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Abstract

The effect of diffusion rates on the basic reproduction number of a general

compartmental reaction-diffusion epidemic model in a heterogeneous environ-

ment is considered. It is shown when the diffusion rates tend to zero, the limit of

the basic reproduction number is the maximum value of the local reproduction

number on the spatial domain. On the other hand when the diffusion rates tend

to infinity, the basic reproduction number tends to the spectral radius of the

“average” next generation matrix. These asymptotic limits of basic reproduc-

tion number hold for a class of general spatially heterogeneous compartmental

epidemic models, and they are applied to a wide variety of examples.
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1 Introduction

In mathematical modeling of infectious diseases, the basic reproduction number R0

is a key indicator for disease transmission. When R0 < 1, the disease declines and

eventually vanishes; and when R0 > 1, the disease spreads in the population and an

outbreak is possible [4]. Roughly speaking, the basic reproduction number R0 is the

average number of healthy people infected by one contagious person over the course of

the infectious period. In more mathematically rigorous terms, for ordinary differential

equation epidemic models which is non-spatial, R0 is defined as the spectral radius

of the next generation matrix [13, 40], which is established in a general framework

of compartmental disease transmission models. This definition is also generalized to

epidemic models with infinite-dimensional state space [38].

As the environment in which the disease spreads is spatially heterogeneous, the

transmission and spreading of the infectious disease is inevitably affected by the spatial

structure and heterogeneity of the environment. These factors can be incorporated

into underlying mathematical models to show the effect of spatial heterogeneity on

the disease transmission. The spatial structure and heterogeneity can be modeled in

a discrete space using an ordinary differential equation patch model [1, 5, 28, 39], or

they can be modeled in a continuous space using a reaction-diffusion-advection partial

differential equation model [2, 11, 42, 45]. The notion of the basic reproduction number

is also extended to both classes of models. In particular a theory of basic reproduction

numbers for general reaction-diffusion compartmental disease transmission models is

recently developed in [42].

For spatially heterogeneous reaction-diffusion epidemic models, the basic reproduc-

tion number R0 usually depends on the diffusion rates of populations. For example, in

the reaction-diffusion SIS epidemic model considered in [2]:



























∂I

∂t
= dI∆I + β(x)SI − γ(x)I, x ∈ Ω, t > 0,

∂S

∂t
= dS∆S − β(x)SI + γ(x)I, x ∈ Ω, t > 0,

∂I

∂ν
=

∂S

∂ν
= 0, x ∈ ∂Ω, t > 0,
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where β(x) is the transmission rate, γ(x) is the removal rate, and dI , dS are the diffusion

rates of infectious and susceptible populations respectively, it was shown that the basic

reproduction number is defined as

R0 = sup

{

∫

Ω
βφ2dx

∫

Ω
(dI |∇φ|2 + γφ2) dx

: φ ∈ H1(Ω), φ 6= 0

}

. (1.1)

Moreover it was shown in [2] that R0 has the following asymptotic profile with respect

to the infectious population diffusion rate dI :

lim
dI→0

R0 = max
x∈Ω

β(x)

γ(x)
, lim

dI→∞
R0 =

∫

Ω
βdx

∫

Ω
γdx

. (1.2)

Notice that the quantity β(x)/γ(x) is the local basic reproduction number at x when

there is no spatial movement, hence the global basic reproduction number tends to the

maximum of local one as the diffusion rate tends to zero. On the other hand, the limit

of basic reproduction number for large diffusion rate is the ratio of average transmission

rate and average removal rate. Similar asymptotic profiles for R0 were also obtained

in [31] for several kinds of other spatially heterogeneous epidemic reaction-diffusion

models. The results in [31] are based on the fact that R0 equals the spectral radius of

a product of the local basic reproduction number and strongly positive compact linear

operators with spectral radii one.

In this paper, we aim to characterize limiting profiles of the basic reproduction num-

ber R0 for general spatially heterogeneous reaction-diffusion compartmental epidemic

models for small or large diffusion rates.

We consider the following reaction-diffusion compartmental epidemic model










∂ui

∂t
= di∆ui + fi(x, u), x ∈ Ω, t > 0, 1 ≤ i ≤ n,

∂ui

∂ν
= 0, x ∈ ∂Ω, t > 0, 1 ≤ i ≤ n,

(1.3)

which was proposed in [42]. Here ui is the density of the population in the i-th com-

partment, di > 0 is constant and represents the diffusion coefficient of population ui, Ω

is a bounded domain in R
N (N ≥ 1) with smooth boundary ∂Ω, ν is the outward unit

normal vector at x ∈ ∂Ω, and fi(x, u) is the reaction term in the i-th compartment.

Moreover,

fi(x, u) = Fi(x, u)− Vi(x, u),
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where Fi(x, u) is the input rate of newly infected individuals in the i-th compartment,

Vi(x, u) = V−
i (x, u) − V+

i (x, u), V
+
i (x, u) is the rate of transfer of individuals into the

i-th compartment by all other means, and V−
i (x, u) is the rate of transfer of individuals

out of the i-th compartment. More biological explanation of model (1.3) could be found

in [42]. In this paper, we will show the asymptotic profiles of R0 for model (1.3) as

(d1, · · · , dn) → (0, . . . , 0) and (d1, . . . , dn) → (∞, . . . ,∞). Our results indict that the

trend set in [2, 31] holds true for epidemic models in much more general setting: in small

diffusion limit, the global basic reproduction number tends to the maximum of local

basic reproduction number, and in large diffusion limit, the global basic reproduction

number tends to some kind of spatial average of local basic reproduction number.

There are extensive results on reaction-diffusion epidemic models. The asymptotic

profiles of the endemic steady states were considered in [2, 33, 35, 45] and references

therein, and the global dynamics of the epidemic models could be found in [8, 12, 22,

24, 26, 30, 34, 43]. The effect of diffusion and advection rates on R0 and the stability

of the disease-free steady state for a reaction-diffusion-advection epidemic model was

considered in [11], see also [10, 18, 21, 32] for reaction-diffusion-advection epidemic

models. The definition of R0 for time-periodic reaction-diffusion epidemic models was

given in [6, 25, 46], and the global dynamics for a time-periodic or almost space periodic

reaction-diffusion SIS epidemic model was studied in [36, 41]. The reaction-diffusion

epidemic models with free boundary conditions were investigated in [9, 16, 27] and

references therein, and reaction-diffusion epidemic models with time delays were also

studied extensively, see e.g. [7, 29, 44].

