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Abstract. Reduced basis methods are projection-based model order reduction techniques
for reducing the computational complexity of solving parametrized partial differential equation
problems. In this work we discuss the design of pyMOR, a freely available software library of
model order reduction algorithms, in particular reduced basis methods, implemented with the
Python programming language. As its main design feature, all reduction algorithms in pyMOR are
implemented generically via operations on well-defined vector array, operator and discretization
interface classes. This allows for an easy integration with existing open-source high-performance
partial differential equation solvers without adding any model reduction specific code to these
solvers. Besides an in-depth discussion of pyMOR’s design philosophy and architecture, we present
several benchmark results and numerical examples showing the feasibility of our approach.

Key words. model order reduction, reduced basis method, empirical interpolation, scientific
computing, software, Python

AMS subject classifications. 35-04, 35J20, 35L03, 65-04, 65N30, 65Y05, 68N01.

1. Introduction. Over the past years, model order reduction methods have become
an important part of many numerical simulation workflows for handling large-scale ap-
plication problems. Reduced basis (RB) methods are a popular family of such reduction
techniques, applicable to parametrized high-dimensional models described by partial dif-
ferential equations (PDEs). The main ingredient of RB methods is a Galerkin projection
of the differential equation onto a problem-adapted reduced subspace generated from
solution snapshots of a high-dimensional approximation of the problem for certain well-
chosen sampling parameters. While the high-dimensional approximation using standard
discretization techniques (such as finite element methods) often yields discrete function
spaces with millions of degrees of freedoms, the reduced spaces generated by RB methods
typically are of order 100 or smaller, while still retaining the same approximation quality
for the problem at hand as the high-dimensional space. In practice, model order reduc-
tion by RB approximation can lead to speedups of up to several orders of magnitude.
By now, a large body of literature has emerged which theoretically proves and practi-
cally demonstrates the applicability of the RB approach to a large variety of application
problems (see, e.g., the recent monographs [18, 30], the tutorial [15], and the references
therein).
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Despite the popularity of RB methods, only few software implementations have been
discussed in the literature so far. We are only aware of publications discussing rbMIT [28],
RB modules for libMesh [21] and feel++ [10], as well as the combination of RBmatlab
with dune-rb [12]. However, these approaches are either too simplistic to be applied
to large-scale problems (rbMIT) or offer limited code re-usability by being tied to a
specific PDE solver ecosystem. While RBmatlab defines interfaces for the integration
with dune-rb which would allow to reuse its algorithms in conjunction with other PDE
solvers implementing the same interfaces, code re-usability is still limited by the fact that
RBmatlab requires all parts of the reduction algorithm involving high-dimensional data
to be implemented by the PDE solver.

In this article we discuss the design of pyMOR: an open-source, Python-based model
reduction library which is being developed as part of the Multibat research project
(cf. [25] for a brief overview on pyMOR in the context of Multibat). Since one of the
goals of said project is to use RB techniques for the reduction of microscale battery
models implemented independently by another group participating in the project, an
easy integration with third-party PDE solvers is a central design goal for pyMOR.

To allow easy integration with external solvers, pyMOR is built around a small set of
interface classes for interaction with the solver. Unlike the approach taken by RBmatlab,
pyMOR’s interface classes are designed for lower level communication by directly repre-
senting the high-dimensional vector and operator objects inside the solver. This allows
to implement model order reduction schemes completely within pyMOR as generic algo-
rithms operating on these interface classes. A new external solver is integrated simply
by making the solver’s data structures available via a public interface to which pyMOR
can connect to. No model reduction specific code has to be added to the solver. pyMOR’s
interface design not only facilitates collaboration between researchers by decoupling PDE
solver and RB algorithm development. It also fosters the evaluation and adoption of new
RB techniques, since algorithms implemented with pyMOR can be tested more easily with
problems which have not been considered by the original author. By now, pyMOR was
used successfully in [7, 26, 8, 24].

A design approach similar to pyMOR has been taken by the modred [5] package, a
software library implementing modal decomposition algorithms which operate on generic
vector objects provided by an external source. Due to the algorithmic requirements of RB
methods, however, our approach goes further by also allowing operations on the solver’s
system matrices or (nonlinear) operators, resulting in a deeper integration between the
two software components.

Recently, RBniCS was introduced [1], a Python-based RB library built on top of the
FEniCS [22] PDE solver library. Similar to pyMOR, RBniCS allows easy development of RB
applications in Python while leveraging FEniCS as a high-performance solver. However,
in contrast to pyMOR, RBniCS is tied to the FEniCS ecosystem and cannot be integrated
with other PDE solvers. redbKIT, which has been developed as companion software to
the recent monograph [30], follows a design similar to rbMIT. Apart from RB libraries, RB
methods are used nowadays in several specialized simulation softwares such as NiftySim
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[19] or the commercial code Akselos∗. However, these implementations are restricted to
their specific application domain.
This article is organized as follows: Section 2 contains a brief introduction to the

RB methodology and provides the mathematical background needed to follow the tech-
nical discussions in the subsequent sections. We discuss pyMOR’s design from a bird’s
eye perspective and compare it to other design approaches in Section 3. In Section 4,
we cover pyMOR’s interface classes in more detail, discuss important implementational
aspects and give a basic example, how external solvers can be integrated with pyMOR.
Moreover, we discuss the parallelization of pyMOR’s reduction algorithms. In Section 5,
we finally present technical benchmarks and a more advanced numerical example which
demonstrate the performance of our software design and its applicability to large-scale
problems.

2. The reduced basis method. In this section we give a very short introduction to
the RB methodology that will hopefully give the reader sufficient background to under-
stand the discussion of our software design and our numerical experiments. We mainly
focus on the basic class of linear, coercive, affinely decomposed problems for which the
fundamental ideas of the approach can be most clearly described. A few of the many
extensions of the methodology are discussed in Section 2.3. For a more detailed intro-
duction to RB methods we refer to [15, 18, 30].

2.1. Linear, coercive, affinely decomposed problems. We consider parametrized
linear, strongly elliptic problems in weak form. More abstractly, we search for solutions
uµ ∈ V in some Hilbert space V satisfying

Bµ(uµ, ϕ) = F (ϕ) ∀ϕ ∈ V. (1)

Here, for each parameter µ contained in some parameter space µ ∈ P, Bµ is a continuous,
coercive bilinear form and F is a continuous linear functional on V . Due to the Lax-
Milgram theorem, (1) admits a unique solution for every µ. Moreover, we assume that
Bµ is affinely decomposed, i.e., there are Q ∈ N bilinear forms B1, . . . , BQ : V × V → R,
and mappings θ1, . . . , θQ : P → R, such that

Bµ =

Q∑
q=1

θq(µ)Bq ∀µ ∈ P. (2)

Our goal is now to be able to quickly find approximations uµ for arbitrary µ ∈ P,
assuming we are allowed to compute a few selected uµ during a preceding offline phase.
The latter is in practice achieved by assuming that 1 is already the result of an appropriate
high-dimensional discretization of the original analytical equation, which, however, can
only be solved with large computational effort.

