate via the track r, if the information is passed first vertically from [1, j]
to [r, j], then horizontally along the r-th row to [r, k], and then finally vertically from [r, k] to [1, k] (see
Figure 16) .

. . .. . .

v = [1,j] w = [1,k]

row r

Fig. 16. Communication via track r

Consider the graph GT = (V, E), V = {0, 1}l and

(v, w) ∈ E if (bin−1(v) + 2T ) mod m = bin−1(w) .

For 0 ≤ i ≤ m, consider the cut Ci = (V1, V2) of GT (i.e., V1, V2 ⊆ V such that V = V1∪̇V2), where

V1 := {v ∈ {0, 1}l | f(v) ≤ i},
V2 := {v ∈ {0, 1}l | f(v) ≥ i + 1}.

An edge crossing the cut (V1, V2) [or, a C-cutting edge, for short] is an edge (v, w) ∈ E such that
v ∈ V1, w ∈ V2.

Observation 3.17. The 2T -shift can be realized using max0≤i≤m |{e ∈ E | e is crossing the cut Ci}|
tracks.

The proof of Observation 3.17. We establish the communication paths from left to right in row {[1, i] |
1 ≤ i ≤ 2m}. A node [1, i] which wants to communicate with the node [1, j] chooses the first “free” track
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(i.e., the first track which is not already being used). This completes the proof of Observation 3.17.

The proof of Lemma 3.16 continued. Hence, it suffices to show:

Claim 3.18. |{e ∈ E | e is crossing the cut Ci}| ≤ 67 · m · log2 log2 m+1
log2 m for all 0 ≤ i ≤ m.

The proof of Claim 3.18. Consider a cut C ∈ {C0, C1, . . . , Cm}. Let EC ⊆ E denote the set of C-cutting
edges. An edge (v, w) ∈ E is called internal to a set V ′ ⊆ V , if v, w ∈ V ′. Let

E1 = {e ∈ EC | e is internal to Gi,k for some i ∈ {0, 1, . . . , 2b − 1},
k ∈ {1, 2, . . . , ⌊l/b⌋}},

E2 = {e ∈ EC | e 6∈ E1, e is internal to Gi for some i ∈ {0, 1, . . . , 2b − 1}},
E3 = {e ∈ EC | e 6∈ E1 ∪ E2}.

For 1 ≤ i ≤ 3, let gi := |Ei|. Then, EC = E1∪̇E2∪̇E3 and |EC | = g1 + g2 + g3 (see Figure 17) .

C

E1

E2

E3

Gi,k

Gi

Fig. 17. C-cutting edges

We show that g1 + g2 + g3 ≤ 67 ·m · log2 log2 m+1
log2 m . Let t be the index of the block containing the bit with

the index T , i.e., t = ⌊T/b⌋.
1.) Estimation of g1 :

According to the order f , there is at most one Gi,k which is cut by C. If no Gi,k is cut, then
g1 = 0 and nothing needs to be shown. Let Gi,k, i ∈ {0, 1, . . . , 2b − 1}, k ∈ {1, 2, . . . , ⌊l/b⌋}, be
cut by C. Let (v, w) ∈ E be a C-cutting edge.
1a.) bd(v) = bd(w) :

According to the order f , there is at most one block diagram which occurs left as well as
right of C (i.e., all other block diagrams occur only left or right of C). Hence, all the edges
(v, w) cutting C and fulfilling condition 1a.) have a fixed given block diagram. This means
that (at least) one block (of length p) is fixed, and there are at most 2l−b of these nodes.
Hence, there are at most 2l−b−1 C-cutting edges of this type (both endnodes in Gi,k).

1b.) bd(v) 6= bd(w) :
i) Something is changed in Br, r > t + 1:

Then, the block Bt+1 in the target node w is the zero block 0b. Hence, only 2l−b

different target nodes are possible.
ii) A leading pattern is changed in Bt+1

(i.e., v has a leading pattern in Bt+1 and w does not, or vice versa):
The block Bt+1 consists of the leading pattern either in v or w. There are at most
2 · 2l−b edges of this type.

iii) Like ii) with block Bt instead of Bt+1.
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Overall, it follows that g1 ≤ 5.5 · 2l−b. (Using a more careful analysis, it can be shown that
g1 ≤ 2.5 · 2l−b.)

