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Envy-Free Makespan Approximation

Edith Cohen∗ Michal Feldman† Amos Fiat‡ Haim Kaplan §

Svetlana Olonetsky¶

“It is better to be envied than pitied”

— Herodotus (484 BC - 430 BC)

Abstract

We study envy-free mechanisms for scheduling tasks on unrelated machines (agents) that
approximately minimize the makespan. For indivisible tasks, we put forward an envy-free poly-
time mechanism that approximates the minimal makespan to within a factor of O(logm), where
m is the number of machines. We also show a lower bound of Ω(logm/ log logm). This improves
the recent result of Hartline et al. [15] who give an upper bound of (m+1)/2, and a lower bound of
2−1/m. For divisible tasks, we show that there always exists an envy-free poly-time mechanism
with optimal makespan.

1 Introduction

Imagine a set of n household chores, and m kids in the family. Every chore may take a different
amount of time to be performed by each child. A single chore cannot be performed by more than
one child (indivisible), but multiple chores can be assigned to a single child. The parents want
to allocate chores fairly, and may offer inducements to the children so as to ensure fairness. The
parents have an additional goal which is to get all the chores out of the way as soon as possible.
This problem is our main focus. In job scheduling terminology, we study mechanisms for the fair
allocation of tasks to machines (agents), each of which may take a different length of time to
complete every task, subject to the added goal of minimizing the makespan; i.e., getting all tasks
done as soon as possible.

The problem of fair division, often modeled as that of partitioning a cake fairly, goes back at
least to 1947 and is attributed to Jerzy Neyman, Hugo Steinhaus, Stefan Banach and Bronislaw
Knaster ([24, 25]). There are several books on fair division, and hundreds of references, both
mathematical and philosophical, a small sampling of books is [26, 4, 20, 16, 23]. Martin Gardner
(1978, [12]) is credited with asking about fair division of household chores.

In order to devise a fair division, one should first define the precise notion of fairness desired.
One common notion of fairness is that of “envy-freeness”, an allocation where no one seeks to
switch her outcome with that of another (Dubins and Spanier, 1961, [10], Foley, 1967, [11]).
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Tasks may be divisible or indivisible. It is always possible to divide a divisible task equally
between all agents. This is envy-free, but infinite task times (e.g., a task too demanding for a four
year old) may make this assignment impossible or ill-defined.

For indivisible tasks, it is less obvious that one can achieve envy-freeness. This can be achieved
if one allows for the design of a mechanism that determines both an allocation and payments (to
or from the agents, to the mechanism or between themselves). We assume that an agent’s utility is
quasi-linear, i.e., equal to the payment from the mechanism from which we subtract the cost of tasks
assigned by the mechanism. In particular, assigning task j to the agent requiring minimal time for
j (maximizing social welfare) and using VCG payments makes this task assignment envy-free.

Within the range of possible envy-free allocations, one may seek out an envy-free allocation
that achieves additional goals, such as economic efficiency, revenue maximization and incentive
compatibility.1

Hartline et al. studied the additional goal of makespan minimization. In particular, they seek
envy-free mechanisms for scheduling (indivisible) tasks on unrelated machines (agents) that approx-
imately minimize the makespan. Consider an instance of indivisible task scheduling for m agents
(without envy-free requirements), and without loss of generality assume that the assignment of
minimal makespan has makespan 1. Hartline et al. show that there is no envy-free mechanism that
guarantees a makespan less than 2 − 1/m. They also give an algorithm that always produces a
schedule with makespan at most (m+ 1)/2.

Hartline et al. also define locally efficient allocations, and prove that this is a necessary and
sufficient condition that such an allocation has associated payments that make it envy-free. (The
locally efficient condition is more general than the context of task scheduling).

The above setting of job scheduling on unrelated machines has been first proposed by Nisan
and Ronen [22] in their seminal paper on incentive compatible mechanisms. Nisan and Ronen were
not concerned with the fairness of the allocation, rather they looked for an incentive compatible
mechanism that approximates the minimal makespan. The problem posed by Nisan and Ronen
has led to a great deal of work [18, 8, 17, 1], yet the main question is still open. For the general
case, all that known is a lower bound of 2.61 and an upper bound of m (similar to the gap
obtained by Hartline et al. for envy-free mechanisms)2. For divisible tasks, Christodoulou et al. [7]
demonstrated an upper bound of 1 + (m− 1)/2 and a lower bound of 2− 1/m (while for the class
of “task independent” algorithms, the bound of 1 + (m− 1)/2 holds as a lower bound as well).