Throughout the paper, we use the following notations. For n ≥ 1,

R
n
+ ={u = (u1, . . . , un) : ui ≥ 0 for any i = 1, . . . , n},

C
(

Ω,Rn
+

)

={(u1(x), . . . , un(x)) : ui(x)
(

∈ C(Ω,R)
)

≥ 0 for any i = 1, . . . , n}.
(1.4)

For a closed and linear operator A, we denote the spectral radius of A by r(A), the

spectral set of A by σ(A), and the spectral bound of A by

s(A) := sup{Reλ : λ ∈ σ(A)}.
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Let P = (Pij)1≤i,j≤l and Q = (Qij)1≤i,j≤l be l × l (l ≥ 1) real-valued matrices, and let

Q(x) = (Qij(x))1≤i,j≤l be an l × l matrix-valued function.

P ≥ Q means Pij ≥ Qij for each 1 ≤ i, j ≤ l.

P > Q means Pij > Qij for each 1 ≤ i, j ≤ l.

lim
x→x0

Q(x) = Q means lim
x→x0

Qij(x) = Qij for each 1 ≤ i, j ≤ l.

The matrix P is called positive if all entries of P are non-negative and there exists

at least one positive entry.

The matrix P is called zero if all entries of P are zero.

The matrix P is called cooperative (or quasi-positive) if all off-diagonal entries of

P are non-negative, i.e., Pij ≥ 0 for i 6= j.

Moreover, (d1, . . . , dn) → (0, . . . , 0) means max
1≤j=1≤n

dj → 0.

(d1, . . . , dn) → (∞, . . . ,∞) means min
1≤j≤n

dj → ∞.

The remaining part of the paper is organized as follows. In Section 2, we show some

preliminaries for further applications. In Section 2 and 3, We show the asymptotic pro-

files of R0 for model (1.3) as (d1, · · · , dn) → (0, . . . , 0) and (d1, . . . , dn) → (∞, . . . ,∞),

respectively. In Section 4, we apply the theoretical results to some concrete examples.

2 Some preliminaries

In this section, we recall the definition of basic reproduction number for reaction-

diffusion epidemic models in [42]. Assume that the population u = (u1, . . . , un)
T

of model (1.3) is divided into two types: infected compartments, labeled by i =

1, 2, . . . , m, and uninfected compartments, labeled by i = m+ 1, . . . , n. We set

uI = (u1, . . . , um)
T , uS = (um+1, . . . , un)

T ,

dI = (d1, . . . , dm)
T , dS = (dm+1, . . . , dn)

T ,

dI∆uI = (d1∆u1, . . . , dm∆um)
T , dS∆uS = (dm+1∆um+1, . . . , dn∆un)

T ,

fI(x, u) = (f1(x, u), . . . , fm(x, u))
T , fS(x, u) = (fm+1(x, u), . . . , fn(x, u))

T .

(2.1)

Let

Us := {u ≥ 0 : ui = 0 for any i = 1, . . . , m}
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denote the set of all disease-free states of (1.3), and assume that model (1.3) has a

disease-free steady state

u0(x) =
(

0, . . . , 0, u0
m+1(x), . . . , u

0
n(x)

)T
, (2.2)

where u0
i (x) > 0 for any i = m + 1, . . . , n and x ∈ Ω. Define the following three

matrices:

F (x, u) = (Fij(x, u))1≤i,j≤m =

(

∂Fi(x, u)

∂uj

)

1≤i,j≤m

,

V (x, u) = (Vij(x, u))1≤i,j≤m =

(

∂Vi(x, u)

∂uj

)

1≤i,j≤m

,

M(x, u) = (Mij(x, u))1≤i,j≤n−m =

(

∂fi+m(x, u)

∂uj+m

)

1≤i,j≤n−m

,

(2.3)

and let

B := dI∆− V
(

x, u0(x)
)

. (2.4)

The following assumptions are imposed on model (1.3): (see assumptions (A1)-(A6) in

[42])

(A1) For each 1 ≤ i ≤ n, functions Fi(x, u), V
+
i (x, u), V

−
i (x, u) are non-negative and

continuously differentiable on Ω× R
n
+.

(A2) If ui = 0, then V−
i = 0.

(A3) Fi = 0 for i > m.

(A4) If u ∈ Us, then Fi = V+
i = 0 for i = 1, . . . , m.

(A5) M(x, u0(x)) is cooperative for any x ∈ Ω, and

s
(

dS∆+M(x, u0(x))
)

< 0.

(A6) −V (x, u0(x)) is cooperative for any x ∈ Ω, and s (B) = s(dI∆−V (x, u0(x))) < 0.

Assumptions (A1)-(A6) are satisfied for most reaction-diffusion epidemic models.

Denote

X = C
(

Ω,Rm
)

and X+ = C
(

Ω,Rm
+

)

. (2.5)
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X is an ordered Banach space, and X+ is a positive cone with nonempty interior.

Let T (t) be the semigroup generated by B on X , i.e., T (t) is the solution semigroup

associated with the following linear reaction-diffusion system:










∂uI

∂t
= dI∆uI − V

(

x, u0(x)
)

uI , x ∈ Ω, t > 0,

∂uI

∂ν
= 0, x ∈ ∂Ω, t > 0.

(2.6)

It follows from the comparison principle (see [38, Theorem 3.12]) and assumption (A6)

that B is resolvent-positive, T (t) is positive (i.e., T (t)X+ ⊂ X+ for all t > 0), s(B) < 0,

and −B−1φ =
∫∞

0
T (t)φdt for φ ∈ X . Note that F (x, u0(x)) is a positive matrix, and

it can also be viewed as a positive operator on C
(

Ω,Rm
)

:

φ ∈ C
(

Ω,Rm
)

7→ F
(

x, u0(x)
)

φ.

Clearly, the linear operator B + F (x, u0(x)) is also resolvent-positive. Then it follows

from [42, Section 3] (or [38, Theorem 3.5]) that:

Proposition 2.1. Assume that (A1)-(A6) hold. Then the basic reproduction number

is defined by

R0 = r
(

−F (x, u0(x))B−1
)

.