2.) Estimation of g2 :
We first estimate the number of edges which are internal to a group Gi and which cross the cut
(Gi,k, Gi,k+1) for given i ∈ {0, 1, . . . , 2b − 1}, k ∈ {1, 2, . . . , ⌊l/b⌋ − 1}.

i) The number of edges which change at least 3 blocks is at most 2l−b [Bt+1 is the zero block,
cf. 1b) i)].

ii) At most two blocks are changed, namely Bt and/or Bt+1.
The number of blocks with the leading pattern Pi is changed, i.e., for v or w the leading
pattern must occur in Bt or Bt+1. There are at most 4 · 2l−b edges of this type [cf. 1b) ii)
and iii)].

Overall, it follows that there are at most 5 · 2l−b edges crossing the cut (Gi,k, Gi,k+1).
We now estimate g2. According to the order f , there is at most one Gi,k which is cut by C. If
no Gi,k is cut, C is a cut (Gi,k, Gi,k+1) for some i ∈ {0, 1, . . . , 2b − 1}, k ∈ {1, 2, . . . , ⌊l/b⌋ − 1}.
If Gi,1, i ∈ {0, 1, . . . , 2b − 1}, is cut by C, then all C-cutting edges which are internal to Gi

and not internal to Gi,1 cross the cut (Gi,1, Gi,2). If Gi,⌊l/b⌋, i ∈ {0, 1, . . . , 2b − 1}, is cut by
C, then all C-cutting edges which are internal to Gi and not internal to Gi,⌊l/b⌋ cross the cut

(Gi,⌊l/b⌋−1, Gi,⌊l/b⌋). If Gi,k, i ∈ {0, 1, . . . , 2b − 1}, k ∈ {2, 3, . . . , ⌊l/b⌋ − 1}, is cut by C, then all
C-cutting edges which are internal to Gi and not internal to Gi,k cross the cut (Gi,k−1, Gi,k) or
(Gi,k, Gi,k+1). In any case, it follows that

g2 ≤ 2 · max
i,k

|{e ∈ E | e is internal to Gi and crosses the cut (Gi,k, Gi,k+1)}|

≤ 10 · 2l−b .
3.) Estimation of g3 :

We first estimate the number of edges which cross the cut (Gj−1, Gj) for given j ∈ {1, 2, . . . , 2b−
1}.

i) The number of edges which change at least 3 blocks is at most 2l−b [Bt+1 is the zero block,
cf. 1b) i)].

ii) At most two blocks are changed, namely Bt and/or Bt+1 :
Consider an edge e “starting” in Gi, i < j, and “ending” in Gk, k ≥ j, i.e., e = (v, w) where
v ∈ Gi and w ∈ Gk. For e, it holds that in the “left” node v the leading pattern Pi must
occur in Bt or Bt+1 (or both). As in the “right” node w only patterns Pk, k ≥ j, occur,
there are at most

4 · (2b − j)⌊l/b⌋−1 · 2l mod b

such edges.
On the whole, the starting group Gi can be one of the j groups G0, G1, . . . , Gj−1. Therefore,
the overall number of edges crossing the cut (Gj−1, Gj) and changing at most two blocks
can be bounded above by

n(j) := j · 4 · (2b − j)⌊l/b⌋−1 · 2l mod b .
Using standard analytical methods, it can be shown that the function

f : {x ∈ IR | 0 ≤ x ≤ 2b} → IR, x 7→ x · (2b − x)⌊l/b⌋−1

is maximized for x = 2b

⌊l/b⌋ . As b · 2b ≤ 2l and b ∈ IN , 2b−1 ≤ ⌊l/b⌋ holds, and we obtain

f(j) ≤ f
(

2b

⌊l/b⌋

)

= 2b

⌊l/b⌋ ·
(

2b − 2b

⌊l/b⌋

)⌊l/b⌋−1

≤ 2 · (2b)⌊l/b⌋−1 = 2 · 2⌊l/b⌋·b−b

and
n(j) = 4 · f(j) · 2l mod b ≤ 8 · 2l−b .