∗http://www.akselos.com
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The basic idea of the RB method is to first find appropriate µ1, . . . , µN ∈ P during
the offline phase such that VN := span{uµ1 , . . . , uµN } is a good approximation space for
the so called solution manifoldM := {uµ | µ ∈ P}. Then, an approximation uN,µ ∈ VN
of uµ is obtained during the online phase by Galerkin projection of (1), i.e. uN,µ satisfies

Bµ(uN,µ, ϕ) = F (ϕ) ∀ϕ ∈ VN . (3)

Again, (3) has a unique solution according to the Lax-Milgram theorem. Assuming,
moreover, we have bounds

αµ‖ϕ‖2 ≤ Bµ(ϕ,ϕ) ∀ϕ ∈ V, ‖Bµ‖ ≤ γµ ∀µ ∈ P, (4)

Cea’s lemma yields the a-priori quasi-best approximation bound

‖uµ − uN,µ‖ ≤
γµ
αµ

inf
ϕ∈VN

‖uµ − ϕ‖. (5)

To solve (3) numerically, we choose a basis b1, . . . , bN of VN and let uN,µ ∈ RN be the
coefficient vector of uN,µ with respect to this basis, i.e.

uN,µ =
N∑
n=1

uN,µ,nbn. (6)

With BN,µ,i,j := Bµ(bj , bi), FN,i := F (bi), uN,µ is then the solution of the linear equation
system BN,µ · uN,µ = FN . Due to (2), we moreover have BN,µ =

∑Q
q=1 θq(µ)Bq,N ,

where Bq,N denote the matrices of Bq. Thus, (3) can be assembled and solved with
O(QN2 +N3) operations, independently of dimV . With typical basis sizes of N ≈ 100,
(3) can then be solved in less than a millisecond on current hardware.

The coefficients uN,µ usually are not of interest in themselves. However, if the reduced
basis is available, we can reconstruct the reduced solution uN,µ as an element of the
function space V using (6). Moreover, one is often only interested in certain quantities of
interest which are derived from the solution uµ. If these quantities are linear functionals
of uµ, we can again pre-compute their evaluations on b1, . . . , bN to arrive at a reduced
model which can produce these quantities completely independent of dimV .

Finally, we have the following standard residual-based a posteriori bound for the re-
duction error available

αµ
γµ
·
‖Rµ(uN,µ)‖−1

αµ
≤ ‖uµ − uN,µ‖ ≤

‖Rµ(uN,µ)‖−1
αµ

, (7)

where the residualRµ : V −→ V ′ is defined byRµ[uN,µ](ϕ) := F (ϕ)−Bµ(uN,µ, ϕ). Since
we assume V to be finite-dimensional, ‖Rµ(uN,µ)‖−1 can be computed as the norm of
the Riesz representative of Rµ(uN,µ), given by application of the inverse inner product
matrix to the discrete residual vector. Using (2), this computation can be reduced to
O(Q2N2) online operations. For cases where a stability estimate αµ is not known a priori,
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Algorithm 1: Greedy basis generation with error estimator
Input: training set Strain ⊆ P, tolerance ε, max. dimension Nmax

Output: reduced spaces V1, . . . , VN
N ← 0, V0 ← {0}, RD ← Reduce(VN)
while N < Nmax and maxµ∈Strain ErrEst(RBSolve(µ, RD), µ, RD) > ε do

N ← N + 1
1 µ∗ ← argmaxµ∈Strain ErrEst(RBSolve(µ, RD), µ, RD)
2 uµ∗ ← Solve(µ∗)
3 VN ← span(VN−1 ∪ {uµ∗}), RD ← Reduce(VN)
end

several algorithms have been developed to efficiently compute αµ during the online phase
(cf. [30, Section 3.7] and references therein).

2.2. Basis construction. As visible from (5), the reduced solution uN,µ of (3) is a
quasi-optimal approximation of uµ within the given reduced space VN . We are therefore
interested in finding spaces VN minimizing the maximum best approximation error for
uµ over all µ ∈ P. A lower bound for what can be achieved is given by the Kolmogorov
N -width of the solution manifoldM, defined by

dN (M) := inf
VN⊆V

dimVN≤N
sup
u∈M

inf
v∈VN

‖u− v‖. (8)

For the problem class we consider, it is known that the N -widths fall at least sub-
exponentially fast, i.e., there are constants M,a, α > 0 s.t.

dN (M) ≤Me−aN
α
. (9)

Thus, good approximation spaces VN do exist. However, it is usually impossible to find
spaces for which this lower bound dN (M) is attained.
Reduced basis methods often employ greedy algorithms in order to obtain nearly-best

approximation spaces VN . A standard approach is the error estimator controlled greedy
search defined in Algorithm 1. This algorithm assumes the existence of methods RBSolve
and ErrEst for solving the reduced problem and estimating the reduction error given the
required reduced model data RD which is available through the Reduce method. In
each iteration of the algorithm, the maximum reduction error over a finite training set
Strain ⊆ P of parameters is estimated and a high-dimensional solution snapshot uµ∗ for
the parameter µ∗ maximizing the error estimates is computed. This snapshot is then
used to extend the reduced space VN .
It is important to note that in Algorithm 1 only lines 2 and 3 of the main loop in-

volve high-dimensional operations and that these operations are performed only once
per extension step. This allows to afford large training sets Strain, densely sampling the
parameter space P.

5
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If the error estimator used in Algorithm 1 is rigorous and effective (7), this algorithm
is a weak greedy algorithm in the sense of [6]. As a consequence [11], (9) carries over to
the resulting spaces VN in the sense that there are M ′, a′ > 0 only depending on M , a
and supµ∈P γµ/αµ, s.t.

sup
µ∈Strain

inf
v∈VN

‖uµ − v‖ ≤M ′e−a
′Nα

. (10)

In conclusion, if we assume that our training set Strain is chosen dense enough, we will
observe a (sub-)exponentially fast decay of the maximum reduction error, leading to large
computational savings for many application problems.

2.3. Extensions. The presented basic RB methodology can be extended in many di-
rections, making it suitable for a wide range of application problems. We briefly cover
three extensions which are relevant for our numerical examples.

2.3.1. Proper orthogonal decomposition. As an alternative to a greedy construc-
tion of VN (Algorithm 1), we can perform a ‘proper orthogonal decomposition’ (POD)
of a given training set of solution snapshots {uµ1 , . . . , uµK} ⊂ V to obtain a set of or-
thogonal basis vectors which describe the ‘main directions’ in V by which the snapshot
set is characterized. More precisely, let Φ : RK −→ V be the linear mapping sending the
k-th canonical basis vector of RK to uµk . Then the k-th POD mode of the training set is
defined to be the k-th left-singular vector of the singular value decomposition of Φ. The
spaces VN,pod spanned by these vectors are l2-optimal in the sense that

K∑
k=1

inf
v∈VN,pod

‖uµ,k − v‖2 = min
VN⊆V

dimVN≤N

K∑
k=1

inf
v∈VN

‖uµ,k − v‖2. (11)

POD is therefore a good option if this notion of optimality is desired (and not the
l∞-optimality the greedy approach is designed for). However, POD quickly becomes
prohibitively expensive when a large training set is needed to approximate the solution
manifold, since the full solution snapshot has to be computed for each parameter from
the training set.

2.3.2. Instationary problems. The RB methodology can be extended to instationary
problems of the form

〈∂tuµ(t), ϕ〉+Bµ(uµ(t), ϕ) = F (ϕ) ∀ϕ ∈ V,
uµ(0) = u0,µ

(12)

in a straightforward way. The most common approach is to perform a Galerkin projection
of (12) onto a reduced space VN ⊆ V to arrive at an ordinary differential equation system
of dimension N (method of lines).
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Note, however, that solution snapshots are whole trajectories now, so it is no longer
obvious how to extend VN after a parameter µ∗ has been selected in Algorithm 1. A well-
established approach with proven quasi-optimality is the Pod-Greedy algorithm [14],
which performs a POD of the orthogonal projection error trajectory uµ∗(t)−PVN (uµ∗(t)),
of which the first modes are then added to VN .