Moreover, the following statements hold.

(i) R0 − 1 has the same sign as s (B + F (x, u0(x))).

(ii) If R0 < 1, then u0(x) is locally asymptotically stable for system (1.3).

Next we recall several results which will be used later. First we have the following

the comparison principle.

Lemma 2.2. Assume that Pi(x) (i = 1, 2) are m × m cooperative matrices for any

x ∈ Ω, all entries of Pi(x) (i = 1, 2) are continuous, and P1(x) ≥ P2(x). Let Ti(t) be

the solution semigroup on X (defined in Eq. (2.5)) associated with the following linear

reaction-diffusion system:










∂uI

∂t
= dI∆uI + Pi(x)uI , x ∈ Ω, t > 0,

∂uI

∂ν
= 0, x ∈ ∂Ω, t > 0,

(2.7)
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where dI∆uI is defined as in (2.1), and di > 0 for i = 1, . . . , m. Then T1(t)φ ≥ T2(t)φ

for any φ ∈ X+ and t > 0.

Proof. Denote Ui(x, t) = Ti(t)φ for φ ∈ X+, and it follows from the comparison prin-

ciple of cooperative parabolic systems that Ui(x, t) ≥ 0 for any (x, t) ∈ Ω× (0,∞) and

i = 1, 2. Let W (x, t) = U1(x, t)− U2(x, t), and then W (x, t) satisfies



























∂W

∂t
= dI∆W + P2(x)W + (P1(x)− P2(x))U1, x ∈ Ω, t > 0,

∂W

∂ν
= 0, x ∈ ∂Ω, t > 0,

W (x, 0) = 0, x ∈ Ω.

(2.8)

Note that P1(x) ≥ P2(x) and U1(x, t) ≥ 0 for any (x, t) ∈ Ω× (0,∞). Again it follows

from the comparison principle of cooperative parabolic systems that W (x, t) ≥ 0 for

any (x, t) ∈ Ω× (0,∞). This completes the proof.

Secondly we recall the Krein-Rutmann theorem, (see [3, Theorems 3.1 and 3.2] or

[31, Theorem 2.5]).

Lemma 2.3. (i) Suppose that T : X → X is a positive compact linear operator with

positive spectral radius r(T ). Then r(T ) is an eigenvalue of T with an eigenvector

in X+ \ {0}.

(ii) Suppose that T : X → X is a strongly positive compact linear operator. Then

r(T ) is positive and is a simple eigenvalue of T with an eigenvector in Int(X+),

and there is no other eigenvalue with non-negative eigenvector. Moreover, if S :

X → X is a linear operator such that S−T is strongly positive, then r(S) > r(T ).

Based on the Krein-Rutmann theorem in Lemma 2.3, we have the following two

results.

Lemma 2.4. Let L1 and L2 be bounded linear operators on X (defined in Eq. (2.5)).

Assume that L1φ ≥ L2φ for any φ ∈ X+, and L2 is a positive compact operator with

positive spectral radius r(L2). Then r(L1) ≥ r(L2).
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Proof. It follows from Lemma 2.3 that r(L2) is an eigenvalue of L2, and there exists

φ ∈ X+ \ {0} such that ‖φ‖∞ = 1 and L2φ = r(L2)φ. Then Ln
1φ ≥ rn(L2)φ, which

implies that ‖Ln
1‖ ≥ rn(L2). Therefore, r(L1) = lim

n→∞
‖Ln

1‖
1/n ≥ r(L2).

Consider the following eigenvalue problem:










dI∆Φ− P (x)Φ + aQ(x)Φ = λΦ, x ∈ Ω,

∂Φ

∂ν
= 0, x ∈ ∂Ω,

(2.9)

where

Φ = (φ1, . . . , φm)
T , dI∆Φ = (d1∆φ1, . . . , dm∆φm)

T , (2.10)

a > 0, di > 0 for i = 1, . . . , m, and P (x) = (Pij(x))1≤i,j≤m and Q(x) = (Qij(x))1≤i,j≤m

are m × m matrices with continuous entries. Recall that an eigenvalue λ of (2.9) is

called the principal eigenvalue if λ ∈ R and for any eigenvalue such that λ̃ 6= λ, we

have Reλ̃ < λ.

Lemma 2.5. Assume that −P (x) is cooperative, Q(x) is positive for any x ∈ Ω, and

for any a ∈ (0,∞), there exists xa ∈ Ω such that −P (xa) + aQ(xa) is irreducible. Let

λ(a) be the principal eigenvalue of (2.9). Then λ(a) is strictly increasing for a ∈ (0,∞).

Proof. Since −P (x) + aQ(x) is cooperative for any x ∈ Ω and a > 0, it follows from

Lemma 2.3 that λ(a) is well defined and

λ(a) = sup{Reλ : λ is an eigenvalue of problem (2.9)}.

Let T a(t) be the solution semigroup associated with the linear parabolic system


























∂V

∂t
= dI∆V − P (x)V + aQ(x)V, t > 0, x ∈ Ω,

∂V

∂ν
= 0, t > 0, x ∈ ∂Ω,

V (x, 0) = V0(x), x ∈ Ω.

(2.11)

Then it follows from [37, Theorem 7.4.1] that T a(t) is strongly positive and compact

for any a > 0 and t > 0. Let a1 > a2, Φ ∈ X+ \ {0}, and

U1(x, t) =
(

U
(1)
1 (x, t), . . . , U

(m)
1 (x, t)

)T

= T a1(t)Φ,

U2(x, t) =
(

U
(1)
2 (x, t), . . . , U

(m)
2 (x, t)

)T

= T a2(t)Φ.

(2.12)
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Then U1(x, t), U2(x, t) > 0 for any x ∈ Ω and t > 0. It follows from Lemma 2.2 that

U1(x, t) ≥ U2(x, t) for any x ∈ Ω and t > 0. Let W (x, t) = U1(x, t) − U2(x, t), and we

see that U(x, t) satisfies



























∂W

∂t
= dI∆W − P (x)W + a2Q(x)W + (a1 − a2)Q(x)U1, t > 0, x ∈ Ω,

∂W

∂ν
= 0, t > 0, x ∈ ∂Ω,

W (x, 0) = 0, x ∈ Ω.