Overall, it follows that there are at most 9 · 2l−b edges crossing the cut (Gj−1, Gj).
We now estimate g3. According to the order f , there is at most one Gj which is cut by C. If
no Gj is cut, C is a cut (Gj−1, Gj) for some j ∈ {1, 2, . . . , 2b − 1}. If G0 is cut by C, then
all C-cutting edges which are not internal to G0 cross the cut (G0, G1). If G2b−1 is cut by C,
then all C-cutting edges which are not internal to G2b−1 cross the cut (G2b−2, G2b−1). If Gj ,
j ∈ {1, 2, . . . , 2b −2}, is cut by C, then all C-cutting edges which are not internal to Gj cross the
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cut (Gj−1, Gj) or (Gj , Gj+1). In any case, it follows that
g3 ≤ 2 · max

j
|{e ∈ E | e crosses the cut (Gj−1, Gj)}|

≤ 18 · 2l−b .

Overall, as l/2 ≤ b · 2b ≤ 2l, it follows that

g1 + g2 + g3 ≤ 33.5 · 2l−b ≤ 33.5 · 2l · 2b
l

≤ 67 · 2l · log2 l+1
l ≤ 67 · m · log2 log2 m+1

log2 m .

Now, we will see how the result from Lemma 3.16 can be used to show the upper of Theorem 2.11.

Lemma 3.19.

Plsize-edk(Pow 2N) = O(N2 · (log log N)2/(log N)2) .

Proof. We first consider the case that N is a power of two. Let N = 2d for some d ∈ IN . Let 0 ≤ l1, l2 ≤ d

such that l1 + l2 = d. For i ∈ {1, 2}, let mi = 2li , zi =
⌊

67 · mi · log2 log2 mi+1
log2 mi

⌋

+ 2. We consider the grid

Gr(a, b) where a = m2 · z1 and b = m1 · z2. We partition Gr(a, b) into m2 ·m1 subgrids Grij , 1 ≤ i ≤ m2,
1 ≤ j ≤ m1, of size z1 × z2 as displayed in Figure 18.

Gr
11

Gr
12

Gr
21

Gr

GrGr
mm m1

1m

2 2 1

1

Fig. 18. The partition of Gr(a, b) into subgrids

[More precisely, V (Grij) = {[r, s] | (i − 1)z1 + 1 ≤ r ≤ iz1, (j − 1)z2 + 1 ≤ s ≤ jz2} .]

We now define the position pos(xv) and pos(yv) of the input node xv and the output node yv for
v ∈ {0, 1}d. Let v = vd−1 . . . v0 ∈ {0, 1}d. For i ∈ {0, 1}, let fi : {0, 1}li → {1, 2, . . . , mi} be the function
(describing the final position of the input/output nodes) from the construction in Lemma 3.16 applied
to m = mi = 2li . Then,

pos(xv) := [(f2(vd−1 . . . vl1) − 1)z1 + 2, (f1(vl1−1 . . . v0) − 1)z2 + 1] ,

pos(yv) := [(f2(vd−1 . . . vl1) − 1)z1 + 1, (f1(vl1−1 . . . v0) − 1)z2 + 2] ,

i.e., the position of xv is chosen as the left node in the second row and the position of yv is chosen as the
bottom node of the second column of the corresponding subgrid.

It remains to show how the 2T -shift can be realized in Gr(a, b) for 0 ≤ T ≤ d.

The crucial observation will be that a 2T -shift on v = vd−1 . . . v0 can be decomposed into a 2T1-shift
on vl1−1 . . . v0 and a 2T2-shift on vd−1 . . . vl1 . The idea then is to realize the 2T1-shift on vl1−1 . . . v0 in
horizontal direction in Gr(a, b) and the 2T2-shift on vd−1 . . . vl1 in vertical direction.

Let us first see how, for fixed vd−1 . . . vl1 ∈ {0, 1}l2, a 2T1-shift (modulo 2l1) on {vd−1 . . . v0 | vl1−1 . . . v0 ∈
{0, 1}l1} can be realized in horizontal direction in Gr(a, b) and how, for fixed vl1−1 . . . v0 ∈ {0, 1}l1, a
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2T2-shift (modulo 2l2) on {vd−1 . . . v0 | vd−1 . . . vl1 ∈ {0, 1}l2} can be realized in vertical direction in
Gr(a, b).