2.3.3. Empirical interpolation. If Bµ does not satisfy (1) or even is nonlinear in the
first variable, the standard RB approach is no longer efficient: while (3) is still posed
on the low-dimensional space VN , we cannot solve (3) online without resorting to high-
dimensional computations which will deteriorate most savings in computation time.
A very generic approach to overcome this issue is empirical operator interpolation:

given x1, . . . , xM ∈ V , c1, . . . , cM ∈ V ′ such that the matrix IM := (cj(xi))
M
i,j=1 is

non-singular, we approximate Bµ by the interpolated form IM (Bµ) uniquely defined by
IM (Bµ)(v, ·) ∈ span{c1, . . . , cM} and

IM (Bµ)(v, xi) = Bµ(v, xi), i = 1, . . . ,M, (13)

for all v ∈ V . One easily checks that

IM (Bµ)(v, ·) = [c1, . . . , cM ] · I−1M ·
[
Bµ(v, x1), . . . , Bµ(v, xM )

]T
. (14)

In many cases, for instance when the xi are chosen from a finite element basis and
Bµ is the finite element discretization of a partial differential operator, the evaluations
Bµ(v, x1), . . . , Bµ(v, xM ) can be computed quickly and independently of dimV by know-
ing only M ′ < C ·M degrees of freedom of v for a fixed constant C (e.g. depending on
the stencil of the discretization).
Thus, if we approximate Bµ by IM (Bµ) in (3) and substitute (14), we obtain

[c1(ϕ), . . . , cM (ϕ)] · I−1M ·
[
Bµ(uN,µ, x1), . . . , Bµ(uN,µ, xM )

]T
= F (ϕ), (15)

for all ϕ ∈ VN , which can be solved dimV -independently by pre-computing cj(bn) and
only storing the coefficients of bn which are required for the evaluation of Bµ(v, xm).
The collateral interpolation basis c1, . . . , cM , along with the interpolation points x1,

. . ., xM , is obtained during the offline phase from a greedy search (Ei-Greedy, [17]) or
POD (DEIM, [9]) on an appropriate training set of evaluations of Bµ.

3. Design of reduced basis software. In this section we discuss the software design
issues which arise when implementing RB schemes and cover typical design approaches.
We then present the approach taken by pyMOR and compare it to these standard designs.

3.1. Required high-dimensional operations. The RB method is by nature a very
generic model reduction framework which can be applied to a wide range of problems.
It is an important feature of RB methods that existing high-dimensional discretizations
can be used as they are in order to derive a reduced order model: any discretization,
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no matter if, e.g., continuous finite elements, discontinuous Galerkin or meshless, can be
used as long as the high-dimensional problem is of an appropriate form, such as (1) or
(12).
However, while this is true for the mathematical formulation, the code implementing

the high-dimensional discretization nearly always has to be adapted for model order
reduction:
While the main purpose of the solver already is the computation of solution snapshots

uµ, it is often not known a priori (cf. Algorithm 1) for which parameters µ the solution
is required. Thus, either the high-dimensional solver has to stay initialized in memory
during the whole offline phase, or the solver has to be re-initialized (mesh generation,
matrix assembly, etc.) for each new solution snapshot.
To ensure the numerical stability of the reduced model, the new solution uµ has to be

orthonormalized w.r.t. to the existing reduced basis, e.g. using a stabilized Gram-Schmidt
algorithm, before it can be added to the reduced basis. For instationary problems (12),
the solution trajectory has to be orthogonally projected onto the current reduced space
VN and a POD of the projection errors has to be computed.
The assembly of reduced system matrices for (3) requires the evaluation of Bµ and F for

each (combination of) basis vector(s) of VN . Moreover, the affine decomposition (2) needs
to be taken into account for offline/online decomposition. The assembly of the reduction
error estimator requires the computation of Riesz representatives for all residual parts
(2) and all inner products between them. An alternative approach with higher numerical
stability [7] requires the computation of an orthonormal basis for the span of the Riesz
representatives and the computation of the coefficients of the representatives with respect
to the basis. For the reduction of non-affinely decomposed or nonlinear problems using
empirical operator interpolation (Section 2.3.3), Bµ has to be evaluated on appropriate
uµ, the collateral basis ci and interpolation points xi (14) have to be determined using
the Ei-Greedy or DEIM algorithm and the corresponding reduced data has to be
computed.
Finally, if access to the reduced solutions as elements of V is desired (e.g. for visual-

ization), the solver needs to be invoked to perform the reconstruction (6).

3.2. Required low-dimensional operations. In order to solve the reduced problem
(3), the same type of algorithms (linear solvers, time-stepping, Newton algorithm) are
required as for the solution of (1). However, the involved data structures will be dif-
ferent: dense instead of sparse matrices, no or shared memory parallelization instead of
distributed memory parallelization.
For reduced problems involving empirical operator interpolation, the restricted evalu-

ation of Bµ according to (15), is required.
Lastly, the solution of (3) is already required in the offline phase during greedy basis

generation which, in case of adaptive variants [16] of Algorithm 1, may require substantial
implementation work in itself.
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3.3. Classical design approaches. Reduced basis implementations can be mainly
categorized by how they realize the interaction between high- and low-dimensional oper-
ations. All implementations we are aware of fall into one of the following three categories:
Approach 1: Separate software. The whole RB scheme is implemented as a single

software package which is able to read and process high-dimensional data produced by
some external or self-written high-dimensional solver. All high-dimensional operations
(Section 3.1) within the offline phase are carried out by the RB software, with the possible
exemption of the solution snapshot computation which may be performed by the solver.
A typical examples is the rbMIT [28] package for Matlab.
The main benefit of this approach is its simplicity: a single self-contained software

package can be developed and maintained by experts for model order reduction in a
programming language ecosystem of their choice. Interfacing external high-dimensional
solvers is simple, only export of system matrices and (solution) vectors has to be imple-
mented on the solver side.
Consequently, the RB software has to be able to work with the high-dimensional data

produced by the solver. E.g., the given sparse matrix format has to be supported and an
adequate linear solver for the computation of Riesz representatives needs to be available.
While this may be easily possible for small to medium sized discretizations using the
tools provided by numerics packages such as Matlab, the limitations of this approach
become obvious when we think of large-scale memory distributed problems solved on
computer clusters where, for instance, a single system matrix for the whole problem
is never assembled. By design, this approach also cannot be used in conjunction with
matrix-free solvers.
Handling of empirical interpolation is problematic, as well: either, for each model the

exact same Bµ (with correct ordering of degrees of freedom) has to be re-implemented,
or Bµ has to be evaluated by the external solver. This, however, does not seem to fit the
paradigm of this approach very well.
Approach 2: Inside high-dimensional solver. The complete reduction process is carried

out by the high-dimensional solver which has been extended by an RB module. Examples
are the RB implementations of the libMesh [21] and feel++ [10] PDE solver packages.
This approach offers the tightest possible integration between the high-dimensional