1.1 Our Contributions

• We give an envy-free mechanism for scheduling indivisible tasks onm unrelated machines, that
approximates the minimal makespan to within a factor of O(logm), improving the (m+1)/2
of [15]. Our mechanism is polynomial time. (Section 3)

• We give a lower bound of Ω(logm/ log logm) on the makespan approximation of any envy-
free indivisible tasks scheduling mechanism, polynomial time, or not. This improves on the
previous 2− 1/m of [15]. (Section 4)

1 Several papers consider envy-free item pricing (in various scenarios) with the goal of maximizing revenue [14, 6,
5, 2], hardness results for revenue maximization envy-free item pricing appear in [9].

2The bounds given above hold for deterministic mechanism, but randomization can reduce the approximation
ratio. In particular, Mualem and Schapira [21] advocated a randomized truthful mechanism with an upper bound of
7m/8 and showed a lower bound of 2− 1/m for randomized mechanisms.
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• For machine scheduling with divisible tasks, we show that there always exists an envy-free
polynomial-time mechanism with optimal makespan (Section 5).

2 Preliminaries

In the scheduling notation of [13], the input to the problem (R||Cmax) is defined as follows: there
are m machines, n tasks, and a matrix (cij)1≤i≤m,1≤j≤n such that cij is the time (load or cost) of
running task j on machine i.

Machine scheduling can have either divisible or indivisible tasks. An assignment of tasks to
machines is specified by an m × n matrix a = (aij), where aij is the fraction of job j assigned to
machine i. A valid assignment must have

∑

j∈[m] aij = 1 for all jobs i ∈ [n]. If tasks are divisible
then 0 ≤ aij ≤ 1, for indivisible tasks aij ∈ {0, 1}.

Let c̄i = (ci1, . . . , cin) be the i’th row of the cost matrix c = (cij) and let āi be the i’th row of
the assignment matrix a = (aij). The load (cost) of machine i under assignment (aij) is the inner
product c̄i · āi =

∑n
j=1 cijaij . The makespan of the assignment matrix a is max1≤i≤m c̄i · āi.

The problem of finding an assignment with a minimum makespan can be formulated as an
integer program (IP) for indivisible jobs (aij ∈ {0, 1}) and as a linear program (LP) for divisible
jobs (0 ≤ aij ≤ 1). Lenstra, Shmoys and Tardos ([19]) give a polynomial time 2-approximation
algorithm for scheduling indivisible tasks, and an inapproximability result, stating that unless
P = NP , for ρ < 3/2 there is no polynomial time ρ-approximation algorithm for minimizing
makespan of indivisible tasks.

Following [22, 15], we consider the setting where themmachines are selfish agents. An allocation
function a maps the cost matrix c = (cij) into an m × n assignment matrix a(c) = (aij). Let c̄i
and ā(c)i be the i’th row of row the matrices c and a(c), respectively. A payment function p is a
mapping from the m× n cost matrix c to a real vector p(c) = (p1, p2, . . . , pm), pi ∈ ℜ. Let p(c)i be
the i’th coordinate of p(c).

A mechanism is a pair of functions, M =< a, p >, where a is an allocation function, and p is
a payment function. For mechanism < a, p > with cost matrix c = (cij), the utility to agent i is
p(c)i − c̄i · ā(c)i. Such a utility function is known as quasi-linear.

A mechanism < a, p > is envy-free if no agent seeks to switch her allocation and payment with
another. I.e., if for all 1 ≤ i, j ≤ m and all cost matrices c:

p(c)i − c̄i · ā(c)i ≥ p(c)j − c̄i · ā(c)j .

Based on [15], we say that an allocation function a is envy-free implementable (EF -implementable)
if there exists a payment function p such that the mechanism M =< a, p > is envy-free.
Characterization

We make use of the following definition and theorem from Hartline et al. [15]:
An allocation function a is said to be locally efficient if for all cost matrices c and all permuta-

tions π of 1, . . . ,m,
m
∑

i=1

c̄i · ā(c)i ≤
m
∑

i=1

c̄i · ā(c)π(i).

