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LU FACTORIZATION WITH PANEL RANK REVEALING
PIVOTING AND ITS COMMUNICATION AVOIDING VERSION*

AMAL KHABOU't, JAMES W. DEMMEL*}, LAURA GRIGORI!, AND MING GUY

Abstract. We present block LU factorization with panel rank revealing pivoting (block
LU_PRRP), a decomposition algorithm based on strong rank revealing QR panel factorization. Block
LU_PRRP is more stable than Gaussian elimination with partial pivoting (GEPP), with a theoretical
upper bound of the growth factor of (1 + Tb)(”/b)_l, where b is the size of the panel used during
the block factorization, 7 is a parameter of the strong rank revealing QR factorization, n is the
number of columns of the matrix, and for simplicity we assume that n is a multiple of b. We also
assume throughout the paper that 2 < b < n. For example, if the size of the panel is b = 64, and
7 =2, then (1 + 2b)("/b)_1 = (1.079)"~%% <« 27~1 where 2! is the upper bound of the growth
factor of GEPP. Our extensive numerical experiments show that the new factorization scheme is as
numerically stable as GEPP in practice, but it is more resistant to pathological cases. The block
LU_PRRP factorization does only O(n?b) additional floating point operations compared to GEPP.
We also present block CALU_PRRP, a version of block LU_.PRRP that minimizes communication
and is based on tournament pivoting, with the selection of the pivots at each step of the tournament
being performed via strong rank revealing QR factorization. Block CALU_PRRP is more stable than
CALU, the communication avoiding version of GEPP, with a theoretical upper bound of the growth
factor of (1 + Tb)%(lﬂ'l)_l, where H is the height of the reduction tree used during tournament
pivoting. The upper bound of the growth factor of CALU is 2*(H+1 =1 Block CALU_PRRP is also
more stable in practice and is resistant to pathological cases on which GEPP and CALU fail.

Key words. LU factorization, pivoting, growth factor, numerical stability, communication
avoiding, strong rank revealing QR factorization
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1. Introduction. The LU factorization is an important operation in numerical
linear algebra since it is widely used for solving linear systems of equations or com-
puting the determinant of a matrix, or as a building block of other operations. It
consists of the decomposition of a matrix A into the product A = IILU, where L is a
lower triangular matrix, U is an upper triangular matrix, and II a permutation ma-
trix. The performance of the LU decomposition is critical for many applications, and
it has received significant attention over the years. Recently, large efforts have been
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invested in optimizing this linear algebra kernel, in terms of both numerical stability
and performance on emerging parallel architectures.

The LU decomposition can be computed using Gaussian elimination with partial
pivoting, a very stable operation in practice, except for pathological cases such as the
Wilkinson matrix [22, 17], the Foster matrix [8], or the Wright matrix [24]. Many
papers [21, 19, 20] discuss the stability of the Gaussian elimination, and it is known
[17, 10, 9] that the pivoting strategy used, such as complete pivoting, partial pivoting,
or rook pivoting, has an important impact on the numerical stability of this method,
which depends on a quantity referred to as the growth factor. However, in terms
of performance, these pivoting strategies represent a limitation, since they require
asympotically more communication than established lower bounds on communication
indicate is necessary [4, 1].

Technological trends show that computing floating point operations is becoming
exponentially faster than moving data from the memory where they are stored to
the place where the computation occurs. Due to this, the communication becomes in
many cases a dominant factor of the runtime of an algorithm, that leads to a loss of
its efficiency. This is a problem for both a sequential algorithm, where data needs to
be moved between different levels of the memory hierarchy, and a parallel algorithm,
where data needs to be communicated between processors. This challenging problem
has prompted research on algorithms that reduce the communication to a minimum,
while being numerically as stable as classic algorithms, and without increasing signif-
icantly the number of floating point operations performed [4, 11]. We refer to these
algorithms as communication avoiding. One of the first such algorithms is the com-
munication avoiding LU factorization (CALU) [11, 12]. This algorithm is optimal in
terms of communication, that is, it performs at most polylogarithmic factors more
than the theoretical lower bounds on communication require [4, 1]. Thus, it brings
considerable improvements to the performance of the LU factorization compared with
the classic routines that perform the LU decomposition such as the PDGETRF rou-
tine of ScaLAPACK [2], thanks to a novel pivoting strategy referred to as tournament
pivoting. It was shown that CALU is faster in practice than the corresponding routine
PDGETRF implemented in libraries as ScaLAPACK or vendor libraries, on both dis-
tributed [11] and shared memory computers [6]. While in practice CALU is as stable
as Gaussian elimination with partial pivoting (GEPP), in theory the upper bound of
its growth factor is worse than that obtained with GEPP. One of our goals is to design
an algorithm that minimizes communication and that has a smaller upper bound of
its growth factor than CALU.

In the first part of this paper we present the block LU_PRRP factorization, a
novel LU decomposition algorithm based on what we call panel rank revealing pivoting
(PRRP). The block LU_.PRRP factorization is based on an algorithm that computes
the LU decomposition as follows. At each step of the block factorization, a block
of columns (panel) is factored by computing the strong rank revealing QR (RRQR)
factorization [13] of its transpose. The permutation returned by the panel rank re-
vealing factorization is applied to the rows of the input matrix, and the block L factor
of the panel is computed based on the R factor of the strong RRQR factorization.
Then the trailing matrix is updated. The factors obtained from this decomposition
can be stored in place, and so block LU_PRRP has the same memory requirements
as standard LU and can easily replace it in any application.

We show that block LU_.PRRP is more stable than GEPP. Its growth factor is
bounded by (1 4 7b)*/~1 where b is the size of the panel used during the block
factorization, 7 is a parameter of the strong rank revealing QR factorization, n is the
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number of columns of the matrix, and for simplicity we assume that n is a multiple
of b. We also assume throughout the paper that 2 < b < n. The previous bound is
smaller than 2”1, the upper bound of the growth factor for GEPP. For example, if the
size of the panel is b = 64 and 7 = 2, then (1 + 2b)("/»~1 = (1.079)"~%* <« 2"~1. In
terms of cost, block LU_PRRP performs only O(n?b) more floating point operations
than GEPP. In addition, our extensive numerical experiments on random matrices
and on a set of special matrices show that the block LU_.PRRP factorization is very
stable in practice and leads to modest growth factors, smaller than those obtained
with GEPP. It also easily solves pathological cases, such as the Wilkinson matrix and
the Foster matrix, on which GEPP fails. While the Wilkinson matrix is a matrix
constructed such that GEPP has an exponential growth factor, the Foster matrix [9]
arises from a real application.

In the second part of the paper we introduce the block CALU_PRRP factorization,
the communication avoiding version of block LU_PRRP. It is based on tournament
pivoting, a strategy introduced in [12] in the context of CALU, a communication
avoiding version of GEPP. With tournament pivoting, the panel factorization is per-
formed in two steps. The first step selects b pivot rows from the entire panel at a
minimum communication cost. For this, sets of b candidate rows are selected from
blocks of the panel, which are then combined together through a reduction-like pro-
cedure, until a set of b pivot rows are chosen. Block CALU_PRRP uses the strong
RRQR factorization to select b rows at each step of the reduction operation, while
CALU is based on GEPP. In the second step of the panel factorization, the pivot rows
are permuted to the diagonal positions, and the QR factorization with no pivoting of
the transpose of the panel is computed. Then the algorithm proceeds as the block
LU_PRRP factorization. Note that the usage of the strong RRQR factorization en-
sures that bounds are respected locally at each step of the reduction operation, but
it does not ensure that the growth factor is bounded globally as in block LU_PRRP.

This algorithm has two significant advantages over other classic factorization al-
gorithms. First, it minimizes communication up to some polylogarithmic factors, and
hence it will be more efficient than block LU_PRRP and GEPP on architectures where
communication is expensive. Second, it is more stable than CALU. Theoretically, the
upper bound of the growth factor in exact arithmetic of block CALU_PRRP is smaller
than that of CALU for a reduction tree with a same height.

Extensive experimental results show that block CALU_PRRP is as stable as block
LU_PRRP, GEPP, and CALU on random matrices and a set of special matrices. Its
growth factor is slightly smaller than that of CALU. In addition, it is also stable for
matrices on which GEPP fails.