model and the RB code, allowing maximum performance and easy development of ad-
vanced reduction techniques which might require special operations on the high-dimen-
sional data. Also, there cannot be any interoperability issues between different versions
of the model reduction and the solver code.
As a downside, implemented algorithms can only be used within the chosen software

ecosystem. Given the large number of available PDE solver libraries, this vastly di-
minishes the reusability of the code and ultimately hinders collaboration. Moreover,
the implementor is required to have a good understanding of the inner workings of the
PDE solver library, which is typically written in a system language such as C++. Many
researchers working on model order reduction do not have such technical knowledge,
however. Consequently many new methods are often only evaluated for ad hoc imple-
mentations of academic ‘toy problems’.
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Approach 3: Separate low- and high-dimensional operations. As a compromise between
the aforementioned approaches, all low-dimensional operations are implemented in a ded-
icated reduced basis software which communicates over well-defined interfaces with the
PDE solver carrying out the high-dimensional operations (Section 3.1). This approach
has been pursued by the integration of RBmatlab with the dune-rb module of the DUNE
numerics environment [12].
This approach shares many benefits of the previous two approaches. The main RB logic

can be developed independently from the solver in a programming language of choice and
can be reused with any external solver implementing the necessary interfaces. All high-
dimensional operations are performed by optimized solver code. Memory distributed or
matrix-free implementations can be easily utilized.
However, extending the PDE solver to perform all high-dimensional model reduction

operations (Section 3.1) still requires substantial work. A change of the reduction algo-
rithm will usually also require modification of the RB code in the solver. This can be
a major issue when both components are developed by separate teams, in particular for
research projects where these components are under constant change.

3.4. Design of pyMOR. Our design is based on the central observation that all high-
dimensional operations in RB schemes (Section 3.1) can be expressed using only a small
set of basic operations on operators and (collections of) vectors which are independent
from the concrete reduction scheme in use. This lead us to the following basic design
paradigm for pyMOR:

1. Define model reduction agnostic interfaces for the mathematical objects involved
with RB methods and related schemes.

2. Generically implement all algorithms through operations provided by these inter-
faces.

As with design approach 1, pyMOR offers all model reduction code in a single self-
contained software package. Since pyMOR provides its own basic discretization toolkit, it
can be used completely on its own to easily test new reduction algorithms. The data
types provided by the toolkit can also be used to import high-dimensional data from disk
which has been produced by an external solver. This allows the use pyMOR’s algorithms
in a workflow similar to design approach 1. Once a new model reduction algorithm has
been developed, pyMOR’s interfaces allow to easily apply the exact same algorithm to high-
fidelity models implemented in a high-performance solver running on a large computer
cluster.
Integrating a new external solver will usually require additional work on the solver

side. However, since pyMOR’s interfaces work on a lower, model reduction agnostic level
compared to design approach 3, these modification can be made mostly independently
from the development of new model reduction algorithms. Also, our approach offers
higher code reusability and maintainability since the complete reduction algorithm can be
implemented in a single software library. This is particularly important when the model
reduction library shall be used in conjunction with different PDE solver ecosystems.

10
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pyMOR’s interfaces correspond to data structures which are already present in most
PDE solver designs: operators and vectors. Thus, implementing pyMOR’s interfaces is
basically equivalent to exposing the solver’s internal data structures via a public API.
Refactoring a PDE solver to offer such an API generally empowers the user to easily use
and extend the solver in new ways which have not been envisioned by the developers.
E.g., pyMOR implements time-stepping algorithms which can be used to easily manufacture
instationary discretizations out of stationary discretizations (see Section 5.2). While
time-stepping schemes are clearly not a focus for pyMOR’s development, a software library
of advanced time-stepping algorithms could use such an API to allow easy testing of
these algorithms with a given discretization, after which a selected algorithm might
be implemented in the solver for maximum performance. Moreover, a public API also
allows interactive control of the solver, especially when used in conjunction with dynamic
languages such as Python. Such interactive sessions can be a powerful tool for debugging,
allowing to inspect and modify the solvers state in ways not possible with a classical
debugger.
Note that design approach 3 and pyMOR’s design strongly differ in the view on the

relationship between the model reduction software and the high-dimensional solver: while
approach 3 advocates a strong separation between low- and high-dimensional operations,
we think of both components as strongly intertwined. E.g., with pyMOR it is easily possible
to perform preliminary analyses of reduced models for which offline/online decomposition
is not yet available.
While design approaches 2 and 3 allow to perform all high-dimensional reduction op-

erations with the maximum efficiency the PDE solver has to offer, it is clear that pyMOR’s
interface design comes at a price of sub-optimal performance: every call of an inter-
face method incurs a certain overhead, compiler optimizations may be hindered and the
restriction to the available interface methods may prevent implementations which opti-
mally exploit the given data structures. To asses the possible loss in performance, we
have conducted several performance benchmarks (Section 5.1) which show that, while a
certain overhead exists, it becomes negligible for large problems.

4. Model Reduction with pyMOR. In this section we present pyMOR’s interfaces in
more detail (Section 4.1) and discuss how the integration of external solvers via pyMOR’s
interfaces can be technically realized (Section 4.2). A detailed example for the reduction
of models implemented with the FEniCS, deal.II and DUNE solver libraries is presented
in Section 4.3. Finally, we cover the parallelization of pyMOR’s reduction algorithms in
Section 4.4.

4.1. pyMOR’s Interface Classes. From a bird’s eye perspective, pyMOR can be seen as
a collection of generic algorithms operating on VectorArray, Operator and Discreti-
zation objects which implement the interface methods that are defined by the abstract
VectorArrayInterface, OperatorInterface and Discretization base classes.† To in-

†The full documentation of all interface methods is shipped with pyMOR and is available online at
http://docs.pymor.org/.

11

http://docs.pymor.org/


R. MILK, S. RAVE AND F. SCHINDLER

Discretization

Operator

product

operator, rhs

LincombOperator

Operator

Operator

. . .

VectorArray

Reductor

apply inverse

apply2

apply2

Gram-Schmidt

apply2

axpy

scal

Greedy
reductor(d, basis)

gram schmidt basis extension(basis, U, prod)

U = d.solve(mu)

Generic algorithms . . .

pyMOR

PDE solver deal.II FEniCS DUNE . . .

dune-pymordolfinpymor-deal.II

dealii model()

fenics model()

dune model()

example.py

User Code

U = d.solve(mu)
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greedy(d, ...)

d, prod = ...