Theorem 2.1. ([15]) A necessary and sufficient condition for an allocation function a to be EF -
implementable is that assignment a is locally efficient.
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3 An Upper Bound for Indivisible Jobs

In this section we present a polynomial algorithm that produces a locally efficient, and hence,
envy-free allocation of indivisible jobs whose makespan is at most O(logm) times the optimal
makespan without envy-freeness constraints. In particular, our algorithm approximates the mini-
mum makespan with envy-freeness constraints to within a factor of O(logm).

To simplify the description we assume that the algorithm starts with an allocation OPT that
minimizes the makespan. If we were to start with an α approximation to the minimal makespan,
([19]), the final approximation would be 2α · e(lnm + 1) = O(logm). The allocation, which we
start with, fixes a partition of the jobs into bundles3 B = {b1, . . . , bm} where bi is the set of jobs
running on machine i. In addition to set notation (ai is a set of tasks) we use vector notation (āi
is a 0/1 vector of length n, the j’th coordinate of which is one iff task j belongs to ai).

We use OPT to denote both the allocation and its makespan when no confusion can arise. For
set of bundles D = {dj}

k
j=1, k ≤ m, we denote by LE(D) a locally efficient assignment of D (this

is an assignment of bundles to machines, no more than one bundle per machine, such that the sum
of the loads is minimized).

The algorithm works in phases. We start each phase with a subset of the bundles that have
not been assigned to machines yet. We compute a locally efficient assignment of these bundles.
Then if this locally efficient assignment contains a machine with load larger than 2OPT we discard
all bundles assigned to such machines (these bundles will be considered again only in the next
iteration), and repeat the process with the remaining bundles until the makespan of the locally
efficient allocation is at most 2OPT. Thus, each phase produces an assignment of some subset of
the bundles. The final assignment is the union of the assignments obtained in the different phases.
Specifically, we assign to each machine the union of the bundles assigned to it in the different
phases. See Algorithm Find-Approx.

We now prove the following theorem.

Theorem 3.1. The allocation computed in Algorithm Find-Approx is locally efficient and its
makespan is O(logm ·OPT).

The following lemma shows that in each phase the number of bundles which we discard is at
most half the number of bundles we start out with.

Lemma 3.2. During a phase of Algorithm Find-Approx (lines 5-20) that starts with k bundles,
no more than k/2 bundles are discarded.

Proof. Consider the set of bundles Bactive = {bi1 , · · · , bik}, k = |Bactive|, at the beginning of a
phase. Let ai be the bundle assigned to machine i by the locally efficient assignment LE(Bactive).
It follows that

m
∑

i=1

c̄i · āi ≤
k

∑

j=1

c̄ij · b̄ij ≤ k ·OPT .

Every time we throw out bundles in the inner loop (lines 8-16 of Algorithm Find-Approx ) and
recompute the assignment of the remaining bundles

∑

i c̄i · āi decreases by at least 2 ·OPT. Since
∑

i c̄i · āi never increases during a phase, the inner loop can repeat at most k·OPT
2·OPT = k

2 times,

implying that at most k
2 bundles can join the set Bout.

3In this paper, bundles consist of jobs or other objects, and do not include payments which are dealt with
separately.
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Algorithm 1 Compute Envy-Free (O(logm))-Approximation

1: procedure Find-Approx(B, c) ⊲ B – set of OPT bundles, c – cost matrix
2: q ← 0
3: Bout ← ∅
4: Bactive ← B
5: while Bactive 6= ∅ do
6: q ← q + 1
7: a← LE(Bactive)
8: while makespan(a) > 2 ·OPT do
9: for all i do

10: if c̄i · āi > 2 ·OPT then
11: Bout ← Bout ∪ ai
12: Bactive ← Bactive \ ai
13: end if
14: end for
15: a← LE(Bactive)
16: end while
17: aq ← a
18: Bactive ← Bout

19: Bout ← ∅
20: end while
21: ai = ∪

q
j=1a

j
i

22: return a
23: end procedure

The following lemma follows directly from Lemma 3.2.

Lemma 3.3. When Algorithm Find-Approx terminates q ≤ logm+ 1.