We also discuss a different version of block LU_PRRP that minimizes communica-
tion but can be less stable than block CALU_PRRP, our method of choice for reducing
communication. In this different version, the panel factorization is performed only
once, during which its off-diagonal blocks are annihilated using a reduce-like oper-
ation, with the strong RRQR factorization being the operator used at each step of
the reduction. Independently of the shape of the reduction tree, the upper bound
of the growth factor of this method is the same as that of block LU.PRRP. This is
because at every step of the algorithm, a row of the current trailing matrix is updated
only once. We refer to the version based on a binary reduction tree as block parallel
LU_PRRP, and to the version based on a flat tree as block pairwise LU_PRRP.

The remainder of the paper is organized as follows. Section 2 presents the algebra
of the block LU_PRRP factorization, discusses its stability, and compares it with that
of GEPP. It also presents experimental results showing that block LU_PRRP is more
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stable than GEPP in terms of worst case growth factor. Section 3 presents the alge-
bra of block CALU_PRRP, a communication avoiding version of block LU_ PRRP. It
describes similarities between block CALU_PRRP and block LU_PRRP, and it dis-
cusses its stability. The communication optimality of block CALU_PRRP is shown
in section 4, where we also compare its performance model with that of the CALU
algorithm. Section 5 discusses two alternative algorithms that can also reduce com-
munication but can be less stable in practice. Section 6 concludes and presents our
future work.

2. Block LU_PRRP factorization. In this section we introduce the block
LU_PRRP factorization, a block LU decomposition based on PRRP. It is based on an
algorithm that factors at each step a block of columns (a panel), and then it updates
the trailing matrix. The main difference between block LU PRRP and GEPP resides
in the panel factorization. In GEPP the panel factorization is computed using LU
with partial pivoting, while in block LU_PRRP it is computed by performing a strong
RRQR factorization of its transpose. This leads to a different selection of pivot rows,
and the obtained R factor is used to compute the block L factor of the panel. In exact
arithmetic, block LU_PRRP performs a block LU decomposition [3] with a different
pivoting scheme, which aims at improving the numerical stability of the factorization
by bounding more efficiently the growth of the elements. We also discuss the numerical
stability of block LU_IPRRP, and we show that both in theory and in practice, block
LU_PRRP is more stable than GEPP.

2.1. The algebra. Block LU_.PRRP factors the input matrix A of size m x n
by traversing blocks of columns of size b. Consider the first step of the factorization,
with the matrix A having the following partition:

A A
2.1 A=
2.1) [Azl Azz}’

where Aj; is of size b X b, Ay is of size (m — b) X b, Ajs is of size b x (n — b), and
Agg is of size (m — b) x (n — b). The main idea of the block LU_PRRP factorization
is to eliminate the elements below the b x b diagonal block such that the multipliers
used during the update of the trailing matrix are bounded by a given threshold 7.
For this, we perform a strong RRQR factorization on the transpose of the first panel
of size m x b to identify a permutation matrix II, that is, b pivot rows,

A 1" A, 17
[A;ﬂ H:[A;] =Q[ R(1:b,1:b) R(1:0,b+1:m) |

=Q[ R R |,

where A denotes the permuted matrix A. The strong RRQR factorization ensures that
the quantity R, (R;;)” is bounded by a given threshold 7 in the max norm. The
strong RRQR factorization, as described in Algorithm 2 in Appendix A, computes
first the QR factorization with column pivoting, followed by additional swaps of the
columns of the R factor and updates of the QR factorization, so that || RT5 (RN <
7 in max norm, that is, the norm defined as ||A| = max; ; |a;;|. After the panel
factorization, the transpose of the computed permutation II; is applied to the input
matrix A, and then the trailing matrix is updated,

- I A, A I Uy, U
22) A=T7TA= b 1 Az | b n Ui
( ) 1 |: L21 Imfb :| l: A§2 L21 Imfb ASZ 5
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where
(2.3) A3y = Ay — Loy Asa.

Note that in exact arithmetic we have Ly = A9 A}y = RI,(Ri;)T. The factorization
in (2.2) is equivalent to the factorization

= Iy A Agg
I ]
! At AT Ty A3y

where the first block row of the U factor is formed by U1y = Aq1, Ura = Ao, and
(24) A52 = AQQ — Azlgl_llzzllg,

and Ag; A" was computed in a numerically stable way such that it is bounded in
max norm by 7.

The factorization then continues recursively on computing the block LU_.PRRP
factorization of A3,. Algorithm 1 shows the computation of the block LU PRRP
factorization II” A = LU of a matrix A of size n x n by using panels of size b. The
number of floating-point operations performed by Algorithm 1 is

#flops = §n3 + O(n?b),

which is only O(n?b) more floating point operations than GEPP. The detailed counts
are presented in Appendix C of [16]. When the QR factorization with column pivoting
is sufficient to obtain the desired bound for each panel factorization, and no additional
swaps are performed, the total cost is

_ 235 3
#flops-gn —|—2n b.

Block LU_PRRP has the same memory requirements as the standard LU decompo-
sition since the factors can be stored in place, and so it can easily replace it in any
application.

Once the block LU_PRRP factorization has been performed, a linear system Ax =
y can be solved by computing a forward substitution Lz = Iy, followed by a block
back substitution Uz = z. At the last step of the substitution, the computation is

Uiz = 21 — Uraa,

and similar relations hold at the previous steps. Hence the block back substitution
requires either using the QR factorization of the diagonal blocks U;; or computing their
GEPP factorization. We will discuss both possibilities in the following error analysis
section, while the numerical experiments presented later in the paper use GEPP
during the block back substitution. For simplicity, we ignore in the presentation the
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permutation produced by GEPP, and we write the factorization as U;; = Lg,,Uq,,.
We refer to the block diagonal matrix formed by the Lg,, factors (Uy,, factors) as Lq
(Ug, respectively). We note that an LU factorization with L lower unit triangular and
U upper triangular can be obtained if the LU factors of the diagonal blocks U;; are
used also to update the corresponding trailing matrices. For example, if at the first
step of the factorization, the LU factors of Uy = A1 = Lg,,Uq,, are used to update
the trailing matrix Ao, then the decomposition obtained after the elimination of the
first panel of the input matrix A is

(2.5)

A=TITA= Iy Ay {1;2 — La,, Ua,, L;lis[h?
Loy Iy 22 LoiLa,,  Im—s A3y

ALGORITHM 1. BLock LU_PRRP FACTORIZATION OF A MATRIX A OF SIZE n X n
USING A PANEL OF SIZE b.
1: Compute the strong RRQR factorization (A(1:n,1:b))T1 = Q1 R;y.
Loy = (Ry(1:b,1:5) " "Ry(1:b,b+1:n))T.
Pivot by applying the permutation matrix I17 on the entire matrix, A = 117 A.
U11 :A(lib,lib) s U12:A(1:b,b+1:n).
Update the trailing matrix,
Ab+1:nb+1:n)=Ab+1:n,b+1:n)— LaUa.
Compute recursively the block LU_.PRRP factorization of A(b+1:n,b+1:n).

2.2. Numerical stability. The stability of an LU decomposition depends on
the growth factor. In his backward error analysis [22], Wilkinson proved that the
computed solution Z of the linear system Ax = y, where A is of size n X n, obtained
by GEPP or complete pivoting satisfies

(A+AA)E =y,  [[Adlle < c(n)g(n)ul[Alloc.

Here, ¢(n) is a cubic polynomial, u is the machine precision, and g(n) is the growth
factor defined by "
k
oln) =" 2 1
where al(-f) denotes the entry in position (7, j) obtained after k steps of elimination.
Thus the growth factor measures the growth of the elements during the elimina-
tion. The LU factorization is backward stable if g(n) is small. Lemma 9.6 of [18]
(section 9.3) states a more general result, showing that the LU factorization with-
out pivoting of A is backward stable if the growth factor is small. Wilkinson [22]
showed that for partial pivoting, the growth factor g(n) < 2"~!, and this bound
is attainable. He also showed that for complete pivoting, the upper bound satisfies
g(n) < n'/2(2.3Y2 . pl/(n=D)1/2  epl/2pl/4logn Iy practice the growth factors
are much smaller than the upper bounds. These error analyses are performed for
LU factorizations that produce a lower triangular matrix L and an upper triangular
matrix U. The error analysis of a block LU factorization that produces a block lower
triangular matrix L and a block upper triangular matrix U is given in [3]. Our sta-
bility analysis of block LU_PRRP is based on the stability analysis of block LU from

[3]. We use in the following the max norm.