Figure 1: Schematic view of a typical pyMOR application displaying the interaction be-
tween the user code, external PDE solvers and several parts of pyMOR (see
Section 4.3).

tegrate pyMOR with an external high-dimensional solver, wrapper classes for these types
representing the corresponding high-dimensional data inside the solver have to be imple-
mented (cf. Figure 1).
VectorArrays are ordered collections of vectors of same dimension, on which standard

linear algebra operations such as linear combination (lincomb) or inner products (dot,
gramian) can be performed. Selected degrees of freedom can be extracted (components),
as required for empirical interpolation. All VectorArray methods can either act on single
vectors or the whole array. Choosing arrays of vectors as elementary objects in pyMOR (as
opposed to single vectors) not only allows to express many model reduction operations in
a concise manner, it also allows implementations which optimally exploit the vectorized
structure of the instructions for performance. An example of such an implementation is
pyMOR’s NumpyVectorArray (cf. Section 5.1). Lists of single vector objects inside external
solvers can be easily managed using the ListVectorArray class.
Operators, which in pyMOR represent parametric matrices, bilinear forms, inner prod-

ucts, functionals or nonlinear operators, can be applied to VectorArrays, yielding a new
VectorArray of results (apply). Access to (linear) solvers is provided via apply_inverse,
the Jacobian of an Operator is obtained as a new Operator via the jacobian method.
Affinely decomposed (2) operators are represented as LincombOperators which hold lists
of the Operators Bq and the ParameterFunctionals θq. LincombOperators can con-
tain other LincombOperators as summands, allowing an easy construction of arbitrarily
nested affine decompositions, which are automatically handled by pyMOR’s reduction al-
gorithms.
Finally, Discretizations act as structured containers for Operators. For instance,

12
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from pymor.basic import *
from functools import partial

d, prod = pymor_model()

coerc_est = ExpressionParameterFunctional(’min(diffusion)’, d.parameter_type)
reductor = partial(reduce_stationary_coercive,

error_product=prod, coercivity_estimator=coerc_est)
rd, rc = reduce_naive(d, reductor, 10)

res = reduction_error_analysis(rd, d, rc,
error_norms=[induced_norm(prod)], random_seed=77)

print(res[’summary’])

Listing 1: Main script of example.py (simplified).

StationaryDiscretization has an operator and rhs attribute. Moreover, Discreti-
zations can be solved for a given parameter, returning a solution VectorArray (solve)
which might be visualized using the visualize method. In StationaryDiscretization,
solve for a given parameter mu is implemented generically by calling self.operator.
apply_inverse(self.rhs.as_vector(mu), mu=mu). Other Discretizationsmight call
optimized solution algorithms of an external solver.
It is an important property of pyMOR’s interfaces that each method either returns

low-dimensional data or new VectorArray, Operator or Discretization objects. This
ensures that no high-dimensional data ever has to be communicated between the external
solver and pyMOR and that no code for handling the solver-specific high-dimensional data
structures has to be added to pyMOR.
Note that not only the high-dimensional model but also the reduced low-dimensio-

nal model is represented by VectorArrays, Operators and Discretizations, imple-
mented inside pyMOR. This allows to use all algorithms in pyMOR with both high- and
low-dimensional objects. For instance, the reduced model could be interpreted again as
the high-dimensional model for an additional reduction step.

4.2. Implementation. pyMOR is implemented with Python, a managed, dynamically
typed programming language, which is easy to pick up (even for inexperienced program-
mers), allowing quick and easy prototyping algorithms.
In contrast to MATLAB, Python does not have copy-on-write semantics for assignment

which, while allowing more precise control over data, often raises the issue of object
ownership. To alleviate the novice user from having to care too much about ownership,
pyMOR enforces immutability on all Discretizations and Operators. In combination
with Python’s dynamic memory management, this makes the question of ownership ir-
relevant for these objects. For VectorArrays, we have implemented shallow-copy/deep-

13
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def pymor_model():
problem = ThermalBlockProblem(num_blocks=(2, 2))
d, _ = discretize_elliptic_cg(problem, diameter=1./100.)
return d, d.h1_0_semi_product

def reduce_naive(d, reductor, rb_size):
training_set = d.parameter_space.sample_randomly(rb_size)

basis = d.operator.source.empty()
for mu in training_set:

basis.append(d.solve(mu))

rd, rc, _ = reductor(d, basis)
return rd, rc

Listing 2: Methods used in Listing 1.

copy-on-write semantics.
While Python is designed as a general purpose language, the NumPy [27] package of-

fers a multi-dimensional array class with similar feature set and performance as MATLAB
matrices. Additional numerical algorithms and sparse matrix types can be found in the
SciPy [20] package. Both packages are used extensively in pyMOR for all low-dimensional
data structures as well as for pyMOR’s builtin discretization toolbox.
pyMOR’s interfaces do not make any assumption on how the communication between

pyMOR and the external solver is implemented by the interfacing classes, and many com-
munication patterns are conceivable, such as disk-based communication via job and out-
put files or network-based communication via a standard protocol such as xml-rpc or
custom protocols. Being a long-running general purpose scripting language, Python is
ideally suited for pyMOR’s interface-based approach, offering a large selection of extension
packages for handling virtually any established input-output protocol.
However, in spirit of the tight coupling between pyMOR and the external solver as pro-

moted by our design, we favor, whenever possible, to integrate the solver by re-compiling
it as a Python extension module, giving Python direct access to the solver’s data struc-
tures. This design not only delivers maximum performance as no communication over-
head is present, it also allows to directly manipulate the solvers state from within Python
beyond the operations available via pyMOR’s interfaces. This allows easy exploration of
new ideas and offers the user an interactive Python debugging shell with direct access to
the solver’s memory. All external solvers in the following examples have been integrated
with this approach, showing its feasibility, even for MPI-distributed solvers running on
high-performance computing clusters. This approach has also been taken for the inte-
gration of pyMOR with the BEST battery simulation code as part of the Multibat project
[25].

14
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def reduce_pod(d, reductor, product, snapshots, rb_size):
training_set = d.parameter_space.sample_uniformly(snapshots)

snapshots = d.operator.source.empty()
for mu in training_set:

snapshots.append(d.solve(mu))
basis, singular_values = pod(snapshots, modes=rb_size, product=product)

rd, rc, _ = reductor(d, basis)
return rd, rc

def reduce_greedy(d, reductor, product, snapshots, rb_size):
training_set = d.parameter_space.sample_uniformly(snapshots)
ext_alg = partial(gram_schmidt_basis_extension, product=product)
result = greedy(d, reductor, training_set,

extension_algorithm=ext_alg, max_extensions=rb_size,
pool=new_parallel_pool())

return result[’reduced_discretization’], result[’reconstructor’]

def reduce_adaptive_greedy(d, reductor, product, validation_mus, rb_size):
ext_alg = partial(gram_schmidt_basis_extension, product=product)
result = adaptive_greedy(d, reductor, validation_mus=-validation_mus,

extension_algorithm=ext_alg, max_extensions=rb_size,
pool=new_parallel_pool())

return result[’reduced_discretization’], result[’reconstructor’]

Listing 3: Further reduction methods in example.py.

4.3. pyMOR by example. In the following, we consider a basic example of how four dif-
ferent high-dimensional models of the form (1), implemented with pyMOR’s discretization
toolkit, FEniCS [22], deal.II [2] and the DUNE numerics environment [4, 3], can be all
reduced with pyMOR using identical reduction algorithms.
Listing 1 contains the typical workflow in a pyMOR application. A Discretization

object holding the high-dimensional model is obtained first, here by by calling the
pymor_model method. In addition, pymor_model returns an Operator representing the
inner product on the space V . Next, a reductor for performing the actual RB projection
is selected. Here, we choose the generic reduce_stationary_coercive method, which
will also assemble the error estimator (7) according to [7]. A ParameterFunctional which
assigns to each µ ∈ P the coercivity estimate αµ is provided. The reduced basis of size 10
and the resulting reduced model are then created using the reduce_naive method, which
returns the Discretization holding the reduced model (rd) along with a Reconstructor
object which is able to perform the high-dimensional reconstruction (6). Finally, the qual-
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ity of the reduced model is evaluated using pyMOR’s reduction_error_analysis method,
which computes the model reduction error and the error estimator effectivity for random
parameters.
Listing 2 contains the pymor_model and reduce_naive methods used in Listing 1. The

former uses pyMOR’s builtin discretization toolkit, first instantiating a problem description
class (line 2) and then discretizing the problem using first order continuous finite elements
(line 3). We consider here a classic 2×2 ‘thermal block’ test problem of finding solutions
for the stationary diffusion equation