It follows from the definition of the algorithm that the makespan of the assignment aj produced
by phase j is at most 2OPT. The final assignment assigns to each machine the union of the bundles
assigned to it by the different phases. Since we have at most logm+ 1 phases we obtain that the
makespan of the final assignment is O(logm ·OPT). To finish the proof of Theorem 3.1 we have to
show that the assignment which we produce is locally efficient. This follows from a more general
observation that any union of locally efficient assignments is locally efficient as established by the
following lemma.

Lemma 3.4. Let c be a cost matrix, and let b and b′ be two assignments of different sets of jobs
to the same set of machines. Let a be the assignment such that for every i, ai = bi ∪ b′i. If b and
b′ are locally efficient then so is a.

Proof. Assume that a is not locally efficient then there is a permutation π of 1, 2, . . . ,m such that
∑

c̄i ·āπ(i) <
∑

c̄i ·āi. By the definition of a, this implies that
∑

(c̄i ·b̄π(i)+c̄i ·b̄′π(i)) <
∑

(c̄i ·b̄i+c̄i ·b̄′i)
and, therefore, either

∑

c̄i · b̄π(i) <
∑

c̄i · b̄i or
∑

c̄i · b̄′π(i) <
∑

c̄i · b̄′i, which either contradicts the
assumption that b is locally efficient or contradicts the assumption that b′ is locally efficient.
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Remark1: We can replace the constant 2 in lines 8 and 10 of Algorithm Find-Approx by the
constant e. Then the number of iterations is at most lnm and the makespan would be at most
e(lnm+ 1). Note that e lnm < 2 log2 m.

Remark2: In order to get polynomial running time for Algorithm Find-Approx we can start
with any constant approximation to makespan. Locally efficient assignment given bundles can be
calculated using weighted matching in polynomial time.

4 A Lower Bound for Indivisible Jobs

We give a lower bound of Ω(logm/ log logm) on the makespan approximation achievable by any
locally efficient allocation of indivisible jobs.

Let n be the number of jobs. For every n we define the cost matrix c = (cij) with m = n + ℓ
machines where 2ℓ = log n/(4 log log n) as follows.

c =











































1 ∞ ∞ ∞ . . . ∞ ∞
1− 1

2(n−1) 1 ∞ ∞ . . . ∞ ∞

1− 2
2(n−1) 1− 1

2(n−2) 1 ∞ . . . ∞ ∞

1− 3
2(n−1) 1− 2

2(n−2) 1− 1
2(n−3) 1 . . . ∞ ∞

...
...

...
...

1/2 + 1
2(n−1) 1/2 + 1

2(n−2) 1/2 + 1
2(n−3) 1/2 + 1

2(n−4) . . . 1 ∞

1/2 1/2 1/2 1/2 . . . 1/2 1
2 2 2 2 . . . 2 2
4 4 4 4 . . . 4 4
...

...
...

...
2ℓ 2ℓ 2ℓ 2ℓ . . . 2ℓ 2ℓ











































Row i, 1 ≤ i ≤ n+ ℓ, of the cost matrix c corresponds to the ith machine and cij is the cost of
running job j on machine i. The horizontal line lies between machine n and n+ 1. For 1 ≤ i ≤ n,
machine i has cost 1 for job i, costs 1 − (i − j)/(2(n − j)) for jobs j < i, and cost of ∞ for the
rest of jobs (j > i). For n + 1 ≤ i ≤ n + ℓ, all costs of machine i are equal to 2i. Observe that
cij − ci+1,j = 1/(2(n − j)) for 1 ≤ i < n and j ≤ i.

The optimal makespan of all these matrices is 1. We can achieve makespan 1 by running job i
on machine i for every 1 ≤ i ≤ n, and we cannot do better since job n has load ≥ 1 on all machines.

We establish a lower bound of 2ℓ = log n/(4 log log n) on the makespan of any envy-free allo-
cation for this instance. This shows that we cannot have an algorithm that always produces an
envy-free allocation whose makespan approximates the optimal makespan to within a factor smaller
than log n/(4 log log n).

Specifically, we show that for any partition of the jobs into ≤ n+ ℓ bundles, any locally efficient
assignment of these bundles to the machines has makespan at least 2ℓ. Our first lemma makes few
easy observations regarding allocations with makespan < 2ℓ.

Lemma 4.1. For cost matrix (cij) above, any allocation with makespan < 2ℓ satisfies the following.