2.2.1. Growth factor in exact arithmetic. We derive an upper bound in
exact arithmetic of the growth factor for block LU_.PRRP factorization. We use the
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TABLE 2.1
Upper bounds of the growth factor gyiockLu_PrRP (N, b, T) obtained from factoring a matriz of
size m X n using block LU_PRRP with different panel sizes and T = 2.

b 8 16 32 64 128
g(n,b,2) | (1.42)n=8 | (1.24)716 | (1.14)»—32 | (1.08)"—64 | (1.04)n—128

same notation as in the previous section and we assume without loss of generality
that the permutation matrix is the identity. It is easy to see that the growth factor
obtained after the elimination of the first panel is bounded by 14 7b. At the kth step
of the block factorization, the active matrix A®) is of size (m— (k—1)b) x (n— (k—1)b),
and the decomposition performed at this step can be written as

k k
A A
AQl A22

k k
AjY AR

A(k) = k)s
Ay

L |
a Lgi) L k1)t

The active matrix at the (k + 1)st step is Aggﬂ) = Agg)s = Ag’;) — L§’§>A§§>. Then

max;_; |al(-7kj+1)| < max; ; |al(-7kj)|(1 + 7b) with max; ; |Lgi) (i,7)| < 7, and we have

(2.6) g+t < g (1 4 71b).

Induction on (2.6) leads to a growth factor of block LU_.PRRP performed on the n/b
panels of the matrix A that satisfies

(2.7) Gviockrv_praP(M,b,7) < (1 + 7b)/0)71

where for simplicity we assume that n is a multiple of b. The improvement of the upper
bound of the growth factor of block LU_ PRRP with respect to GEPP is illustrated
in Table 2.1, where the panel size varies from 8 to 128, and the parameter 7 is equal
to 2. For b > 64, the worst case growth factor becomes arbitrarily smaller than for
GEPP.

However, if the block backward substitution uses GEPP factorizations of the di-
agonal bx b blocks or an LU factorization is computed as in (2.5), then each additional
GEPP factorization leads to a growth factor bounded by 2°~'. The growth factor of
Ud, i+ the U factor of the last b x b diagonal block, is the product of the growth
factor of block LU_.PRRP and the growth factor generated by GEPP, and it is upper
bounded by (1 4 7b)(*/?)=1.2b=1 The upper bound of the growth factor of the pre-
vious diagonal blocks is smaller than the one of the last diagonal block. In summary,
by using the max norm, we have

IL]| < 7, |U[l < gbtockrv_prrP (1,0, T)|| A,
[ Lall < 1, |Udll < gbtockrv_prrp(n,b,7) - 2" | A]l.
The optimal block b that minimizes element growth in ||Uy]| is a rather complicated

function of n and 7. A simple but somewhat suboptimal choice is b = +/n, which
leads to

— n—1 n— nlog(Tv/n n
GutockLu_pRrEP (1,0, 7) - 2071 < (1 + T\/ﬁ)f 2vn=l = eVlos(rym)+O(Vn),

Not surprisingly, this upper bound is much better than 2"~! but much worse than
the element growth upper bound for complete pivoting.
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2.2.2. Error analysis. We consider the block LU_PRRP factorization given in
Algorithm 1 that decomposes the matrix A of size n x n as I A = LU, where L
is a block lower triangular matrix and U is a block upper triangular matrix. The
first step of the decomposition is given in (2.2). Our rounding error analysis of block
LU_PRRP uses the same model of floating point arithmetic as in [18, 3] and follows
closely the analysis of block LU provided in [3]. The difference between Algorithm
1 and block LU from [3] lies in the computation of the matrix Lo;. In block LU,
this matrix is computed by performing the GEPP factorization of A;; and then by
solving Loy A11 = Asq, while in block LU_PRRP it is computed from the strong rank
revealing factorization of [A;1; Ag1]7.

In the following formulas, ¢;(n),i = 1,...,4 denote constants depending poly-
nomially on n, and we will ignore their detailed expressions. The analysis assumes
that the computed matrix Lo, from the factorization displayed in (2.2) satisfies the
relation

(2.8) Ly1Ay = Aoy + Ez1,  ||Ear|| < er(n)u| Lo ||| A || + O(u?).

This assumption is satisfied by block LU [3] (the variant referred to as Implementation
1in [3]). Since the strong RRQR computations in Algorithm 1 are numerically stable,
Algorithm 1 satsifies this assumption as well. For the error analysis of the computed
solution & to Az = y, it is assumed in addition that for each b x b square diagonal
block U;;, the computed solution #; to U;;x; = b; satisfies

Again, this assumption is satisfied in our case when the QR factorization is used during
the block back substitution. We recall in the following the error analysis result of the
block LU factorization from [3], which applies as well to block LU_PRRP factorization
from Algorithm 1.

THEOREM 2.1 (Demmel, Higham, Schreiber [3]). Let L and U be the computed
block factors of a matriz A of size n X n obtained from Algorithm BLU in [3]. Under
assumptions (2.8) (with Aj; = A1y and Ag; = Azp) and (2.9), the factorization and
the computed solution T to Ax =y satisfy

(2.10) L0 =A+ B, B < estmyu (4] + [ENITN) +O(),

(211)  (A+AA)z=y, [AA] < eatm)u (4] + ILIITT) + O?).

This result indicates that element growth is the only factor controlling the nu-
merical stability of our algorithm. We note that if the GEPP factorization of the
diagonal blocks is used during the block back substitution, assumption (2.9) is true
if the additional growth factor generated by the GEPP factorization of the diagonal
blocks is included in ¢o(b), which is propagated later in c4(n).

2.3. Experimental results. We measure the stability of the block LU_PRRP
factorization experimentally on a large set of test matrices by using the growth fac-
tor, the normwise backward stability, and the componentwise backward stability. The
tests are performed in MATLAB. We use a collection of matrices that includes ran-
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~ Tt -
------- GEPP -

——p-a T
o e LR _

b=32 -

TE b6
—¥—p=128 -
12

(1/4n

average growth factor

| 1
1024 2048 4036 8132
matrix size

Fi1a. 2.1. Growth factor gyiocku_PRRP Of the block LU_PRRP factorization of random matrices.

dom matrices whose elements follow a normal distribution, the same set of special
matrices used in the context of CALU (Table A.6 in [12]), and several pathological
matrices on which GEPP fails because of large growth factors. For random matrices,
in MATLAB notation, the test matrix is A = randn(n, n), and the right-hand side is
b = randn(n,1). The size of the matrix is chosen such that n is a power of 2, that
is, n = 2%, and the sample size is 10 if k£ < 13 and 3 if £ > 13. The set of special
matrices includes ill-conditioned matrices as well as sparse matrices. The pathological
matrices considered are the Wilkinson matrix and two matrices arising from practical
applications, presented by Foster [8] and Wright [24], for which the growth factor of
GEPP grows exponentially. We recall that the Wilkinson matrix was constructed
to attain the upper bound of the growth factor of GEPP [22, 17]. In the tests, in
most of the cases, the panel factorization is performed by using the QR with column
pivoting factorization instead of the strong RRQR factorization. This is because in
practice RT, (R 11)T is already well bounded after performing the RRQR factorization
with column pivoting. (||RT(R1}H)” ||max is rarely bigger than 3 for random matrices.)
Hence no additional swaps are needed to ensure that the elements are well bounded.
However, for ill-conditionned special matrices (condition number > 10'4), to get small
growth factors, we perform the panel factorization by using the strong RRQR factor-
ization. In fact, for these cases, QR with column pivoting does not ensure a small
bound for the max norm of R%,(R;HT.

We also test a generalized Wilkinson matrix.

The MATLAB code of such a matrix is detailed in Appendix F of the technical
report [16].