−∇ ·
(
aµ(x)∇uµ(x)

)
= 1, x ∈ Ω := [0, 1]2

uµ(x) = 0, x ∈ ∂Ω
(16)

with diffusion coefficient aµ given by the linear combination of indicator functions

aµ(x) :=
m∑
i=0

n∑
j=0

µi,j · χ[i/m,(i+1)/m]×[j/n,(j+1)/n](x), (17)

m = n = 2, for parameters µ ∈ P := [0.1, 1]2×2. We can think of this as computing
the heat distribution in a square material composed of 2× 2 blocks of different thermal
conductivity µi,j while being uniformly heated and its temperature at the boundary kept
constant at a value of 0.
The reduce_naive method simply computes the reduced basis by selecting a set of

random parameters (line 6) for which the high-dimensional solution is computed and
appended to the basis VectorArray (lines 7–9).
Listings 1 and 2 already form a complete pyMOR application. However, to obtain

good results, more advanced basis generation techniques schould be used instead of
reduce_naive. Listing 3 contains three alternatives using POD, the basic greedy al-
gorithm (Algorithm 1) and an extended adaptive version according to [16]. reduce_pod
extends reduce_naive by computing a POD of the given solution snapshots (line 6).
The reduce_greedy method mainly defers all work to pyMOR’s greedy implementation
(lines 12–14) which has to be called with a training set of parameters (line 10) and
a method for extending the existing reduced basis by the new solution snapshot. For
this stationary problem, we can simply choose gram_schmidt_basis_extension which
orthonormalizes the new solution snapshot w.r.t. the old basis using a stabilized Gram-
Schmidt process including re-orthonormalization for improved numerical accuracy. Sim-
ilarly, reduce_adaptive_greedy defers all work to pyMOR’s adaptive_greedy method.
Both algorithms are provided a new default worker pool (new_parallel_pool) for auto-
matic parallelization of the reduction error estimation (line 1 of Algorithm 1).
All four reduction methods are included in the example.py script provided in the

supplementary material, which contains a slightly extended version of Listing 1 as main
function. In addition to pymor_model, three further high-dimensional models are avail-
able (cf. Listing 4):
fenics_model uses the dolfin [23] Python module of the FEniCS project to discretize

a 4× 3 ‘thermal block’ problem (16), (17) (m = 4, n = 3) using higher order finite
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def fenics_model():
... # FEniCS code to setup discrete function space,
V, matrices, rhs, h1_mat = ... # as well as system, inner product and rhs matrices

from pymor.operators.fenics import FenicsMatrixOperator
from pymor.vectorarrays.fenics import FenicsVector
coeffs = [ProjectionParameterFunctional(’diffusion’, (4, 3), (3 - y - 1, x))

for x in range(4) for y in range(3)]
ops = [FenicsMatrixOperator(m, V, V) for m in matrices]
op = LincombOperator(ops, coeffs)
rhs = VectorFunctional(ListVectorArray([FenicsVector(rhs, V)]))
h1_product = FenicsMatrixOperator(h1_mat, V, V, name=’h1_0_semi’)

param_space = CubicParameterSpace(op.parameter_type, 0.1, 1.)
d = StationaryDiscretization(op, rhs, products={’h1_0_semi’: h1_product},

parameter_space=param_space)
return d, d.h1_0_semi_product

def dealii_model():
from dealii_example import ElasticityExample
example = ElasticityExample(refine_steps=9)

from pydealii.pymor.operator import DealIIMatrixOperator
from pydealii.pymor.vectorarray import DealIIVector
coeffs = [ProjectionParameterFunctional(’mu’, tuple()),

ProjectionParameterFunctional(’lambda’, tuple())]
ops = [DealIIMatrixOperator(example.mu_mat()),

DealIIMatrixOperator(example.lambda_mat())]
op = LincombOperator(ops, coeffs)
rhs = VectorFunctional(ListVectorArray([DealIIVector(example.rhs())]))

param_space = CubicParameterSpace(op.parameter_type, 1., 10.))
d = StationaryDiscretization(op, rhs, products={"energy": ops[0]},

parameter_space=param_space)
return d, d.energy_product

def dune_model():
from spe10 import examples, wrapper
example = examples[’aluconformgrid’][’pdelab’][’istl’](’[60 220 85]’, True)
d = wrapper[example.discretization()]

param_ranges = {’blockade’: (1e-4, 1), ’sink’: (0, 1)}
param_space = CubicParameterSpace(op.parameter_type, ranges=param_ranges)
d = d.with_(parameter_space=param_space)
return d, d.energy_0_product.assemble(1e-4)

Listing 4: Further models in example.py (shortened).
17
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Figure 2: Error analysis of the RB approximation of fenics_model using
reduce_greedy. Left: Maximum H1-model order reduction error (red, solid)
on a test set of 1000 parameters and maximum estimated error (red, dashed)
on the training set in dependence on the reduced basis (Strain,1 := {0.1, 1}4×3:
, Strain,2 := {0.1, 0.55, 1}4×3: +); average time for the computation of a

reduced solution including error estimation in dependence on the reduced basis
size (blue). Right: Plot of the absolute difference (dark: 0, light: 6.03 · 10−7)
between the detailed and the reduced solution |uµ − u150,µ| (for Strain,2) for
the worst approximated parameter of the test set.

elements. The resulting matrix objects are then wrapped by pyMOR’s FenicsMatrix-
Operator and FenicsVector classes which translate pyMOR interface calls into appropriate
operations on the underlying FEniCS data structures (lines 8, 10, 11). The affine decom-
position (2) of the problem is encoded by defining appropriate ParameterFunctionals
and then constructing an operator representing the decomposition (lines 6, 7, 9). Finally,
an appropriate parameter space is chosen, and everything is wrapped up in a generic
StationaryDiscretizaion object (lines 12–14). Figure 2 (left) shows model reduction
errors and timings for fenics_model (second order finite elements, 361.201 degrees of
freedom) reduced by reduce_greedy using the training sets Strain,1 := {0.1, 1}4×3 and
Strain,2 := {0.1, 0.55, 1}4×3. We observe that choosing a too small training set leads to
overfitting : while the solution is very well approximated for parameters in the training
set, the approximation quality is not maintained for parameters not contained in the
training set. The error |uµ − uN,µ| for the final basis size (Strain,2) is shown in Figure 2
(right).
In discretize_dealii, we consider the two-dimensional linear elasticity problem

−∇λ (∇ · uµ,λ)− (∇ · µ∇)uµ,λ −∇ · µ (∇uµ,λ)T = f in Ω = [0, 1]2 (18)

with Lamé parameters µ, λ ∈ [1, 10] and homogeneous Dirichlet boundary conditions
from the tutorial documentation for the deal.II‡ [2] C++ solver library (cf. Figure 3,

‡https://dealii.org/8.1.0/doxygen/deal.II/step_8.html
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Figure 3: Sample solutions and error analysis of the RB approximation of dealii_model
using adaptive_greedy. Plot of displacement field uµ,λ for (µ, λ) = (1, 1)
(left) and (µ, λ) = (1, 10) (middle) with color representing magnitude (blue
= 0, red = 0.033). Right : Plot of maximum energy model reduction error (top,
) and error estimator effectivity (bottom, min: , max: +) over a test set of