(2.13)

Note that Q(x) is positive for any x ∈ Ω, and U1(x, t) > 0 for any x ∈ Ω and t > 0.

Then there exist 1 ≤ i1 ≤ n and x0 ∈ Ω such that

n
∑

j=1

Qi1j(x0)U
(j)
1 (x0, t) > 0 for any

t > 0, and consequently Wi1(x, t) > 0 for any x ∈ Ω and t > 0. Note that there exists

xa2 ∈ Ω such that −P (xa2) + a2Q(xa2) is irreducible. Then there exists i2 6= i1 such

that −Pi2i1(xa2)+a2Qi2i1(xa2) > 0, which implies that Wi2(x, t) > 0 for any x ∈ Ω and

t > 0. Following the above process, we could obtain that W (x, t) > 0 for any x ∈ Ω

and t > 0, which implies that Ta1(t) − Ta2(t) is strongly positive for any t > 0. It

follows from Lemma 2.3 that

r (Ta1(t)) = eλ(a1)t > r (Ta2(t)) = eλ(a2)t for any t > 0,

which implies that λ(a1) > λ(a2). This completes the proof.

3 The effect of diffusion rates

In this section, we show the asymptotic profile of R0 for model (1.3) when all the

diffusion rates are large or small.

3.1 Small diffusion rates

In this subsection, we consider the asymptotic profile of R0 when (d1, . . . , dn) →

(0, . . . , 0). We first impose an additional assumption for this case:

10



(A7) The disease-free steady state (0, . . . , 0, u0
m+1(x), . . . , u

0
n(x)) (defined in Eq. (2.2))

satisfies

lim
(dm+1,...,dn)→(0,...,0)

(u0
m+1(x), . . . , u

0
n(x)) = (cm+1(x), . . . , cn(x)) in C

(

Ω,Rn−m
)

,

(3.1)

where ck(x) > 0 for any x ∈ Ω and k = m+ 1, . . . , n.

In the next section, we will show that this assumption is not restrictive, and it is

satisfied for many kinds of epidemic models. Denote

c(x) = (0, . . . , 0, cm+1(x), . . . , cn(x)) ∈ C
(

Ω,Rn
)

, (3.2)

and denote, for sufficiently small ǫ (0 < ǫ < min{ci(x) : i = m+ 1, . . . , n, x ∈ Ω}),

Dc
ǫ = {(x, u1, . . . , un) : x ∈ Ω, ui = 0 for i = 1, . . . , m,

ui ∈ [ci(x)− ǫ, ci(x) + ǫ] for i = m+ 1, . . . , n},

V c
ǫ =

(

min
(x,u)∈Dc

ǫ

Vij(x, u)

)

1≤i,j≤m

=

(

min
(x,u)∈Dc

ǫ

∂Vi(x, u)

∂uj

)

1≤i,j≤m

,

V
c

ǫ =

(

max
(x,u)∈Dc

ǫ

Vij(x, u)

)

1≤i,j≤m

=

(

max
(x,u)∈Dc

ǫ

∂Vi(x, u)

∂uj

)

1≤i,j≤m

,

F c
ǫ =

(

min
(x,u)∈Dc

ǫ

Fij(x, u)

)

1≤i,j≤m

=

(

min
(x,u)∈Dc

ǫ

∂Fi(x, u)

∂uj

)

1≤i,j≤m

,

F
c

ǫ =

(

max
(x,u)∈Dc

ǫ

Fij(x, u)

)

1≤i,j≤m

=

(

max
(x,u)∈Dc

ǫ

∂Fi(x, u)

∂uj

)

1≤i,j≤m

.

(3.3)

Since Dc
ǫ1

⊂ Dc
ǫ2

for 0 ≤ ǫ1 < ǫ2, it follows that F
c

ǫ and V
c

ǫ are monotone decreasing

for ǫ ≥ 0, and F c
ǫ and V c

ǫ are monotone increasing for ǫ ≥ 0. We will show that these

functions F
c

ǫ, V
c

ǫ, F
c
ǫ and V c

ǫ are also continuous for ǫ ≥ 0 in the Appendix.

Clearly, for ǫ = 0, we have

V c
0 =

(

min
x∈Ω

Vij(x, c(x))

)

1≤i,j≤m

=

(

min
x∈Ω

∂Vi(x, c(x))

∂uj

)

1≤i,j≤m

,

V
c

0 =

(

max
x∈Ω

Vij(x, c(x))

)

1≤i,j≤m

=

(

max
x∈Ω

∂Vi(x, c(x))

∂uj

)

1≤i,j≤m

,

F c
0 =

(

min
x∈Ω

Fij(x, c(x))

)

1≤i,j≤m

=

(

min
x∈Ω

∂Fi(x, c(x))

∂uj

)

1≤i,j≤m

,

F
c

0 =

(

max
x∈Ω

Fij(x, c(x))

)

1≤i,j≤m

=

(

max
x∈Ω

∂Fi(x, c(x))

∂uj

)

1≤i,j≤m

.
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Now we show the asymptotic profile of R0 as (d1, . . . , dn) → (0, . . . , 0), and the method

is motivated by the one in [31].

Theorem 3.1. Assume that (A1)-(A5) and (A7) hold,

s
(

V
c

0

)

< 0, s (−V c
0) < 0 and r((V

c

0)
−1F c

0) > 0,

and there exists ǫ0 > 0 such that, for any x ∈ Ω, −V
c

ǫ0 is cooperative and F c
ǫ0 is positive,

where V c
ǫ, V

c

ǫ and F c
ǫ are defined in (3.3). If the matrix −V (x, c(x)) + aF (x, c(x)) is

irreducible for any a > 0 and x ∈ Ω, where c(x) is defined in (3.2), then

lim
(d1,...,dn)→(0,...,0)

R0 = Rc
0 := max

x∈Ω

[

r
(

−V −1(x, c(x))F (x, c(x))
)]

.

Proof. Step 1. We show that there exist positive constants Rc
0, R

c

0 and C2 such that

R0 ∈ [Rc
0, R

c

0] for any d1, . . . , dm > 0 and dm+1, . . . , dn ∈ (0, C2).