The experimental results show that the block LU PRRP factorization is very
stable. Figure 2.1 displays the growth factor of block LU_PRRP for random matrices
(randn) of size varying from 1024 to 8192 and for sizes of the panel varying from 8
to 128. We observe that the smaller the size of the panel is, the bigger the element
growth is. In fact, for a smaller size of the panel, the number of panels and the
number of updates on the trailing matrix is bigger, and this leads to a larger growth
factor. But for all panel sizes, the growth factor of block LU_PRRP is smaller than
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ratio of LU-PRRP to GEPP

0ot

randn special matrices randn special matrices randn special matrices

([P A-LLA normwise hackward error ! componentwise backward error

Fic. 2.2. A summary of all our experimental data, showing the ratio between maz(block
LU_PRRP’s backward error, machine epsilon) and maz(GEPP’s backward error, machine epsilon)
for all the test matrices in our set. Each wvertical bar represents such a ratio for one test matrix.
Bars above 109 = 1 mean that block LU.PRRP’s backward error is larger, and bars below 1 mean
that GEPP’s backward error is larger.

the growth factor of GEPP. For example, for a random matrix of size 4096 and a
panel of size 64, the growth factor is only about 19, which is smaller than the growth
factor obtained by GEPP, and as expected, much smaller than the theoretical upper
bound of (1.078)4032,

Table 6.1 in Appendix B presents more detailed results showing the stability of
the block LU_ PRRP factorization for a set of special matrices (as given in Table A.6
of [12]). There, we include different metrics, such as the norm of the factors, the
value of their maximum element, and the backward error of the LU factorization. We
evaluate the normwise backward stability by computing an accuracy test as performed
in the high-performance Linpack (HPL) benchmark [7], and denoted as HPL3,

HPL3 = || Az — bl|oo /(€] [A[co|[#]| 0o * N)-

In HPL, the method is considered to be accurate if the value of HPL3 is smaller
than 16. More generally, the value should be of order O(1). For the block LU_PRRP
factorization HPL3 is at most 1.60 x 1072, We also display the normwise backward
error, using the 1-norm,

|||
(2.12) PP | L N—
[[A[] [[&[] + [[b]]

and the componentwise backward error

_ |73l

(249) ATl £ o
where Z is a computed solution to Az = b, and r = b — AZ is the computed residual.
Our tests residuals are computed with double-working precision. We note that the
results for random matrices are given in the technical report [16]. We recall here that
in all our experiments we use the GEPP factorization of the diagonal blocks during
the block back substitution.

Figure 2.2 summarizes all our stability results for block LU_.PRRP. This figure
displays the ratio of the maximum between the backward error and machine epsilon of
block LU_PRRP versus GEPP. The backward error is measured using three metrics,
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TABLE 2.2
Stability of the block LU_PRRP factorization of a Wilkinson matriz on which GEPP fails.

no | b [ow | UL | O L | LY | Rl
128 1 1.02e+03 | 6.09e+00 1 1.95e+-00 4.25e-20
64 1 1.02e4+03 | 6.09e+00 1 1.95e+00 5.29e-20
2048 32 1 1.02e4-03 | 6.09e+00 1 1.95e+-00 8.63e-20
16 1 1.02e4+03 | 6.09e+00 1 1.95e+00 1.13e-19
8 1 1.02e4-03 | 6.09e+00 1 1.95e+-00 1.57e-19

TABLE 2.3
Stability of the block LU_.PRRP factorization of a practical matriz (Foster) on which GEPP fails.

_ _ PA—LU
no| b |aw | WO | UM | el | e | Rl

128 2.66 | 1.28e+03 | 1.87e+00 | 1.92e+03 | 1.92e+403 4.67e-16
64 2.66 | 1.19e+03 | 1.87e+00 | 1.98e+03 | 1.79e+-03 2.64e-16
2048 32 2.66 | 4.33e+01 | 1.87e+00 | 2.01le+03 | 3.30e+01 2.83e-16
16 2.66 | 1.35e+03 | 1.87e+00 | 2.03e+03 | 2.03e+4-00 2.38e-16
8 2.66 | 1.35e+03 | 1.87e+00 | 2.04e+03 | 2.02e+-00 5.36e-17

the relative error ||[PA — LU||/||Al|, the normwise backward error 7, and the compo-
nentwise backward error w of block LU_ PRRP versus GEPP, and the machine epsilon.
We take the maximum of the computed error with epsilon since smaller values are
mostly roundoff error, and so taking ratios can lead to extreme values with little relia-
bility [5]. Results for all the matrices in our test set are presented, that is, 20 random
matrices for which detailed results are presented in [16], and 37 special matrices for
which results are presented in Table 6.1. This figure shows that for random matrices,
almost all ratios are between 0.5 and 2. For special matrices, there are few outliers,
up to 23.71 for the backward error ratio of the special matrix hadamard and down to
2.12 x 10~2 for the backward error ratio of the special matrix moler.

We consider now pathological matrices on which GEPP fails. Table 2.2 presents
results for the linear solver using the block LU PRRP factorization for a Wilkinson
matrix [23] of size 2048 with a size of the panel varying from 8 to 128. The growth
factor is 1 and the relative error % is on the order of 10719,

For the Foster matrix, it was shown that the growth factor of GEPP can be as large
as (2)(2"~! — 1), which is close to the maximum theoretical growth factor of GEPP
of 2"~1. Table 2.3 presents results for the linear solver using the block LU_PRRP
factorization for a Foster matrix of size 2048 with a size of the panel varying from
8 to 128. (We choose the same parameters of the Foster matrix as the ones which
give exponential growth factor for GEPP.) According to the obtained results, block
LU_PRRP gives a modest growth factor of 2.66 for this practical matrix, while GEPP
has a growth factor of 10'® for the same parameters.

For matrices arising from the two-point boundary value problems described by
Wright, the results of the linear solver based on the block LU_.PRRP factorization are
presented in Table 2.4. Again, block LU_PRRP gives minimum possible pivot growth
1 for this practical matrix, compared to the GEPP method which leads to a growth
factor of 10%° using the same parameters.

All the previous tests show that the block LU_PRRP factorization is very stable
for random, and for more special, matrices, and it also gives modest growth factor
for pathological matrices on which GEPP fails. We note that we were not able to
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TABLE 2.4
Stability of the block LU.PRRP factorization on a practical matriz (Wright) on which GEPP
fails.

o [ b [aw | WU | 00T | Lin | gz | A
128 1 3.25e+00 8.00e+00 2.00e+00 2.00e+00 4.08e-17
64 1 3.25e+00 8.00e+00 2.00e+00 2.00e+00 4.08e-17
2048 32 1 3.25e+00 8.00e+00 2.05e+00 2.07e+00 6.65e-17
16 1 3.25e+00 8.00e+00 2.32e+00 2.44e+00 1.04e-16
8 1 3.40e+00 8.00e+00 2.62e+00 3.65e+00 1.26e-16

find matrices for which block LU_LPRRP attains the upper bound of (1 + 7b)"/®)~1
for the growth factor.

3. Communication avoiding block LU_PRRP. In this section we present
a version of the block LU_PRRP algorithm that minimizes communication, and so
it will be more efficient than block LU_PRRP and GEPP on architectures where
communication is expensive. We show in this section that this algorithm is more
stable than CALU, an existing communication avoiding algorithm for computing the
LU factorization [12].

3.1. Matrix algebra. Block CALU_PRRP uses tournament pivoting, a strategy
introduced in [11] that allows one to minimize communication. As in block LU_.PRRP,
at each step the factorization of the current panel is computed, and then the trailing
matrix is updated. However, in block CALU_PRRP the panel factorization is per-
formed in two steps. The first step, which is a preprocessing step, uses a reduction
operation to identify b pivot rows with a minimum amount of communication. The
strong RRQR factorization is the operator used at each node of the reduction tree
to select a new set of b candidate pivot rows from the candidate pivot rows selected
at previous stages of the reduction. The final b pivot rows are permuted into the
first positions, and then the QR factorization with no pivoting of the transpose of the
entire panel is computed.

In the following we illustrate tournament pivoting on the first panel, with the
input matrix A partitioned as in (2.1). We consider that the first panel is partitioned
into P = 4 blocks of rows,

A(,1:0) =

The preprocessing step uses a binary reduction tree in our example, and we number
the levels of the binary reduction tree starting from 0. At the leaves of the reduction
tree, a set of b candidate rows are selected from each block of rows A;y by performing
the strong RRQR factorization on the transpose of each block A;y. This gives the
following decomposition,

AfoIlog QooRoo
AT T | QuoRwo
Al | | Q20R20 |’
A3pIl30 Q30 R30
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which can be written as

oo QooRoo
_ I R
A(1:0)THy = A(;,1: )" 10 L, _ g;gR;g 7
REN) Q30R30

where Iy is a m x m permutation matrix with diagonal blocks of size (m/P) x (m/P),
Q0 is an orthogonal matrix of size b x b, and each factor R;g is a b x (m/P) upper
triangular matrix.

At the next level of the binary reduction tree, two matrices Ag; and Aj; are
formed by combining together two sets of candidate rows,

HgoAQO ].Zb,l:b
1:56,1:b
1:5,1:b
HgOAgg 1Ib,13b

Two new sets of candidate rows are identified by performing the strong RRQR fac-
torization of each matrix Ag; and Aqq,

AliTo1 = Qo1 Rox,

Al = Q11 R,
where Il;g, II1; are permutation matrices of size 2b x 2b, Qp1, @11 are orthogonal
matrices of size b x b, and Ry, R11 are upper triangular factors of size b x 2b.