10 random parameters against the size of the reduced basis ([0, 10]).

left, middle). The tutorial program was refactored into the ElasticityExample class and
Python bindings for this class were added (line 17). Moreover, we implemented Python
bindings for the deal.II SparseMatrix and Vector classes, as well as corresponding
pyMOR wrapper classes. These are used to make the deal.II matrices and right-hand side
vector provided by ElasticExample available as pyMOR Operators (lines 23, 24, 26). The
ElasticityExample calculates a solution for the displacement field uµ,λ by discretizing
(18) with first order continuous Galerkin finite elements (65.536 degrees of freedom)
and solves the resulting linear system with a conjugate gradient method. The Python
bindings and pyMOR wrappers are available in the pymor-deal.II package. Figure 3
(right) shows model reduction errors and estimator effectivities for dealii_model reduced
by adaptive_greedy for a reduced basis of size 10.
dune_model uses the DUNE numerics environment to discretize a multi-scale single phase

flow problem with the highly heterogeneous and anisotropic SPE10 model2 permeability
field§, with inflow boundary conditions at x1 = 0, a fixed pressure at x1 = 5 and no flow
at the other boundaries:

−∇ ·
(
κµ∇uµ

)
= fµ, in Ω := [0, 2]× [0, 5]× [0, 1]. (19)

The parameter µ allows to toggle the presence of a blockade at x1 = 2.5 and a sink
near the blockade (compare Figure 4, left and middle). Problem (19) is discretized with
dune-gdt [31] using first order continuous finite elements on a tetrahedral grid with
6.7 · 106 elements (1.2 · 106 degrees of freedom). The integration with pyMOR is based on
dune-pymor which automatically wraps the resulting discretization objects defined in the
dune-hdd module as pyMOR Discretizations (line 34) taking the affine decomposition of
the problem into account. Only the parameter space is additionally chosen (lines 36–37).

§http://www.spe.org/web/csp/datasets/set02.htm
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Figure 4: Data function, sample solutions and adaptively refined set of training samples
of dune_model using adaptive_greedy. Top center: logarithmic plot of the
Frobenius norm of the anisotropic SPE10 model2 permeability tensor (dark:
6.65 · 10−8, light: 2 · 105). Left and bottom center: volume plot of the pressure
uµ and vector plot of the reconstructed Darcy velocity −κµ∇uµ (colored and
scaled by magnitude) for several parameters (blue: weak, red: strong): µ =
(10−4, 0) bottom left, µ = (10−4, 1) top left and µ = (1, 0) bottom center. The
first parameter component models the existence of a blockade in the middle
(enabled: 10−4, disabled: 1) and the second parameter component acts as
a switch for a sink near the blockade. Right: plot of the adaptively refined
training set for a reduced basis of size 50 (colored contribution of the local
error indicators, blue: low, red: high) and selected training parameters (white
circles). Note the strong influence of the first parameter component (which
influences the operator), as opposed to the second parameter component (which
only influences the right hand side).

Figure 4 shows the adaptively refined training set and selected training parameters for a
reduced basis of size 50, which yields a maximum absolute model reduction energy error
of 5.5 · 10−10 over a set of 100 randomly chosen test parameters.
Again, let us note that all four high-dimensional models can be reduced with the

exact same model reduction code, ranging from the trivial reduce_naive algorithm to
the sophisticated adaptive snashpot selection in reduce_adaptive_greedy. In fact, the
example.py script provided in the supplementary material allows to choose any of the
16 possible combinations between PDE solver and reduction method.

4.4. Parallelism in pyMOR. In many application areas of reduced order modeling, not
only the efficiency of the reduced model but also the required time for generating the
model needs to be take into account. Thus, RB software should be able to perform offline
computations with good computational efficiency. For modern computing architectures
this requires parallelization of algorithms.
In a greedy basis generation algorithm (Algorithm 1), the main computational work

is made up by three types of operations: 1. reduction error estimation on Strain, 2. com-
putation of the solution snapshot uµ∗ , 3. reduced basis extension and reduction of the
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high-dimensional model.
For the parallelization of the high-dimensional operations in steps 2 and 3, pyMOR re-

lies on already existing, high-performance parallelization of the external solver. Since
pyMOR’s interfaces require no communication of any high-dimensional data and are com-
pletely implementation agnostic, memory distributed vector data can be handled via the
VectorArray interface as efficiently as any non-distributed data.
To ease the integration of MPI distributed codes, pyMOR offers tools which allow to au-

tomatically support MPI parallel use of the solver when pyMOR bindings for the sequential
case already exist. For instance, to parallelize fenics_model in Listing 4, one would
simply execute:

d = mpi_wrap_discretization(lambda: fenics_model()[0],
use_with=True, pickle_subtypes=False)

prod = d.h1_0_semi_product

When the script is executed with mpirun, an event loop is launched on all MPI ranks
except for rank 0 which executes the main script. mpi_wrap_discretization then
instructs each rank to execute the function given as first argument to obtain a local
Discretization object. The Discretization returned by mpi_wrap_-discretization
and all contained Operators will then use the event loop to issue MPI distributed op-
erations on the rank-local objects when corresponding interface methods are called. In
Section 5.2, we consider another example where pyMOR’s MPI wrappers are used.
For the parallelization of step 1 and similar embarrassingly parallel tasks which require

little to no communication, pyMOR provides an abstraction layer for existing Python par-
allelization solutions based on a simple worker pool concept (pymor. parallel). For
instance, line 1 in Algorithm 1 could be parallelized by executing

numpy.argmax(pool.map(lambda mu,rd: rd.estimate(rd.solve(mu), mu),
training_set, rd=reduced_discretization))

The function and all arguments are automatically serialized and distributed to the work-
ers of the pool, ensuring that immutable data is only communicated once.
pyMOR currently provides a worker pool implementation based on the IPython [29]

toolkit, which allows easy parallel computation with large collections of heterogeneous
compute nodes, and an MPI-based implementation using pyMOR’s event loop which can
seamlessly be used in conjunction with external solvers using the same event loop. The
MPI-based worker pool was also used for the experiment in Figure 2, employing 16 cores
of the compute server described in Section 5.1. For the larger training set Strain,2 with
531.441 parameters, the total offline computation time was 11 hours, of which 5 hours
were spent on error estimation. Performing the error estimation without parallelization
would have required an additional 37 hours of computation time.

5. Performance evaluation. In this section we evaluate the applicability and per-
formance of pyMOR’s design approach by considering technical benchmarks of some of
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pyMOR’s interfaces, as well as a challenging nonlinear large-scale model order reduction
problem.