1. There are fewer than 2ℓ+1 jobs on each machine.

2. There are fewer than 2ℓ/2(i−n) jobs on machine n < i ≤ n+ ℓ.
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3. There are fewer than 2ℓ jobs running on machines n+ 1, . . . , n+ ℓ.

Proof. (1) follows since cij ≥ 1/2 for all i and j. (2) follows since for n < i ≤ n+ ℓ, cij ≥ 2i−n. (3)
follows by summing the upper bound on the number of jobs on each of these machines, this sum is

≤
∑(n+ℓ)

i=n+1(2
ℓ/2(i−n) − 1) = 2ℓ − ℓ < 2ℓ.

We can now conclude with the proof of the lower bound:

Theorem 4.2. For any partition of jobs into bundles, the makespan of any locally efficient assign-
ment of the bundles is at least 2ℓ = log n/(4 log log n).

Proof. Fix an arbitrary partition into bundles and suppose that there is an envy-free assignment
of the bundles with makespan < 2ℓ. We will derive a contradiction by showing that the assignment
is not locally efficient.

Since the makespan is < 2ℓ no bundle is assigned to machine n+ℓ. So we derive the contradiction
by showing that if we move the bundle assigned to machine i to machine i+1 for 1 ≤ i < n+ ℓ we
decrease the total load.

By Lemma 4.1(1), there are ≤ 2ℓ+1 − 1 jobs in the bundle assigned to machine n. So moving
this bundle to machine n+ 1 increases the load of this bundle by at most 3/2 · 2ℓ+1.

Since ci+1,j = 2cij for n+ 1 ≤ i < n+ ℓ and all j, moving a bundle from machine i to machine
i + 1 for n + 1 ≤ i < n + ℓ increases the load of this bundle exactly by a factor of 2. Since the
load on each of these machines is < 2ℓ, the total increase in load caused by moving each of these
bundles one machine down is < ℓ · 2ℓ.

Summing up we obtain that the increase in the load due to moving bundles on machines
n, . . . , n + ℓ is at most (3/2)2ℓ+1 + ℓ2ℓ = (ℓ+ 3)2ℓ. Substituting 2ℓ = log n/(4 log log n) we obtain
that this increase for large n is smaller than log n/4 which is smaller than, say, lnn/2.5.

By Lemma 4.1(3), at most 2ℓ jobs are in bundles assigned to machine n + 1, . . . , n + ℓ and,
by Lemma 4.1(1), at most 2ℓ+1 jobs are in the bundle assigned to machine n. Therefore, at least
n− 3 · 2ℓ jobs are in bundles assigned to machines 1, . . . , n − 1. If job j is in one of these bundles
then after we move these bundles the contribution of job j to the load decreases by 1/(2(n − j)).
So the total decrease in load due to moving bundles assigned to machines 1, . . . , n − 1 is at least
(1/2)(Hn −H3·2ℓ) ≈ (1/2)(ln n− ln(3 · 2ℓ)) ≥ (1/2 − ǫ) lnn for large enough n.

Since the decrease in the load caused by moving bundles on machines 1, . . . , n − 1 is larger
than the increase in the load caused by moving bundles on machines n, . . . , n + ℓ we obtain a
contradiction.

Since m = n+ ℓ = O(n), we get that it is Ω(logm/ log logm) approximation.

5 Unrelated Machine Scheduling with Divisible Jobs

The existence of an envy-free assignment for divisible tasks is trivial, even without payments. For
example, simply assigning each machine a 1/m fraction of every job is trivially envy-free. However,
it is certainly not optimal with respect to makespan minimization. In the previous section we
showed a lower bound of Ω(logm/ log logm) for indivisible tasks.

In this section we prove that when tasks are divisible, there always exists an envy-free allocation
that achieves the minimum makespan. To find such an allocation: solve the linear program that
minimizes makespan subject to the constraints of a valid assignment including envy-free constraints.
The main issue is to prove that this LP formulation has a solution.

6



Theorem 5.1. For any instance of machine scheduling with divisible jobs, there is a locally efficient
assignment with minimum makespan.