The final b pivot rows are obtained by performing one last strong RRQR factor-
ization on the transpose of the b x 2b matrix

(HglAgl)(l : b, 1: b)

Agy = :
02 (7, Ayp)(1: b,1:b)

that is,

Al gy = Qo2 Roz,
where Ilys is a permutation matrix of size 2b x 2b, Qg2 is an orthogonal matrix of
size b x b, and Ry is an upper triangular matrix of size b x 2b. This operation is
performed at the root of the binary reduction tree, and this ends the first step of the
panel factorization. In the second step, the final pivot rows identified by tournament
pivoting are permuted to the first positions of A,

A=T1"A =111t 4,

where the matrices II; are obtained by extending the permutation matrices to the
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dimension m x m, that is,

= oy
II, = -
= ]
with II;; for i = 0,1 formed as
I;1(1:06,1:0) I (1:b,b41:2b)
_ Im _y
I = P
M (b+1:2b,1:b) Iy (b+1:2b,b+1:2b)
Im _y
m
and
Hog(lib,lib) Hog(lib,b+122b)
M, — Tpm
27 | Hoa(b+1:2b,1:0) o2 (b+1:2b,b+1:2b)
Iym

Once the pivot rows are in the diagonal positions, the QR factorization with no
pivoting is performed on the transpose of the first panel,

AT(1:b,)=QR=Q[ Ru1 Ru1 |.

This factorization is used to update the trailing matrix, and the elimination of the first
panel leads to the following decomposition (we use the same notation as in section 2):

I
At AT Iy

All Al?
A3y

3

where
ASZ = AQQ — Azlgfllglg.

The block CALU_PRRP factorization continues the same procedure on the trailing
matrix Aj,. As the block LU_PRRP factorization, the block CALU_PRRP factor-
ization computes a block LU factorization of the input matrix A. A linear system
is solved by using a block forward substitution and a block backward substitution,
which will use the factorizations of the diagonal blocks of A. Note that the factors L
and U obtained by the block CALU_PRRP factorization are different from the factors
obtained by the block LU_PRRP factorization. The two algorithms use different pivot
rows, and in particular the factor L of block CALU_PRRP is no longer bounded by a
given threshold 7 as in block LU_PRRP. This leads to a different worst case growth
factor for block CALU_PRRP, which we will discuss in the following section.

The following figure displays the binary tree based tournament pivoting performed
on the first panel using an arrow notation (as in [12]). The function f(A;;) computes
a strong RRQR of the matrix A}; to select a set of b candidate rows. At each node
of the reduction tree, two sets of b candidate rows are merged together and form a
matrix A;;, the function f is applied to A;;, and another set of b candidate pivot rows
is selected. While in this section we focused on binary trees, tournament pivoting can
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use any reduction tree, and this allows the algorithm to adapt on different architec-
tures. Later in the paper we will also consider a flat reduction tree,

Ao = f(Aoo) \,

Aro — f(Alo)/‘f(Am)\f(A )
Az = S(An0) N ¢ g .
Azo — f(As0) .

3.2. Numerical stability of block CALU_PRRP. In this section we discuss
the stability of block CALU_PRRP and we identify similarities with block LU_.PRRP
which hold in exact arithmetic. We also discuss the growth factor of block CALU_PRRP
in exact arithmetic, and we show that its upper bound depends on the height of the
reduction tree. For the same reduction tree, this upper bound is smaller than that
obtained with CALU.

To address the numerical stability of block CALU_PRRP, we show that in exact
arithmetic, performing block CALU_PRRP on a matrix A is equivalent to perform-
ing block LU_PRRP on a larger matrix Apy_prrp, which is formed by blocks of A
(sometimes slightly perturbed) and blocks of zeros. This reasoning is also used in [12]
to show the same equivalence between CALU and GEPP. While this similarity is ex-
plained in detail in [12], here we focus only on the first step of the block CALU_PRRP
factorization. We explain the construction of the larger matrix Ary_prrp to expose
the equivalence between the first step of the block CALU_PRRP factorization of A
and the block LU_PRRP factorization of ALy _prrp.

Consider a nonsingular matrix A of size m x n and the first step of its block
CALU_PRRP factorization using a general reduction tree of height H. Tournament
pivoting selects b candidate rows at each node of the reduction tree by using the strong
RRQR factorization. Each such factorization leads to an L factor which is bounded
locally by a given threshold 7. However, this bound is not guaranteed globally. When
the factorization of the first panel is computed using the b pivot rows selected by
tournament pivoting, the L factor will not be bounded by 7. This results in a larger
growth factor than the one obtained with the block LU_.PRRP factorization. Recall
that in block LU_PRRP, the strong RRQR factorization is performed on the transpose
of the entire panel, and so every entry of the obtained lower triangular factor L is
bounded in absolute value by 7.

However, we show now that in exact arithmetic, the growth factor obtained after
the first step of the block CALU_PRRP factorization is bounded by (1 + 7b)#+1.
Consider a row j, and let A*(j,b+ 1:n) be the updated row obtained after the first
step of elimination of block CALU_PRRP. Suppose that row j of A is a candidate
row at level k — 1 of the reduction tree, and so it participates in the strong RRQR
factorization computed at a node si at level k of the reduction tree, but it is not
selected as a candidate row by this factorization. We refer to the matrix formed by
the candidate rows at node s; as Aj. Hence, row j is not used to form the matrix
Ay,. Similarly, for every node ¢ on the path from node s, to the root of the reduction
tree of height H, we refer to the matrix formed by the candidate rows selected by
strong RRQR as A4;. Note that in practice it can happen that one of the blocks of the
panel is singular, while the entire panel is nonsingular. In this case strong RRQR will
select less than b linearly independent rows that will be passed along the reduction
tree. However, for simplicity, we assume in the following that the matrices A; are
nonsingular. For a more general solution, the reader can consult [12].
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Let II be the permutation returned by the tournament pivoting strategy per-
formed on the first panel, that is, the permutation that puts the matrix Ay on
diagonal. The following equation is satisfied:

3.1 (A(ff b) A(j,bAflzn)>:(A(j,1{b6>AHl 1)'<AH ASUaffl:n))’

where

g = (ITA)(1:b,1:0),
g =(IA)(1:b,b+1:n).

h T

The updated row A*(j,b+1: n) can be also obtained by performing block LU_PRRP
on a larger matrix Ary_prrp of dimension ((H —k+1)b+1) x (H—-k+1)b+ 1),

An i
AH—l 4H—1 _
AH72 AH72
ALUu_PRRP =
Ak Ak
(-)HFAG,1:b) A(j,b+1:n)
I
AH_lzzl;Il B Ib
AH 2AH1 1 Ib
Ak‘il;il Ib _
(—1)A=FAG,1:0) A 1
An An
Apa A
(3.2) : i : A%Z ’
Ak jk
A%(4,b+1:n)
where
_ Ay if i =0,
(3-3) Ami = { A Ag A if0<i< H -k

Equation (3.2) can be easily verified in exact arithmetic, since

A*(,b4+1:n) = A(j,b+1:n) — (1) FAG,1: 0) A (—1)HF 4,
= A(], b+1: TL) — A(], 1: b) 1/1]@14711 .. 'AH72A;11,1AH71A;11EH
=A(,b+1:n)—A(j,1:b)Ay 14y,

Equations (3.1) and (3.2) show that in exact arithmetic, the Schur complement ob-
tained after each step of performing the block CALU_PRRP factorization of a matrix
A is equivalent to the Schur complement obtained after performing the LU PRRP
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TABLE 3.1
Bounds for the growth factor obtained from factoring a matriz of size m X (b+ 1) and a matriz
of size m X n using block CALU_PRRP, block LU_LPRRP, CALU, and GEPP. Block CALU_.PRRP
and CALU use a reduction tree of height H, and the bounds hold in exact arithmetic. The strong
RRQR used in block LU_PRRP and block CALU_PRRP 1is based on a threshold T.

Matrix of size m X n
CALU Block CALU_PRRP | GEPP | Block LU_PRRP

Upper bound | 2n(H+1)-1 1+ Tb)%(HJrl)*l on—1 1+ Tb)%71

factorization of a larger matrix Ary_prrp, formed by blocks of A (sometimes slightly
perturbed) and blocks of zeros. More generally, this implies that the entire block
CALU_PRRP factorization of A is equivalent to the block LU_.PRRP factorization of
a larger and very sparse matrix, formed by blocks of A and blocks of zeros. (We omit
the proofs here, since they are similar to the proofs presented in [12].)