Let 0 ≤ T1 ≤ l1. Let vd−1 . . . vl1 ∈ {0, 1}l2. For realizing the 2T1 -shift (modulo 2l1) between {xvd−1...v0
|

vl1−1 . . . v0 ∈ {0, 1}l1} and {yvd−1...v0
| vl1−1 . . . v0 ∈ {0, 1}l1}, we use the subgrids Gij in which these

input and output nodes are placed, i.e., we use the subgrid Gi consisting of Gri1, Gri2, . . . , Grim1
for

i = f2(vd−1 . . . vl1). More precisely, we identify the 2m1 columns of Gi containing an input or output
node with a (z1 × 2m1)-grid G̃i. Lemma 3.16 asserts that the 2T1-shift (modulo 2l1) can be realized in

G̃i (because we have z1 − 2 =
⌊

67 · m1 · log2 log2 m1+1
log2 m1

⌋

horizontal tracks available). This is also true for

Gi by routing horizontal communications in G̃i along the according row in Gi.

Let 0 ≤ T2 ≤ l2. Let vl1−1 . . . v0 ∈ {0, 1}l1. For realizing the 2T2-shift (modulo 2l2) between {xvd−1...v0
|

vd−1 . . . vl1 ∈ {0, 1}l2} and {yvd−1...v0
| vd−1 . . . vl1 ∈ {0, 1}l2}, we use the subgrids Gij in which these

input and output nodes are placed, i.e., we use the subgrid Gj consisting of Gr1j , Gr2j , . . . , Grm2j for

j = f1(vl1−1 . . . v0). This time, we have z2 − 2 =
⌊

67 · m2 · log2 log2 m2+1
log2 m2

⌋

vertical tracks available.

Hence, we can realize the 2T2-shift (modulo 2l2) vertically (by using the same argumentation as in the
horizontal case vertically now).

Now, we proceed to implement the 2T -shift (modulo 2d) on Gr(a, b). Let 0 ≤ T ≤ d. Let v = vd−1 . . . v0 ∈
{0, 1}d. Let vl := vd−1 . . . vl1 , vr := vl1−1 . . . v0. We specify the communication path P (v) from xv to yw,
w = wd−1 . . . w0 = bin((bin−1(v) + 2T ) mod (2d)). Let wl := wd−1 . . . wl1 , wr := wl1−1 . . . w0.

a) T ≥ l1 :

Let T2 := T − l1. Then wl = bin((bin−1(vl) + 2T2) mod (2l2)), wr = vr. Consider the realization
of the 2T2 -shift (modulo 2l2) on {vd−1 . . . v0 | vd−1 . . . vl1 ∈ {0, 1}l2} from above. Then, P (v) is
taken as the communication path between xv and yw in that realization.

b) T < l1 and bin−1(vr) + 2T < 2l1 :

Let T1 := T . Then wl = vl, wr = bin((bin−1(vr) + 2T1) mod (2l1)). Consider the realization
of the 2T1 -shift (modulo 2l1) on {vd−1 . . . v0 | vl1−1 . . . v0 ∈ {0, 1}l1} from above. Then, P (v) is
taken as the communication path between xv and yw in that realization.

c) T < l1 and bin−1(vr) + 2T ≥ 2l1 :

Let T1 := T , T2 := 0. Then wl = bin((bin−1(vl) + 2T2) mod (2l2)), wr = bin((bin−1(vr) +
2T1) mod (2l1)). Consider the realization R1 of the 2T1-shift (modulo 2l1) on {vd−1 . . . v0 |
vl1−1 . . . v0 ∈ {0, 1}l1} and the realization R2 of the 2T2-shift (modulo 2l2) on {vd−1 . . . v0 |
vd−1 . . . vl1 ∈ {0, 1}l2} from above. xv communicates with yvlwr in R1 via the horizontal track
r1. xvlwr communicates with yw in R2 via the vertical track r2. Now, xv can communicate
directly with yw by first using the horizontal track r1 and then using the vertical track r2 (i.e.,
the information is first passed vertically from xv to r1, then horizontally along r1 to r2, then
vertically along r2 to the row containing yw, and finally horizontally to yw).

Hence, we have seen how the 2T -shift can be realized in Gr(a, b) for 0 ≤ T ≤ d. Choosing l1 = ⌊d/2⌋,
l2 = ⌈d/2⌉ yields the desired result

Plsize-edk(Pow 2N) = O(N2 · (log log N)2/(log N)2) ,

for N being a power of two. If N is not a power of two, a similar case distinction as above yields the
desired result. This completes the proof of Theorem 2.11.