Since −V
c

ǫ0
is cooperative and F c

ǫ0
is positive for any x ∈ Ω, it follows from the

monotonicity of F
c

ǫ, V
c

ǫ, F
c
ǫ and V c

ǫ that −V
c

ǫ and −V c
ǫ are cooperative, and F

c

ǫ0 and

F c
ǫ are positive for any ǫ ∈ [0, ǫ0]. Note that V

c
ǫ and V

c

ǫ are continuous with respect to

ǫ (see Proposition 5.1), and

lim
ǫ→0

V c
ǫ = V c

0 and lim
ǫ→0

V
c

ǫ = V
c

0.

It follows from [20, Theorem 2.5.1] that there exists ǫ1 ∈ (0, ǫ0) such that

s(−V c
ǫ) < 0, s(−V

c

ǫ) < 0 for any ǫ ∈ (0, ǫ1].

Similarly,
(

V
c

ǫ

)−1
F c

ǫ is continuous with respect to ǫ for ǫ ∈ (0, ǫ1), and there exists

ǫ2 ∈ (0, ǫ1) such that r
(

(

V
c

ǫ

)−1
F c

ǫ

)

> 0 for any ǫ ∈ (0, ǫ2]. It follows from (A7) that,

for the above given ǫ2 > 0, there exists C2 > 0 such that

ci(x)− ǫ2 ≤ u0
i (x) ≤ ci(x) + ǫ2

for any x ∈ Ω, dm+1, . . . , dn ∈ (0, C2) and i = m + 1, . . . , n. Denote by T
c

ǫ2(t), T
c
ǫ2(t)

and T (t) the semigroups generated by dI∆ − V
c

ǫ2
, dI∆ − V c

ǫ2
and dI∆ − V (x, u0(x)),

respectively. Note that

− V
c

ǫ2
≤ −V (x, u0(x)) ≤ −V c

ǫ2
(3.4)

12



for any d1, . . . , dm > 0 and dm+1, . . . , dn ∈ (0, C2), and −V
c

ǫ2
is cooperative for any

x ∈ Ω. Then it follows from Lemma 2.2 that for any φ ∈ X+ (defined in Eq. (2.5)),

d1, . . . , dm > 0 and dm+1, . . . , dn ∈ (0, C2),

T
c

ǫ2
(t)φ ≤ T (t)φ ≤ T c

ǫ2
(t)φ. (3.5)

Note that

s
(

dI∆− V c
ǫ2

)

= s(−V c
ǫ2) < 0, s

(

dI∆− V
c

ǫ2

)

= s
(

−V
c

ǫ2

)

< 0.

This, combined with Lemma 2.3 and the spectral mapping theorem, implies that

r
(

T c
ǫ2(t)

)

, r
(

T c
ǫ2(t)

)

∈ (0, 1). Therefore, for any d1, . . . , dm > 0 and dm+1, . . . , dn ∈

(0, C2), s (dI∆− V (x, u0(x))) < 0, which implies that assumption (A6) is satisfied for

any d1, . . . , dm > 0 and dm+1, . . . , dn ∈ (0, C2). It follows from Eq. (3.5) that

F c
ǫ2

∫ ∞

0

T
c

ǫ2
(t)φdt ≤ F (x, u0(x))

∫ ∞

0

T (t)φdt ≤ F
c

ǫ2

∫ ∞

0

T c
ǫ2
(t)φdt.

It follows from [42, Theorem 3.4] that

r

(

F c
ǫ2

∫ ∞

0

T
c

ǫ2
dt(t)

)

= r
(

(

V
c

ǫ2

)−1
F c

ǫ2

)

> 0,

and F c
ǫ2
is positive and not zero for any x ∈ Ω. Then we see from Lemma 2.4 that, for

any d1, . . . , dm > 0 and dm+1, . . . , dn ∈ (0, C2),

r
(

(

V
c

ǫ2

)−1
F c

ǫ2

)

≤ R0 ≤ r

(

F
c

ǫ2

∫ ∞

0

T c
ǫ2(t)φdt

)

= r
(

(

V c
ǫ2

)−1
F

c

ǫ2

)

.

Let Rc
0 = r

(

(

V
c

ǫ2

)−1
F c

ǫ2

)

and R
c

0 = r
(

(

V c
ǫ2

)−1
F

c

ǫ2

)

. This completes the proof for

Step 1.
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Step 2. For any x ∈ Ω, denote

Dx = {(u1, . . . , un) : ui = 0 for i = 1, . . . , m,

ui ∈ [ci(x)− ǫ, ci(x) + ǫ] for i = m+ 1, . . . , n},

V x
ǫ =

(

min
u∈Dx

Vij(x, u)

)

1≤i,j≤m

=

(

min
u∈Dx

∂Vi(x, u)

∂uj

)

1≤i,j≤m

,

V
x

ǫ =

(

max
u∈Dx

Vij(x, u)

)

1≤i,j≤m

=

(

max
u∈Dx

∂Vi(x, u)

∂uj

)

1≤i,j≤m

,

F x
ǫ =

(

min
u∈Dx

Fij(x, u)

)

1≤i,j≤m

=

(

min
u∈Dx

∂Fi(x, u)

∂uj

)

1≤i,j≤m

,

F
x

ǫ =

(

max
u∈Dx

Fij(x, u)

)

1≤i,j≤m

=

(

max
u∈Dx

∂Fi(x, u)

∂uj

)

1≤i,j≤m

.

(3.6)

We show that, for sufficiently small ǫ > 0,

R̃0 := r
(

(dI∆− V x
ǫ )

−1 F
x

ǫ

)

→ R̃0
0 := max

x∈Ω
r
(

(V x
ǫ )

−1 F
x

ǫ

)

,

Ř0 := r
(

(

dI∆− V
x

ǫ

)−1
F x

ǫ

)

→ Ř0
0 := max

x∈Ω
r
(

(

V
x

ǫ

)−1
F x

ǫ

)

,
(3.7)

as dI = (d1, . . . , dm) → (0, . . . , 0).