Equation (3.2) is used to derive the upper bound of the growth factor of block
CALU_PRRP from the upper bound of the growth factor of block LU PRRP. The
elimination of each row of the first panel using block CALU_PRRP can be obtained by
performing block LU_.PRRP on a matrix of maximum dimension m x b(H +1). Hence
the upper bound of the growth factor obtained after one step of block CALU_PRRP
is (1+7b)+1. In exact arithmetic, this leads to an upper bound of (14 7b)# (H+1)-1
for a matrix of size m x n.

Table 3.1 summarizes the bounds of the growth factor of block CALU_PRRP
derived in this section, and also recalls the bounds of block LU_.PRRP, GEPP, and
CALU, the communication avoiding version of GEPP. For block LU_.PRRP and block
CALU_PRRP, the values displayed correspond to the growth factor of the block L
and U factors. As discussed in section 2 already, block LU_.PRRP is more stable than
GEPP in terms of worst case growth factor. From Table 3.1, it can be seen that for
a reduction tree of a same height, block CALU_PRRP is more stable than CALU.

In the following we show that in exact arithmetic, block CALU_PRRP can have
a smaller worst case growth factor than GEPP. Consider a parallel version of block
CALU_PRRP based on a binary reduction tree of height H = log P, where P is
the number of processors. The upper bound of the growth factor becomes (1 +
7b)(n/0)logP+1) =1 " which is smaller than 27(°9”+1) =1 the upper bound of the growth
factor of CALU. For example, if the threshold is 7 = 2, the panel size is b = 64, and the
number of processors is P = 128 = 27, then the growth factor of block CALU_PRRP
is ~ (1.8)". This quantity is much smaller than 2™, the upper bound of CALU,
and even smaller than the worst case growth factor of GEPP of 2"~!. In general,
the upper bound of block CALU_PRRP can be smaller than the one of GEPP, if the
different parameters 7, H, and b are chosen such that the condition

b

. < ——mF————
(34) ~ (logb+logT)

is satisfied. For a binary tree of height H = log P, it corresponds to log P <
b/(logb +logT). This condition can be satisfied in practice by choosing b and T
appropriately for a given number of processors P. For example, when P < 512,
b = 64, and 7 = 2, the condition (3.4) is satisfied, and the worst case growth factor
of block CALU_PRRP is smaller than the one of GEPP. However, for a sequential
version of block CALU_PRRP using a flat tree of height H = n/b, the condition to
be satisfied becomes n < b?/(log b + log 7), which is more restrictive. In practice, the

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/28/13 to 130.88.123.79. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

1418 A. KHABOU, J. W. DEMMEL, L. GRIGORI, AND M. GU

P=64, b=16
—0—P-128, b=15
—O— p=256, b=16
P=6d4, b=32
—(O— P=128, b=3z
70 ¥ P-25B, b=32
P=6d4, b4
A po178, b-B4
sob P=64, h=128
O GEPP
== (aan'?

== '
—#*— LU-PRRP =64

- -
ﬂ"

average growth factor

1024 2046 4038 8132
matrix size

Fic. 3.1. Growth factor gyiockrLUu_PRRP Of binary tree based block CALU_PRRP for random
matrices.

size of b is chosen depending on the size of the memory, and it might be the case that
it will not satisfy the condition in (3.4).

3.3. Experimental results. In this section we present experimental results and
show that block CALU_PRRP is stable in practice and compare them with those ob-
tained from CALU and GEPP in [12]. We present results for both the binary tree
scheme and the flat tree scheme. As in section 2, we perform our tests on matri-
ces whose elements follow a normal distribution. To measure the stability of block
CALU_PRRP, we discuss several metrics, that concern the LU decomposition and
the linear solver using it, such as the growth factor and normwise and componentwise
backward errors. We also perform tests on several special matrices including sparse
matrices.

Figure 3.1 displays the values of the growth factor gpockru_prrp for random
matrices of the binary tree based block CALU_PRRP with different block sizes b and
different number of processors P. As explained in section 3.1, the block size determines
the size of the panel, while the number of processors determines the number of block
rows in which the panel is partitioned. This corresponds to the number of leaves
of the binary tree. We observe that the growth factor of binary tree based block
CALU_PRRP is in most of the cases better than that of GEPP. The curves of the
growth factor lie between 2n'/2 and 2n'/2 in our tests on random matrices. These
results show that binary tree based block CALU_PRRP is stable and the growth factor
values obtained for the different layouts are better than those obtained with binary
tree based CALU. Figure 3.1 includes also the growth factor of the block LU_PRRP
method with a panel of size b = 64. We note that these results are better than those
of binary tree based block CALU_PRRP.

Figure 3.2 displays the values of the growth factor gy for flat tree based block
CALU_PRRP with a block size b varying from 8 to 128. The growth factor gy is
decreasing with increasing the panel size b. We note that the curves of the growth

factor lie between inl/ 2 and %nl/ 2 in our tests on random matrices. We also note that

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 10/28/13 to 130.88.123.79. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

LU_PRRP AND CALU_PRRP 1419

+ GEPP
= -b-8
b=16
—+—b-32
— % p=64
—H—p=128

(3f4)n12
— T a2
|| =¥ - Lu-PRRP b=64

0

average growth factor

1024 2046 4086 8132
matrix size

F1a. 3.2. Growth factor gw of flat tree based block CALU_PRRP for random matrices.

the results obtained with the block LU_.PRRP method with a panel of size b = 64 are
better than those of flat tree based block CALU_PRRP. The growth factors of both
binary tree based and flat tree based block CALU_PRRP have similar (sometimes
better) behavior compared to the growth factors of GEPP.

Table 6.2 in Appendix B presents results for the linear solver using binary tree
based block CALU_PRRP, together with binary tree based CALU and GEPP for
comparison. Results for the flat tree based block CALU_PRRP are not included
here, but can be found in the technical report [16]. We note that for the binary tree
based block CALU_PRRP, when m/P = b, the algorithm uses only P1 =m/(b+ 1)
processors, since to perform a strong RRQR on a given block, the number of its rows
should be at least the number of its columns plus one. Table 6.2 includes some other
metrics, such as the norm of the factors, the norm of the inverse of the factors, their
conditioning, the value of their maximum element, and the backward error of the LU
factorization.

Figure 3.3 summarizes all our stability results for the block CALU_PRRP fac-
torization based on both binary tree and flat tree schemes, which is analogous to
Figure 2.2. Results for all the matrices in our test set are presented, that is, 25
random matrices for binary tree base block CALU_PRRP, 20 random matrices for
flat tree based block CALU_PRRP, and 37 special matrices. We note that all these
results are detailed in [16]. As can be seen, nearly all ratios are between 0.5 and 2.5
for random matrices. However, there are a few outliers, for example, the relative error
ratio has values between 24.2 for the special matrix hadamard and 5.8 x 1073 for the
special matrix moler.

For the set of pathological matrices considered in section 2 on which GEPP fails,
our numerical experiments results are the following. For the Wilkinson matrix, both
CALU and block CALU_PRRP based on flat and binary tree give modest element
growth. For the generalized Wilkinson matrix, the Foster matrix, and the Wright
matrix, CALU fails with both flat tree and binary tree reduction schemes. However,
both flat tree based and binary tree based block CALU_PRRP are stable for these
matrices.
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ratio of CALU-PRRP to GEPP
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randn randn randn
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I t }
JIPA-LUJ & normwise backward error componentwise backward error
Fic. 3.3. A summary of all our experimental data, showing the ratio of maz(block

CALU_PRRP’s backward error, machine epsilon) to maz(GEPP’s backward error, machine ep-
silon) for all the test matrices in our set. Each vertical bar represents such a ratio for one test
matric.

Through the results detailed in this section, in Appendix B, and in [16], we
conclude that binary tree based and flat tree based block CALU_PRRP is very stable
for both random matrices and more special ones, including dense and sparse matrices.