5.1. Benchmarks. The main goal of this section is to compare the performance of
pyMOR’s VectorArray and Operator interfaces when used to access external high-dimen-
sional solver data structures to native implementations of these classes. Moreover, we
want to investigate possible performance benefits for vectorized VectorArray implemen-
tations.
As native implementations within pyMOR we consider NumpyVectorArray, which al-

lows vectorized operations on vectors by internally holding an appropriately sized two-
dimensional NumPy array, as well as ListVectorArray maintaining a Python list data
structure holding vector objects implemented as one-dimensional NumPy arrays. The in-
ner product in the pod benchmark is implemented with NumpyMatrixOperators holding
sparse SciPy matrices coming from pyMOR’s own discretization toolbox.
The external solver code is based on the DUNE numerics environment [4, 3], centered

around the discretization toolbox dune-gdt [31] (compare Section 4.3) and is compiled
as a Python extension module as described in Section 4.2.
Our benchmarks were executed on a dual socket compute server equipped with two

Intel Xeon E5-2698 v3 CPUs with 16 cores running at 2.30GHz each and 256GB of
memory available. All benchmarks were performed as single-threaded processes.
Vector array benchmark. We consider the axpy method of the VectorArrayInterface,

which performs a vectorized BLAS-conforming axpy operation, i.e. pairwise in-place ad-
dition of the vectors in the array with vectors of a second array multiplied by a scalar
factor.
As we observe in Figure 5 (left), both ListVectorArray-based implementations show

about the same performance for sufficiently large array dimensions. In fact, the DUNE-
based implementation (dune-gdt, list based) actually performs better than the NumPy-
based implementation (pyMOR, list based), showing the tight integration between pyMOR
and the external solver. The NumpyVectorArray implementation, on the other hand,
cannot benefit from vectorization for larger array dimensions.¶

POD benchmark. As detailed previously (e.g., Section 3.1), the Gram-Schmidt and
POD algorithms are important tools in the context of model reduction. The implemen-
tation of a numerically stable Gram-Schmidt or POD algorithm might not be completely
straightforward and it is an important benefit that pyMOR’s interface design allows to
provide tried and tested implementations of these algorithms which can automatically
be used with any external solver integrated with pyMOR.
pyMOR’s POD algorithm mainly consist of three steps with different complexities:

1. computation of a Gramian matrix with respect to the given inner product (product.
apply2), 2. computation of the eigenvalue decomposition of the Gramian (using the SciPy
eigh method) and 3. mapping right-singular vectors to left-singular vectors (by calling
¶We assume that this is due to the fact that NumPy offers no native axpy operations, such that a

large temporary array has to be created holding all to be added and scaled vectors. It is planned
to improve performance of NumpyVectorArray.axpy by directly calling out to BLAS (cf. https:
//github.com/pymor/pymor/issues/73).
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Figure 5: Log/log plot of the measured execution time of A.axpy (left) and the POD
algorithm (right) for different implementations and several lengths of the vec-
tor array (len(A)==1: , len(A)==4: N, len(A)==16: +, len(A)==64: ,
len(A)==256: 4). Left: Comparison of A.axpy(X) with len(X)==len(A)
for several implementations of A. Right: Comparison of pod(A=A, modes=10,
product==h1_0, orthonormalize=False, check=False) for several imple-
mentations of A and the h1_0 product (solid) and the respective time spent
in scipy.eigh (dotted).

lincomb on the original VectorArray). Note that the computational cost for steps 1 and
3 depends on the VectorArray and Operator implementation, scaling linearly with the
array dimension and quadratically (resp. linearly) with the array length. The computa-
tional cost for step 2 is independent of the space dimension, and only increases with the
number of given vectors.
As the inner product for both benchmarks and all implementations we have chosen the

full H1-product matrix stemming from a first order continuous finite element discretiza-
tion over the same structured triangular grid on the unit square.
As we observe again in Figure 5 (right) both ListVectorArray-based implementation

show roughly equal performance. However, the vectorized pyMOR implementation is able
to clearly outperform both other implementations thanks to the fact that the computa-
tionally dominant steps 1 and 3 of the algorithm can be expressed idiomatically via a
single interface call. This shows that VectorArray implementations can indeed greatly
benefit from pyMOR’s vectorized interface design. NumpyVectorArray, for instance, does so
by calling NumPy’s dot method which is able to defer the task to highly optimized BLAS
implementations. We expect similar performance benefits for external high-dimensional
solvers, when consecutive-in-memory arrays of vectors are available as native data struc-
tures inside theses solvers.

5.2. A large, nonlinear problem. To evaluate pyMOR’s ability to handle large-scale
problems, we consider a three-dimensional version of the Burgers-type problem already
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Table 1: Time in seconds needed for the solution of (20) for a single parameter, using
standalone DUNE code in comparison to DUNE code with time-stepping in pyMOR
(best of 3 runs).
MPI ranks 1 2 3 6 12 24 48 96 192

DUNE 16858 8532 5726 2959 1526 773 396 203 107
pyMOR 17683 8940 6050 3124 1604 815 417 213 110

overhead 4.9% 4.8% 5.7% 5.6% 5.1% 5.4% 5.3% 4.9% 2.8%

discussed in [13], i.e., we solve the scalar conservation law

∂tuµ(t, x) +∇x · (v · u(t, x)µ) = 0, x ∈ [0, 2]× [0, 1]2, t ∈ [0, 0.3]

uµ(0, x) =
1

2
(1 + sin(2πx1) sin(2πx2) sin(2πx3))

(20)

for exponents µ ∈ [1, 2], periodic boundary conditions and constant transport direction
v = (1, 1, 1) (cf. Figure 6). The problem was discretized using a finite volume scheme on
a 480× 240× 240 voxel grid with 27.6 million degrees of freedom.
To keep the implementation, which is available in the supplementary material, as

simple as possible, we chose a basic Lax-Friedrichs numerical flux with explicit Euler
time discretization using 600 equidistant time steps. Our MPI-parallel code only depends
on the DUNE grid interface and includes hand-written pyMOR bindings utilizing the MPI
helper classes and event loop covered in Section 4.4.
To evaluate the performance of the integration with pyMOR, we compared the solution

time for (20) using a standalone version of the solver to the time needed with time-
stepping done by pyMOR’s explicit_euler time-stepper (Table 1). We observe that
the pyMOR integration shows very good performance with only small overhead compared
to the native DUNE version. All computations were performed on 1 to 16 nodes of the
University of Münster’s PALMA computing cluster. Every node contains 48GB of main
memory and two hexa-core Intel Xeon E5650 CPUs.
For the model order reduction we used the EI-Greedy [17] algorithm to generate the

interpolation data for the nonlinear space differential operator and a simple POD for the
computation of the reduced basis. In both cases, solution trajectories for 10 equidistant
parameters were chosen as input which had each been compressed beforehand using
additional PODs with a relative tolerance of 10−7. Thanks to the parallelization of the
high-dimensional discretization, the offline phase of the experiment could be completed
in only 3.4 hours.
Figure 6 summarizes the approximation quality of the reduced model for different

reduced basis sizes and numbers of interpolation points. In particular we observe that
for a reduced basis of size 80 and 300 interpolation points, we can achieve a relative
L∞−L2 model reduction error of 2.6 · 10−3. A solution for this reduced model takes
on average 2.8 seconds using a single processor core, resulting in a speedup of 38 in
comparison to a solution of the high-dimensional model using all 192 cores or a speedup
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Figure 6: Left: Plot of the solution of (20) for µ = 2 at final time t = 0.3. Only values
in the intervals [0, 0.4] (blue) and [0.6, 1] (red) are displayed. Right: Model
reduction errors for RB approximation of (20). Maximum L∞− L2-error on
a test set of 10 random parameters for different reduced basis sizes N and
numbers of interpolation points M .

of 6000 in comparison to a single-core computation.

Code availability. pyMOR and all further code used for the production of the results
in this work are available under open source licenses. The specific versions used here
are included in the supplementary material. Current versions of pyMOR, including the
wrapper classes for FEniCS, deal.II and DUNE, as well as the code for the example in
Section 5.2 can be found at http://www.pymor.org/.
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