We can view matrices −V x
ǫ + aF

x

ǫ and −V
x

ǫ + aF x
ǫ as matrix-valued functions of

(x, ǫ, a). Then −V x
ǫ + aF

x

ǫ and −V
x

ǫ + aF x
ǫ are continuous and consequently uniformly

continuous on Ω× [0, ǫ2]× [1/R0, 1/R0] (see Proposition 5.1). This implies that

lim
ǫ→0

(−V x
ǫ + aF

x

ǫ ) = −V (x, c(x)) + aF (x, c(x))

lim
ǫ→0

(−V
x

ǫ + aF x
ǫ ) = −V (x, c(x)) + aF (x, c(x))

uniformly for (x, a) ∈ Ω× [1/R0, 1/R0].

(3.8)

Therefore, there exists ǫ3 < ǫ2 such that for any ǫ ∈ (0, ǫ3), matrices −V x
ǫ + aF

x

ǫ and

−V
x

ǫ + aF x
ǫ are irreducible for any a ∈ [1/R0, 1/R0] and x ∈ Ω. In this step, we always

assume that ǫ ∈ (0, ǫ3]. Clearly,

− V
c

ǫ ≤ −V x
ǫ ≤ −V c

ǫ. (3.9)

Noticing that s(−V c
ǫ), s(−V

c

ǫ) < 0 and −V c
ǫ is cooperative for any x ∈ Ω, we have

s (dI∆− V x
ǫ ) < 0.
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Clearly, R̃0 ∈ [R0, R0] and R̃0 > 0. Let κ̃ = 1/R̃0, and it follows from Lemma

2.3 that R̃0 is an eigenvalue of (dI∆− V x
ǫ )

−1 F
x

ǫ with a non-negative eigenvector φ̃ =

(φ̃1, . . . , φ̃m). Clearly, κ̃ can be viewed as a function of dI (or respectively (d1, . . . , dm)),

and

dI∆φ̃ − V x
ǫ φ̃+ κ̃(d1, . . . , dm)F

x

ǫ φ̃ = 0.

Let δ = δ(d1, . . . , dm, a) be the principal eigenvalue of the auxiliary eigenvalue problem

dI∆φ− V x
ǫφ+ aF

x

ǫφ = δφ. (3.10)

Note that V x
ǫ + κ̃(d1, . . . , dm)F

x

ǫ is irreducible. Then φ̃ > 0, and

δ(d1, . . . , dm, κ̃(d1, . . . , dm)) = 0.

It follows from [23, Theorem 1.4] that

lim
(d1,...,dm)→(0,...,0)

δ(d1, . . . , dm, a) = max
x∈Ω

δ̂
(

−V x
ǫ + aF

x

ǫ

)

.

Here δ̂(Q) represents the eigenvalue of matrix Q with greatest real part. Define

δ(d1, . . . , dm, a) := max
x∈Ω

δ̂
(

−V x
ǫ + aF

x

ǫ

)

for (d1, . . . , dm) = (0, . . . , 0). Then, for each a ∈ [1/R0, 1/R0], δ(d1, . . . , dm, a) is a

continuous function of (d1, . . . , dm) on Int(Rm
+ ) ∪ {(0, . . . , 0)}. It follows from Lemma

2.5 that δ(d1, . . . , dm, a) is strictly increasing in a for each (d1, . . . , dm) > (0, . . . , 0).

Similarly, we see from Lemma 2.5 that, for each x ∈ Ω, δ̂
(

−V x
ǫ + aF

x

ǫ

)

is also strictly

increasing in a. This implies that δ(d1, . . . , dm, a) is also strictly increasing in a for

(d1, . . . , dm) = (0, . . . , 0). Since for any x ∈ Ω,

V ǫ2 ≤ V x
ǫ ≤ V ǫ2, F ǫ2 ≤ F

x

ǫ ≤ F ǫ2,

it follows from Step 1 that

R0 ≤ r
(

(V x
ǫ )

−1 F
x

ǫ

)

≤ R0,

for any x ∈ Ω, and

R̃0 = r
(

(dI∆− V x
ǫ )

−1 F
x

ǫ

)

∈ [R0, R0]. (3.11)
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Noticing that, for each x ∈ Ω,

δ̂

(

−V x
ǫ +

1

r
(

(V x
ǫ )

−1 F
x

ǫ

)F
x

ǫ

)

= 0.

Then the monotonicity of δ̂
(

−V x
ǫ + aF

x

ǫ

)

in a implies that, for any x ∈ Ω,

δ̂

(

−V x
ǫ +

1

R̃0
0

F
x

ǫ

)

≤ 0,

where R̃0
0 is defined as in Eq. (3.7), and the equality holds if and only if x achieves the

maximum point of r
(

(V x
ǫ )

−1 F
x

ǫ

)

. Therefore, the monotonicity of δ(0, . . . , 0, a) implies

that the unique zero of

δ(0, . . . , 0, a) = max
x∈Ω

δ̂
(

−V x
ǫ + aF

x

ǫ

)

= 0

on [1/R0, 1/R0] is a = 1/R̃0
0.

Now we claim that the first equation of (3.7) holds. If it is not true, then

κ(d1, . . . , dm) 6→ 1/R̃0
0 as (d1, . . . , dn) → (0, . . . , 0).

Noticing that κ(d1, . . . , dm) is bounded from Eq. (3.11), we see that there exists a

sequence
{(

d
(j)
1 , . . . , d

(j)
m

)}∞

j=1
and κ0

(

6= 1/R̃0
0

)

∈ [1/R0, 1/R0] such that

(

d
(j)
1 , . . . , d(j)m

)

→ (0, . . . , 0), κn := κ
(

d
(j)
1 , . . . , d(j)m

)

→ κ0 as j → ∞.

Without loss of generality, we assume that κ0 < 1/R̃0
0. Then there exist ǫ̃ and j0 such

that κ0 + ǫ̃ < 1/R̃0
0 and κj < κ0 + ǫ̃ for any j > j0. Then, for any j > j0,

0 = δ
(

d
(j)
1 , . . . , d(j)m , κj

)

< δ
(

d
(j)
1 , . . . , d(j)m , κ0 + ǫ̃

)

,

which yields

0 ≤ lim
j→∞

δ
(

d
(j)
1 , . . . , d(j)m , κ0 + ǫ̃

)

= δ(0, . . . , 0, κ0 + ǫ̃) < 0.