Consider an instance of the machine scheduling problem, specified by the cost matrix c = (cij).
We use the notation c̄i for the i’th row of the cost matrix. As we deal with indivisible assignments,
bundles are sets of fractions of tasks. An assignment itself is represented as a real valued matrix,
(aij), where aij is the fraction of task j assigned to machine i. We use the terminology of sets (ai
is the set of fractional tasks assigned to agent i) as well as vector notation (āi is the i’th row of this
assignment matrix (aij)).

Warm up (two machines with finite valuations): Consider an instance with two machines
i ∈ [2] such that all entries in c are finite. We show that any assignment with minimum makespan
must be locally efficient. Let o be an optimal assignment and assume on the contrary that o is
not locally efficient. Without loss of generality, we can assume that the makespan of o is 1 and
both machines have the same load c̄1 · ō1 = c̄2 · ō2 = 1, where oi is the bundle assigned to machine
i (i ∈ [2]). (Otherwise, we can transfer (fractional) jobs from the machine with load 1 to the
other machine and get an assignment a with a strictly lower makespan than o, which contradicts
optimality of o.)

Consider a locally efficient solution e with bundles o1 and o2. Since o 6= e, e1 = o2 and e2 = o1.
The sum of the loads under e must be strictly smaller than 2, which is the sum of the loads under
o (this is because o is not locally efficient). The makespan of e must be at least 1 (otherwise, e
has smaller makespan than o which contradicts optimality). Therefore, under e, exactly one of
the machines must have load strictly smaller than 1. Without loss of generality, we assume it is
machine 1 and let c̄2 · ē2 = c̄2 · ō1 = 1 + x and c̄1 · ē1 = c̄1 · ō2 = 1− y, where x ≥ 0 and 0 ≤ y ≤ 1.
The sum of the loads under e is 1 + x+ 1− y < 2. Hence, y > x.

We now construct a new assignment a such that ā1 = ō2 + (y − ǫ)ō1 and ā2 = (1 − y +
ǫ)ō1. It is easy to see that a is well defined for any 0 < ǫ < y. We show that a has makespan
max{c̄1 · ā1, c̄2 · ā2} < 1, which contradicts optimality of o. Using ǫ = (y− x)/2, the load of a on
machine 1 is c̄1 · ā1 = (1− y)+ (y− ǫ) = 1− ǫ < 1 and on machine 2 is c̄2 · ā2 = (1− y+ ǫ)(1+x) =
1− y + x− yx+ ǫ+ ǫx ≤ 1− (y − x) + ǫ(1 + x) < 1− (y − x) + 2ǫ = 1.

General instance: Consider a cost matrix c = (cij) of the machine scheduling problem with m ≥ 2
machines which may include +∞ entries. We first define a lexicographic order on assignments.

Definition 5.2. A vector (l1, . . . , lm) is smaller than (l′1, . . . , l
′
m) lexicographically if for some i,

li < l′i and lk = l′k for all k < i. An assignment a is smaller than a′ lexicographically if the vector of
machine loads l(a) = (l1(a), . . . , lm(a)), sorted in non-increasing order, is lexicographically smaller
than l(a′), sorted in non increasing order.

Clearly, every lexicographically minimal assignment has minimum makespan. When all entries
are finite, any assignment with minimum makespan has equal loads on all machines and therefore
minimum makespan implies a lexicographically minimal assignment.4 In either case (with all entries
finite or not), there exists some lexicographically minimal schedule with minimal makespan. In
order to prove Theorem 5.1, it suffices for us to prove that a lexicographically minimal schedule is
also locally efficient.

4To see this, suppose on the contrary that this is not the case. Consider an assignment with minimum makespan.
Let M′ ⊂ [m] be machines with load strictly lower than the makespan. We can transfer (fractional) jobs from [m]\M′

machines to M′ machines and obtain an assignment with strictly lower makespan, which contradicts optimality.
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Lemma 5.3. Every lexicographically minimal assignment is locally efficient.

Proof. Assume on the contrary that o is a lexicographically minimal assignment that is not locally
efficient and let e be a locally efficient assignment of the bundles of o. Consider a directed graph G
between machines where arcs correspond to a reassignment of bundles between o and e. We also
include empty bundles and hence this reassignment is a permutation. Each machine has either no
incoming and outgoing arcs or exactly one incoming and exactly one outgoing arc. The graph G is
therefore a collection of singletons and cycles.