4. Lower bounds on communication. In this section we focus on the parallel
block CALU_PRRP algorithm based on a binary reduction tree, and we show that
it minimizes the communication between different processors of a parallel computer.
For this, we use known lower bounds on the communication performed during the LU
factorization of a dense matrix of size n X n, which are

3
(4.1) # words_moved = <\7—M) ,

3
(4.2) # messages = () <J\7j[%> ,

where # words_moved refers to the volume of communication, # messages refers to
the number of messages exchanged, and M refers to the size of the memory (the
fast memory in the case of a sequential algorithm, or the memory per processor in
the case of a parallel algorithm). These lower bounds were first introduced for dense
matrix multiplication [14, 15], generalized later to LU factorization [4], and then to
almost all direct linear algebra [1]. Note that these lower bounds apply to algorithms
based on orthogonal transformations under certain conditions [1]. However, this is not
relevant to our case, since block CALU_PRRP uses orthogonal transformations that
need communication only to select pivot rows, while the update of the trailing matrix
is still performed as in the classic LU factorization algorithm. We note that at the
end of the preprocessing step, each processor working on the panel has the final set of
b pivot rows. Thus all these processors perform in parallel a QR factorization without
pivoting on the transpose of the final bx b block. After this phase each processor below
the diagonal has the R, factor, computes his chunk of R;2, and finally computes his
block of Lo; factor as detailed previously. Therefore, the QR factorization applied
to the transpose of the panel does not imply any communication. Hence, the lower
bounds from (4.1) and (4.2) are valid for block CALU_PRRP.

We estimate now the cost of computing in parallel the block CALU_PRRP factor-
ization of a matrix A of size m x n. The matrix is distributed on a grid of P = P, x P,
processors using a two-dimensional (2D) block cyclic layout. We use the following per-
formance model. Let « be the cost of performing a floating point operation, and let
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TABLE 4.1
Performance estimation of parallel (binary tree based) block CALU_PRRP, parallel CALU, and
PDGETRF routine when factoring an m X n matriz, m > n. The input matriz is distributed using
a 2D block cyclic layout on a Pr X P. grid of processors. Some lower order terms are omitted.

Parallel block CALU_PRRP
# messages 3—” log, Pr + 2; logy Pe

# words (nb + ——) logy Pr + P (mn — _) log,, P-

# flops + (mn2 —%) + 5 (2mn—n2)b+%(5log2 Pr—1)
Parallel CALU
# messages 37" log, Pr + “%n logy Pe

# words (nb + %) logy Pr + F}r (mn - ) logy Pe

# flops %(mn2—%3)+}%(2mn—n)b+ +"b (5logy Pr — 1)
PDGETRF

# messages | 2n (1 + %) log, Pr + 37” log,y Pe

# words (%b + gi) logy Pr 4 logy PCPLT (mn — "72)

# flops %(mn2——)+P (mn—ré)b—i-;‘—;i’

a + Pw be the cost of sending a message of size w words, where « is the latency cost
and ( is the inverse of the bandwidth. Then, the total running time of an algorithm
is estimated to be

a - (# messages) + - (# words_moved) + v - (# flops),

where #messages, #words_moved, and #flops are counted along the critical path of
the algorithm.

Table 4.1 displays the performance of parallel block CALU_PRRP. (A detailed es-
timation of the counts is presented in [16, Appendix D].) It also recalls the performance
of two existing algorithms, the PDGETRF routine from ScaLAPACK which imple-
ments GEPP, and the CALU factorization. All three algorithms have the same volume
of communication, since it is known that PDGETRF already minimizes the volume
of communication. However, the number of messages of both block CALU_PRRP
and CALU is smaller by a factor of the order of b than the number of messages of
PDGETRF. This improvement is achieved thanks to tournament pivoting. In fact,
partial pivoting, as used in the routine PDGETRF, leads to an O(nlog P) number of
messages, and because of this, GEPP cannot minimize the number of messages.

Compared to CALU, block CALU_PRRP sends a small factor of less messages
(depending on P, and P.). If we consider the additional GEPP of the diagonal
blocks, then the entire LU factorization performs - b (2mn — n?) b+ 2" (5 log, P +1)
more flops than CALU (which represents a lower order term). This i 1s because block
CALU_PRRP uses the strong RRQR factorization at every node of the reduction tree
of every panel factorization, while CALU uses GEPP.

We show now that block CALU_PRRP is optimal in terms of communication.
We choose optimal values of the parameters P, P., and b, as used in CAQR [4] and
CALU [12], that is,

p_,/mP @andb__ 2 fmPYmn e (mPY | fmn
n P n P
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TABLE 4.2
Performance estimation of parallel (binary tree based) block CALU_.PRRP and CALU with an
optimal layout. The matriz factored is of size n X n. Some lower order terms are omitted.

Parallel block CALU_PRRP with optimal layout | Lower bound
# messages g\/ﬁlogS P Q(\/ﬁ)
2 (19,51 2
# words T (5log™" P +log P) AT%)
1 208 2n3 513 1 2n3
# flops P85 T PlogZP T 3Plogm P e
Parallel CALU with optimal layout Lower bound
# messages | 3v/Plog® P Q(/P)
2 _ 2
# words % (% log 1P—i—logP) Q(%)
1 203 3n3 5n° 1 2n3
# flops o3t 2Plgg2 7T ()'Plggs P i

For a square matrix of size n x n, the optimal parameters are,

- - — Liog 2 (VB) e — 1o (P
Pr—\/ﬁ,Pc—\/Fandb—éllog (\/]_3) \/ﬁ_log (P) 7P

Table 4.2 presents the performance estimation of parallel block CALU_PRRP and
parallel CALU when using the optimal layout. It also recalls the lower bounds on
communication from (4.1) and (4.2) when the size of the memory per processor is on
the order of n?/P. Both block CALU_PRRP and CALU attain the lower bounds on
the number of words and on the number of messages, modulo polylogarithmic factors.
Note that the optimal layout allows one to reduce communication, while keeping the
number of extra floating point operations performed due to tournament pivoting as
a lower order term. While in this section we focused on minimizing communication
between the processors of a parallel computer, it is straightforward to show that the
usage of a flat tree during tournament pivoting allows block CALU_PRRP to minimize
communication between different levels of the memory hierarchy in the sequential case.

5. Less stable factorizations that can also minimize communication. In
this section, we briefly present two alternative algorithms that are based on panel
strong RRQR pivoting and that are conceived such that they can minimize commu-
nication. But we will see that they can be unstable in practice. These algorithms
are also based on block algorithms that factor the input matrix by traversing panels
of size b. The main difference between them and block CALU_PRRP is the panel
factorization, which is performed only once in the alternative algorithms.

We present first a parallel alternative algorithm, which we refer to as block parallel
LU_PRRP. At each step of the block factorization, the panel is partitioned into P
block-rows [Ag; A1;...; Ap_1]. The blocks below the diagonal bx b block of the current
panel are eliminated by performing a binary tree of strong RRQR factorizations. At
the leaves of the tree, the elements below the diagonal block of each block A; are
eliminated using strong RRQR. The elimination of each such block row is followed by
the update of the corresponding block row of the trailing matrix.

The algorithm continues by performing the strong RRQR factorization of pairs of
b x b blocks stacked atop one another, until all the blocks below the diagonal block are
eliminated and the corresponding trailing matrices are updated. The algebra of the
block parallel LU_PRRP algorithm is detailed in Appendix E of the technical report
[16], while in Figure 5.1 we illustrate one step of the factorization by using an arrow
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zgi?zi >9(A01)
9(Aso) N 9(Ao2)
g(Ago)/g(All)

F1c. 5.1. Block parallel LU_PRRP.

Ago ~9(Aoo) %9(Ao1) > g(Aoz) =~ g(Aos)

Ay —
10

Asg
Aso

Fic. 5.2. Block pairwise LU_PRRP.

notation, where the function g(A;;) computes a strong RRQR on the matrix Az;- and
updates the trailing matrix in the same step.

A sequential version of the algorithm is based on the usage of a flat tree, and we
refer to this algorithm as block pairwise LU_PRRP. Using the arrow notation, Figure
5.2 illustrates the elimination of one panel.

The block parallel LU_.PRRP and the block pairwise LU_.PRRP algorithms have
similarities with the block parallel pivoting and the block pairwise pivoting algorithms.
These latter two algorithms were shown to be potentially unstable in [12]. There is
a main difference between all these alternative algorithms and algorithms that com-
pute a classic LU factorization as GEPP, block LU_PRRP, and their communication
avoiding variants. The alternative algorithms compute a factorization in the form of
a product of lower triangular factors and an upper triangular factor. And the elimi-
nation of each column leads to a rank update of the trailing matrix larger than one.
It is thought in [21] that the rank-1 update property of algorithms that compute an
LU factorization inhibits potential element growth during the factorization, while a
large rank update might lead to an unstable factorization.

Note, however, that at each step of the factorization, block parallel and block
pairwise LU_PRRP use at each level of the reduction tree original rows of the active
matrix. Block parallel pivoting and block pairwise pivoting algorithms use U factors
previously computed to achieve the factorization, and this could potentially lead to a
faster propagation of ill-conditioning.