This is a contradiction, and therefore, the first equation of (3.7) holds. Similarly, we

can prove that the second equation of (3.7) holds.
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Step 3. We show that

lim
(d1,...,dn)→(0,...,0)

R0 = max
x∈Ω

[

r
(

−V −1(x, c(x))F (x, c(x))
)]

.

Clearly, (V x
ǫ )

−1 F
x

ǫ can be viewed as a matrix-valued function of (x, ǫ), where (x, ǫ) ∈

Ω× [0, ǫ3], and (V x
ǫ )

−1 F
x

ǫ is continuous on Ω× [0, ǫ3] (see Proposition 5.1). It follows

from [20, Section 2.5.7] that r
(

(V x
ǫ )

−1 F
x

ǫ

)

is continuous on Ω×[0, ǫ3], and consequently,

r
(

(V x
ǫ )

−1 F
x

ǫ

)

is uniformly continuous on Ω× [0, ǫ3]. This implies that

lim
ǫ→0

r
(

(V x
ǫ )

−1 F
x

ǫ

)

= r
(

−V −1(x, c(x))F (x, c(x))
)

in C(Ω).

Then

lim
ǫ→0

R̃0 = lim
ǫ→0

max
x∈Ω

r
[(

(V x
ǫ )

−1 F
x

ǫ

)]

= Rc
0 = max

x∈Ω

[

r
(

−V −1(x, c(x))F (x, c(x))
)]

.

Similarly, we can prove that

lim
ǫ→0

Ř0 = Rc
0.

For any ǫ ∈ (0, ǫ3), there exists δ > 0 such that for any dm+1, . . . , dn < δ,

u0
i (x) ∈ [ci(x)− ǫ, ci + ǫ] for any i = m+ 1, . . . , n and x ∈ Ω.

Then

Ř0 = r
(

(

dI∆− V
x

ǫ

)−1
F x

ǫ

)

≤ R0 ≤ R̃0 = r
(

(dI∆− V x
ǫ )

−1 F
x

ǫ

)

for any d1, . . . , dm > 0 and dm+1, . . . , dn < δ. Therefore,

Ř0 ≤ lim inf
(d1,...,dn)→(0,...,0)

R0 ≤ lim sup
(d1,...,dn)→(0,...,0)

R0 ≤ R̃0
0.

Taking ǫ → 0, we see that

lim
(d1,...,dn)→(0,...,0)

R0 = Rc
0.

This completes the proof.

Remark 3.2. In Theorem 3.1, we assume that there exists ǫ0 > 0 such that, for any

x ∈ Ω, −V
c

ǫ0 is cooperative and F c
ǫ0 is positive. In Section 4, we will show that in some

concrete examples, any off-diagonal entry in V
c

ǫ, V
c

ǫ either equals to zero or is strictly

positive, and any entry of F
c

ǫ or F c
ǫ is strictly positive. In that case we only need to

assume that −V
c

0 is cooperative and F c
0 is positive to obtain results in Theorem 3.1.
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3.2 Large diffusion rates

In this subsection, we consider the asymptotic profile of R0 when (d1, . . . , dn) →

(∞, . . . ,∞). For this case, we impose an additional assumption:

(A8) The disease-free equilibrium (0, . . . , 0, u0
m+1(x), . . . , u

0
n(x)) (defined in Eq. (2.2))

satisfies

lim
(dm+1,...,dn)→(∞,...,∞)

(u0
m+1(x), . . . , u

0
n(x)) = (ũm+1, . . . , ũn) in C

(

Ω,Rn−m
)

,

(3.12)

where ũk is a positive constant for k = m+ 1, . . . , n.

We will also show that this assumption is not restrictive and it is satisfied for many

kinds of epidemic models in the next section. Denote

ũ = (0, . . . , 0, ũm+1, . . . , ũn) ∈ R
n, (3.13)

and denote, for given sufficiently small ǫ (0 < ǫ < min{ũi : i = m+ 1, . . . , n}),

D ={(u1, . . . , un) : ui = 0 for i = 1, . . . , m,

ui ∈ [ũi − ǫ, ũi + ǫ] for i = m+ 1, . . . , n},

V ǫ =

(

min
x∈Ω,u∈D

Vij(x, u)

)

1≤i,j≤m

=

(

min
x∈Ω,u∈D

∂Vi(x, u)

∂uj

)

1≤i,j≤m

,

V ǫ =

(

max
x∈Ω,u∈D

Vij(x, u)

)

1≤i,j≤m

=

(

max
x∈Ω,u∈D

∂Vi(x, u)

∂uj

)

1≤i,j≤m

,

F ǫ =

(

min
x∈Ω,u∈D

Fij(x, u)

)

1≤i,j≤m

=

(

min
x∈Ω,u∈D

∂Fi(x, u)

∂uj

)

1≤i,j≤m

,

F ǫ =

(

max
x∈Ω,u∈D

Fij(x, u)

)

1≤i,j≤m

=

(

max
x∈Ω,u∈D

∂Fi(x, u)

∂uj

)

1≤i,j≤m

.

(3.14)
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Similar to subsection 3.1, we could also prove that F ǫ and V ǫ are monotone decreasing

for ǫ ≥ 0, and F ǫ and V ǫ is monotone increasing for ǫ ≥ 0. Moreover, when ǫ = 0,

V 0 =

(

min
x∈Ω

Vij(x, ũ)

)

1≤i,j≤m

=

(

min
x∈Ω

∂Vi(x, ũ)

∂uj

)

1≤i,j≤m

,

V 0 =

(

max
x∈Ω

Vij(x, ũ)

)

1≤i,j≤m

=

(

max
x∈Ω

∂Vi(x, ũ)

∂uj

)

1≤i,j≤m

,

F 0 =

(

min
x∈Ω

Fij(x, ũ)

)

1≤i,j≤m

=

(

min
x∈Ω

∂Fi(x, ũ)

∂uj

)

1≤i,j≤m

,

F 0 =

(

max
x∈Ω

Fij(x, ũ)

)

1≤i,j≤m

=

(

max
x∈Ω

∂Fi(x, ũ)

∂uj

)

1≤i,j≤m

.

Now we show the asymptotic profile of R0 as (d1, . . . , dn) → (∞, . . . ,∞).