4. Conclusion. In this paper, we presented asymptotically optimal planar and non-planar permu-
tation networks for shifts of power 2. A new simulation of hypercube algorithms as well as an essential
improvement of gossiping in two-way vertex-disjoint paths mode in bounded-degree networks follow. For
the set of Fibonacci shifts, FibN , which are crucial for the design of efficient gossip algorithms in one-way
vertex-disjoint paths mode, we were not able to prove the optimality of our constructions. Thus, the
main open problem left is to determine Size-edk(FibN ) and Plsize-edk(FibN) exactly.

It would be of independent interest to find a difficult set of shifts, i.e. requiring the depth of a network
more than logarithmic in the number of performed shifts.

Many networks considered have a regular structure that enables to use them in periodical mode. It means
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that a network (presumably of a small depth) is used several times, each time being set independently
of previous rounds and fed with the output of the previous run. A constant depth switching network
performing all permutations, if run O(log N) times, is presented in [42]. The investigation of power-two
and Fibonacci shifts resulted in periodic constructions of constant depth and O(log log N) and respectively

O(22
√

log log N ) numbers of rounds [21].

Appendix. Summary of the Argument from [43]. Let PN,k,m denote the set of all edge-disjoint
k-permutation networks of N input nodes, N output nodes and at most m inner nodes (i.e. neither input
nor output nodes). Let ΠN denote the set of all permutations of N elements. Let Πq

N denote the set
of all q-tuples of elements from ΠN . A tuple (π1, π2, . . . , πq) from Πq

N is realized by a network G from
PN,k,m (by definition) if and only if every πi is realizable by G (i.e. there exist N edge-disjoint paths in
G realizing πi).

Proposition 4.1 ([43]). Let k = O(1), m = Nq/c, where c = 4k log k is a constant depending on k.
Let also q = o(log N). Then only an exponentially (in N) small fraction of Πq

N is realizable by a network
from PN,k,m.

Idea of the Proof. For an inner vertex v of a permutation network, let an in-egde/out-edge assignment
be a matching between the incoming and outgoing edges of the vertex v (while considering an arbitrary
orientation of the edges). A network with q switch presettings is a permutation network in which for
every inner vertex v a tuple of q in-egde/out-edge assignments is given. Let P ′

N,k,m,q denote the set of all
networks with q switch presettings, where the underlying network is from PN,k,m.

Some elements from P ′
N,k,m,q realize in a natural way an element from Πq

N . Other elements from P ′
N,k,m,q

potentially do not realize any permutation (e.g. paths in the network may stop in the middle of the
network). In any case, at most |P ′

N,k,m,q| many tuples from Πq
N may be realized by a network from

PN,k,m.

We have roughly |P ′
N,k,m,q| ≤ (N +m)k(N+m) ·(k2k)mq , and |Πq

N | ≥ N qN . The first term is exponentially
smaller than the second term.
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[3] V. Beneš, Permutation groups, complexes, and rearrangeable multistage connecting networks, Bell System Technical
Journal, vol. 43, pp. 1619-1640, 1964.
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[5] H. Çam, Balanced Permutations and Multistage Interconnection Networks, International Journal of Computer Math-
ematics, vol. 73, no. 1, pp. 125-137, Nov. 1999.
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[8] H. Çam and J.A.B. Fortes, Work-Efficient Routing Algorithms for Rearrangeable Symmetrical Networks, IEEE
Transactions on Parallel and Distributed Systems, vol. 10, no. 7, pp. 733-741, July 1999.

[9] H.-B. Chen and F.K. Hwang, On Multicast Rearrangeable 3-stage Clos Networks Without First-Stage Fan-Out ,
SIAM Journal on Discrete Mathematics, vol. 20, no. 2, pp. 287-290, 2006.

[10] M. Cutler and Y. Shiloach, Permutation layout , Networks, vol. 8, pp. 253-278, 1978.
[11] N. Das, More on rearrangeability of combined (2n−1)-stage networks, Journal of Systems Architecture, vol. 51, no. 3,

pp. 207-222, 2005.
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