Since e 6= o, and there are no paths, G must contain a cycle. Moreover, because e is locally
efficient and o is not, G must contain a cycle X such that

∑

i∈X

c̄i · ōi >
∑

i∈X

c̄i · ēi . (1)

Consider such a cycle X with |X| = k ≥ 2 nodes (machines). We (re-)number machines such that
machines along the cycle are indexed [0, . . . , k − 1] in cyclic order. We also accordingly renumber
bundles such that the bundles of machine i are oi, ei. By definition, ei+1 = oi (all addition operations
through this section are modulo k).

We claim that all machines on the cycle X must be equally loaded under o, that is, c̄i · ōi are
equal for 0 ≤ i ≤ k− 1.5 Assume on the contrary that there are two consecutive machines on X, i
and i+1, such that c̄i · ōi > c̄i+1 · ōi+1. We construct an assignment a from o by shifting a fraction
f of the bundle oi from machine i to machine i+1 such that both machines have equal loads, that
is, f such that (1− f)c̄i · ōi = c̄i+1 · (ōi+1 + f ōi) or explicitly f = c̄i·ōi−c̄i+1·ōi+1

(c̄i+c̄i+1)·ōi
. Since ei+1 = oi and

c̄i+1 · ēi+1 < ∞, c̄i+1 · ōi < ∞ and therefore f > 0. The assignment a is strictly lexicographically
smaller than o, which is a contradiction.

By scaling, we can assume that c̄i · ōi = 1 for all 0 ≤ i ≤ k − 1. Let c̄i+1 · ēi+1 = 1 +∆i be the
load of machine i+ 1 under e (∆i ≥ −1.) From (1),

k−1
∑

i=0

∆i < 0 . (2)

We conclude the proof by constructing an assignment a that is identical to o outside the cycle,
has

∑k−1
i=0 āi =

∑k−1
i=0 ōi, that is, same total allocation as o on cycle machines, has load c̄i · āi = 1

on machines i = 1, . . . , k − 1 and load c̄0 · ā0 < 1 on machine 0. The assignment a is strictly
lexicographically smaller than o, which contradicts the assumption that o is the lexicographically
minimum.

The assignment a is such that for i = 0, . . . , k − 1, an 0 ≤ αi ≤ 1 fraction of oi is assigned to
machine i and the remaining (1− αi) is assigned to machine i+ 1. Define

µ = max{1, max
i=0...k−1

i
∏

j=0

(1 + ∆i)} , (3)

α0 = 1− 1
2µ , and for i = 1, . . . , k − 1:

(1− αi) = (1− αi−1)(1 + ∆i−1) . (4)

5This is immediate if there are no +∞ entries in v.
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It follows that for i = 1, . . . , k − 1,

(1− αi) = (1− α0)

i−1
∏

j=0

(1 + ∆j) . (5)

We show that all αi are well defined (are in [0, 1]): Since ∞ > µ ≥ 1, α0 ∈ [1/2, 1). For
i = 1, . . . , k − 1, using (5) and (3)

(1− αi) =
1

2µ

i−1
∏

j=0

(1 + ∆j) ≤
1

2
< 1 . (6)

As a product of positive quantities, (1− αi) ≥ 0.
The load ai takes on machine i (i = 1, . . . , k − 1) is (using (4)):

c̄i · āi = αi + (1 + ∆i−1)(1 − αi−1) = αi + (1− αi) = 1 . (7)

The load a0 takes on machine 0 is (using (5)):

c̄0 · ā0 = α0 + (1 + ∆k−1)(1− αk−1) = α0 + (1− α0)
k−1
∏

j=0

(1 + ∆j) < α0 + (1− α0) = 1 . (8)

The strict inequality follows from (1−α0) = 1/(2µ) > 0 and from
∏k−1

j=0(1+∆j) < 1 (which follows
from (2)).

6 Summary and Open Problems

Table 1 summarizes upper and lower bounds on the ratio of the optimal makespan of machine
scheduling with envy-freeness constraints and the optimal makespan without envy-freeness con-
straints. The upper bounds correspond to polynomial time algorithms. An obvious challenge is to
close the gap between the upper and lower bounds for indivisible tasks.

Lower bound Upper bound
(Divisible+EF)/Divisible 1 1 (Thm. 5.1)

(Indivisible+EF)/Indivisible Ω( logm

log logm
) (Thm. 4.2) O(logm) (Thm. 3.1)

Table 1: Summary of our results on the cost of envy-freeness. The rows correspond to divisible or
indivisible tasks. The columns correspond to upper bounds on the ratio and lower bounds on the
worst-case ratio. The number of machines is m.