The upper bound of the growth factor of both block parallel and block pairwise
LU_PRRP is (1 + 7b)% ~!, since for every panel factorization, a row is updated only
once. Hence, they have the same bounds as the block LU_.PRRP factorization, and
smaller than that of the block CALU_PRRP factorization. Despite this, they are less
stable than the block CALU_PRRP factorization. Figures 5.3 and 5.4 display the
growth factor of block parallel LU_.PRRP and block pairwise LU_ PRRP for matrices
following a normal distribution. In Figure 5.3, the number of processors P on which
each panel is partitioned is varying from 16 to 32, and the block size b is varying
from 2 to 16. The matrix size varies from 64 to 2048, but we have observed the same
behavior for matrices of size up to 8192. When the number of processors P is equal
to 1, the block parallel LU_PRRP corresponds to the block LU_.PRRP factorization.
The results show that there are values of P and b for which this method can be very
unstable. For the sizes of matrices tested, when b is chosen such that the blocks at
the leaves of the reduction tree have more than 2b rows, the number of processors
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Fic. 5.3. Growth factor of block parallel LU_PRRP for varying block size b and number of
processors P.
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Fic. 5.4. Growth factor of block pairwise LU_PRRP for varying matriz size and varying block
size b.

P has an important impact, the growth factor increases with increasing P, and the
method is unstable.

In Figure 5.4, the matrix size varies from 1024 to 8192. For a given matrix
size, the growth factor increases with decreasing the size of the panel b, as one could
expect. We note that the growth factor of block pairwise LU PRRP is larger than
that obtained with the block CALU_PRRP factorization based on a flat tree scheme.
But it stays smaller than the size of the matrix n for different panel sizes. Hence, this
method is more stable than block parallel LU_ PRRP. Further investigation is required
to conclude on the stability of these methods.

6. Conclusions. This paper introduces block LU_PRRP, a block LU factoriza-
tion algorithm based on PRRP. This algorithm is more stable than GEPP in terms
of worst case growth factor. It is also very stable in practice for various classes of
matrices, including random matrices and a set of more special matrices. Its commu-
nication avoiding version, block CALU_PRRP, is also more stable in terms of worst
case growth factor (computed in exact arithmetic) than CALU, the communication
avoiding version of GEPP. More importantly, there are cases of interest for which the
upper bound of the growth factor of block CALU_PRRP is smaller than that of GEPP
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for several cases of interest. Extensive experiments show that block CALU_PRRP is
very stable in practice and leads to results of the same order of magnitude as GEPP,
sometimes even better.

Our future work focuses on two main directions. The first direction investigates
the design of a communication avoiding algorithm that has smaller bounds on the
growth factor than that of GEPP in general. The second direction focuses on estimat-
ing the performance of block CALU_PRRP on parallel machines based on multicore
processors, and comparing it with the performance of CALU.

Appendix A. We briefly describe strong RRQR introduced by Gu and Eisenstat
in [13]. This factorization will be used in our new LU decomposition algorithm, which
aims to obtain an upper bound of the growth factor smaller than GEPP (see section 2.)
Consider a given threshold 7 > 1 and an h X p matrix B with p > h; a strong RRQR
factorization on a matrix B gives (with an empty (2,2) block)

BTH:QR:Q[RH Rio }7

where ||R1_11R12 [lmax < 7 with || . || max being the biggest entry of a given matrix in ab-
solute value. This factorization can be computed by a classical QR factorization with
column pivoting followed by a limited number of additional swaps and QR updates if
necessary.

The while loop in Algorithm 2 interchanges any pairs of columns that can increase
|det(R11)| by at least a factor 7. At most O(log, n) such interchanges are necessary
before Algorithm 2 finds a strong RRQR factorization. The QR factorization of
BTTI can be computed numerically via efficient and numerically stable QR updating

procedures. See [13] for details.
ALGORITHM 2. STRONG RRQR.
1: Compute BTTI = QR using the classical RRQR with column pivoting
2: while there exist i and j such that |(R1_11R12)ij| > 71 do
3: Set II = IIII;; and compute the QR factorization of R II;; (QR updates)
4: end while
Ensure: BTII = QR with HRﬁlngHmaX <rT

Appendix B. We present experimental results for the block LU PRRP factor-
ization and the binary tree based block CALU_PRRP. We show results obtained for
the LU decomposition and the linear solver. Tables 6.1 and 6.3 display the results
obtained for the special matrices presented in Table A.6 in [12]. They show the growth
factor, the norm of the factor L and U and their inverses, and the relative error of the
decomposition. The size of the tested matrices is n = 4096. For block LU_PRRP the
size of the panel is b = 8. For binary tree based block CALU_PRRP we use P = 64
and b = 8, and this means that the size of the matrices used at the leaves of the
reduction tree is 64 x 8.

Table 6.2 presents results for the linear solver using binary tree based block
CALU_PRRP, together with binary tree based CALU and GEPP for comparison.

The tables are presented in the following order:

e Table 6.1. Stability of the LU decomposition for block LU_ PRRP on special
matrices.

e Table 6.2. Stability of the linear solver using binary tree based
block CALU_PRRP, binary tree based CALU, and GEPP.

e Table 6.3. Stability of the LU decomposition for binary tree based block
CALU_PRRP on special matrices.
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TABLE 6.2
Stability of the linear solver using binary tree based block CALU_PRRP, binary tree based

n P b w, | Nin | HPL3
Binary tree based block CALU_PRRP

256 32 7.5E-15 | 4.4E-14 2 4.4E-03

16 6.7E-15 | 4.1E-14 2 4.6E-03

64 7.6E-15 | 4.7E-14 2 4.9E-03

128 | 32 7.5E-15 | 4.9E-14 2 4.9E-03

8192 16 7.3E-15 | 5.1E-14 2 5.7E-03
128 || 7.6E-15 | 5.0E-14 2 5.2E-03

64 64 7.9E-15 | 5.3E-14 2 5.9E-03

32 7.8E-15 | 5.0E-14 2 5.0E-03

16 6.7E-15 | 5.0E-14 2 5.7E-03

256 16 3.5E-15 | 2.2E-14 2 5.1E-03

198 32 3.8E-15 | 2.3E-14 2 5.1E-03

4096 16 3.6E-15 | 2.2E-14 1.6 5.1E-03
64 4.0E-15 | 2.3E-14 2 4.9E-03

64 32 3.9E-15 | 2.4E-14 2 5.7E-03

16 3.8E-15 | 2.4E-14 1.6 5.2E-03

128 16 1.8E-15 | 1.0E-14 2 4.8E-03

2048 64 32 1.8E-15 | 1.2E-14 2 5.6E-03
16 1.9E-15 | 1.2E-14 1.8 5.4E-03

1024 | 64 16 1.0E-15 | 6.3E-15 1.3 6.1E-03

Binary tree based CALU

256 32 6.2E-15 | 4.1E-14 2 4.5E-03

16 5.8E-15 | 3.9E-14 2 4.1E-03

64 6.1E-15 | 4.2E-14 2 4.6E-03

128 | 32 6.3E-15 | 4.0E-14 2 4.4E-03

8192 16 5.8E-15 | 4.0E-14 2 4.3E-03
128 || 5.8E-15 | 3.6E-14 2 3.9E-03

64 64 6.2E-15 | 4.3E-14 2 4.4E-03

32 6.3E-15 | 4.1E-14 2 4.5E-03

16 6.0E-15 | 4.1E-14 2 4.2E-03

256 16 3.1E-15 | 2.1E-14 1.7 | 4.4E-03

198 32 3.2E-15 | 2.3E-14 2 5.1E-03

4096 16 3.1E-15 | 1.8E-14 2 4.0E-03
64 3.2E-15 | 2.1E-14 1.7 | 4.6E-03

64 32 3.2E-15 | 2.2E-14 1.3 4.7E-03

16 3.1E-15 | 2.0E-14 2 4.3E-03

128 16 1.7E-15 | 1.1E-14 1.8 5.1E-03

2048 64 32 1.7E-15 | 1.0E-14 1.6 4.6E-03
16 1.6E-15 | 1.1E-14 1.8 4.9E-03

1024 | 64 16 8.7E-16 | 5.2E-15 1.6 4.7E-03

GEP

8192 - 3.9E-15 | 2.6E-14 1.6 2.8E-03
4096 - 2.1E-15 | 1.4E-14 1.6 2.9E-03
2048 - 1.1E-15 | 7.4E-15 2 3.4E-03
1024 - 6.6E-16 | 4.0E-15 2 3.7E-03
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