An intriguing issue is to understand the interaction of envy-freeness and incentive compatibility.
What can we say about the makespan approximation for mechanisms that are both envy-free and
incentive compatible? Clearly, any o(m) approximation that is both incentive compatible and envy-
free would be a major breakthrough, even without envy-freeness. Recently, Ashlagi, Dobzinski,
and Lavi [1] gave a lower bound of Ω(m) on makespan approximation for incentive compatible
and anonymous mechanisms. What if we discard the anonymous assumption but require that the
mechanism also be envy-free?
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Minimum makespan machine scheduling is classically formulated as a linear program (for di-
visible jobs) or an integer program (for indivisible jobs), both with the same set of linear con-
straints. The requirement of envy-freeness can be captured by adding payment variables (that
are not required to be integral) as additional linear constraints. Accordingly, for a cost matrix
(cij), we denote the optimal makespan with or without integrality or envy-freeness by TLP(cij),
TIP(cij), TLP+EF(cij), and TIP+EF(cij). Using this notation, Table 1 lists bounds on the ratios
TIP+EF(cij)/TIP(cij) (indivisible) and TLP+EF(cij)/TLP(cij) (divisible).

Starting with divisible tasks without envy-freeness constraints (TLP(cij)) we consider the impact
on the optimal makespan of integrality and envy-freeness. Envy-freeness requirement alone does
not result in an increase of the optimal makespan (Thm. 5.1). There are instances (the instances
in our lower bound construction in Thm. 4.2) where the integrality requirement (indivisible tasks)
results in at most a factor 2 increase while, curiously, the combination of both requirements results
in Ω(logm/ log logm) factor increase.

Considering the approximability of the optimal makespan under the different types of con-
straints, TLP and TLP+EF are linear programs and hence solvable in polynomial time and TIP has
a 2 approximation algorithm and an inapproximability result of 1.5 [19].

As for TIP+EF, we provided an O(logm) approximation algorithm and we know the problem
is NP-hard because integral machine scheduling with identical machines is known to be NP-hard
(Garey & Johnson, reduction to partition) and any assignment on identical machines is trivially
locally efficient and hence EF. This leaves a wide gap as for the (in)approximability of TIP+EF.
Closing this gap seems challenging:

• A 2-approximation algorithm for TIP(cij) was constructed using the relation to TLP(cij) [19].
This approximation algorithm is based on taking a fractional schedule a and rounding it to
an integral one with a makespan larger by at most an additive term of maxi,j|aij>0 cij over
that of a, where cij is the time required by machine i to run job j. This approach does not
immediately carry over, when starting from a fractional envy-free schedule, because the EF
constraints might be violated when rounding.

• The inapproximability result of 1.5 for TIP(cij) [19] was for makespan minimization. However,
the instance used is in fact envy-free. Thus, [19] further implies that one cannot approximate
the minimal makespan and envy-free assignment to within a factor of 1.5 in polynomial time.

• Lastly, our lower bound on the ratio TIP+EF(cij)/TIP(cij) precludes obtaining a tighter
approximation using a better rearrangement of the bundles of a solution to TIP(M) to achieve
envy-freeness.

References

[1] Itai Ashlagi, Shahar Dobzinski, and Ron Lavi. An optimal lower bound for anonymous schedul-
ing mechanisms. In Proceedings of the ACM Conference on Electronic Commerce, 2009.

[2] Nikhil Bansal, Ning Chen, Neva Cherniavsky, Atri Rudra, Baruch Schieber, and Maxim Sviri-
denko. Dynamic pricing for impatient bidders. In Bansal et al. [3], pages 726–735.

[3] Nikhil Bansal, Kirk Pruhs, and Clifford Stein, editors. Proceedings of the Eighteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, New Orleans, Louisiana, USA,
January 7-9, 2007. SIAM, 2007.

10



[4] S. J. Brams and A. D. Taylor. Fair Division: From Cake-Cutting to Dispute Resolution.
Cambridge University Press, 1996.

[5] Patrick Briest. Uniform budgets and the envy-free pricing problem. In Luca Aceto, Ivan
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