Theorem 3.3. Assume that (A1)-(A5) and (A8) hold,

s
(

V 0

)

< 0, s (−V 0) < 0 and r(V
−1

0 F 0) > 0,

and there exists ǫ0 > 0 such that, for any x ∈ Ω, −V ǫ0 is cooperative and F ǫ0 is positive,

where V ǫ, V ǫ and F ǫ are defined in Eq. (3.14). Let

V̌ =

(
∫

Ω

Vij(x, ũ)dx

)

1≤i,j≤m

=

(
∫

Ω

∂Vi(x, ũ)

∂uj
dx

)

1≤i,j≤m

,

F̌ =

(
∫

Ω

Fij(x, ũ)dx

)

1≤i,j≤m

=

(
∫

Ω

∂Fi(x, ũ)

∂uj
dx

)

1≤i,j≤m

.

(3.15)

If r(V̌ −1F̌ ) is the unique eigenvalue of V̌ −1F̌ with an eigenvector in R
m
+ \ {0}, then

lim
(d1,...,dn)→(∞,...,∞)

R0 = r
(

V̌ −1F̌
)

.

Proof. As in the Step 1 of Theorem 3.1, we could prove that there exist positive con-

stants R0, R0 and C2 such that R0 ∈ [R0, R0] for any d1, . . . , dm > 0 and dm+1, . . . , dn >

C2. Let κ = 1/R0, and κ can be viewed as function of (d1, . . . , dn). Since k(d1, . . . , dn)

is bounded for any d1, . . . , dm > 0 and dm+1, . . . , dn > C2. Then, for any sequence

{(d
(j)
1 , . . . , d

(j)
n )}∞j=1 satisfying (d

(j)
1 , . . . , d

(j)
n ) → (∞, . . . ,∞) asj → ∞, there exists a

subsequence {(d
(jk)
1 , . . . , d

(jk)
n )}∞j=1 such that lim

k→∞
κ
(

d
(jk)
1 , . . . , d(jk)n

)

exists and is posi-

tive, which is denoted by κ∗. For convenience, we denote d
(jk)
i by d

(k)
i for each k ≥ 1
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and i = 1, . . . , n. Without loss of generality, we assume that d
(k)
i ≥ C2 for any k ≥ 1

and i = m+ 1, . . . , n.

Let φ̂(k) = (φ̂
(k)
1 , . . . , φ̂

(k)
m )T ≥ (0, . . . , 0)T be the corresponding eigenvector of oper-

ator

−
(

dI∆− V (x, u0(x)
)−1

F (x, u0(x))

with respect to eigenvalue R0(d
(k)
1 , . . . , d

(k)
n ), where ‖φ̂(k)‖∞ = 1 for each k ≥ 1. That

is, for i = 1, . . . , m,

∆φ̂
(k)
i +

1

d
(k)
i

[

−
m
∑

i=1

Vij(x, u
0(x))φ̂

(k)
j + κ

(

d
(k)
1 , . . . , d(k)n

)

m
∑

j=1

Fij(x, u
0(x))φ̂

(k)
j

]

= 0,

where u0(x) depends on
(

d
(k)
m+1, . . . , d

(k)
n

)

. Then it follows from the Lp theory that there

exists a subsequence {kl}
∞
l=1 such that lim

l→∞
φ̂
(kl)
i = c∞i in C(Ω,R) for each i = 1, . . . , m,

where c∞i is a nonnegative constant, and c∞ := (c∞1 , . . . , c∞m )T satisfies

|c∞| = 1, and V̌ c∞ = κ∗F̌ c∞.

Then 1/κ∗ = r(V̌ −1F̌ ). This completes the proof.

Remark 3.4. We remark that there always exists a decomposition

{(Fi(x, u),Vi(x, u))}
n
i=1

of {fi(x, u)}
n
i=1 such that

fi(x, u) = Fi(x, u)− Vi(x, u) for i = 1, . . . , n, and rank(F ) = 1.

Consequently r(V̌ −1F̌ ) is the unique eigenvalue of V̌ −1F̌ with an eigenvector in R
n
+ \

{0}. Moreover, different decompositions of {fi(x, u)}
∞
n=1 will not change the portion

of parameter space that the disease vanishes or spreads. Actually, if there exist two

decompositions
{(

F
(j)
i (x, u),V

(j)
i (x, u)

)}n

i=1
(j = 1, 2),

then there exist two basic reproduction numbers R
(1)
0 and R

(2)
0 . It follows from [38,

Theorem 3.5] that R
(1)
0 − 1 and R

(2)
0 − 1 have the same signs.
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Remark 3.5. In Theorem 3.3, we assume that there exists ǫ0 > 0 such that, for any

x ∈ Ω, −V ǫ0 is cooperative and F ǫ0 is positive. In Section 4, we will show that in

some concrete examples, any off-diagonal entry in V ǫ, V ǫ equals to zero or is strictly

positive, and any entry of F ǫ or F ǫ is strictly positive. Therefore we only need to show

that −V 0 is cooperative and F 0 is positive to obtain results in Theorem 3.3.

4 Applications

In this section, we give some examples to show that the general results in Theorems

3.1 and 3.3 can be applied to many different reaction-diffusion epidemic models.

4.1 Vector-host epidemic models

We consider two vector-host epidemic models. The first is given by [15] to model the

outbreak of Zika in Rio De Janerio:










































∂Hi

∂t
− δ1∆Hi = −λ(x)Hi + σ1(x)Hu(x)Vi, x ∈ Ω, t > 0,

∂Vi

∂t
− δ2∆Vi = σ2(x)VuHi − µ(x)(Vu + Vi)Vi, x ∈ Ω, t > 0,

∂Vu

∂t
− δ3∆Vu = −σ2(x)VuHi + β(x)(Vu + Vi)− µ(x)(Vu + Vi)Vu, x ∈ Ω, t > 0,

∂Hi

∂ν
=

∂Vi

∂ν
=

∂Vu

∂ν
, x ∈ ∂Ω, t > 0,

(4.1)

whereHu(x), Hi(x, t), Vi(x, t) and Vu(x, t) are the densities of uninfected hosts, infected

hosts, infected vectors and uninfected vectors at space x and time t, respectively, Ω is

a bounded domain with smooth boundary ∂Ω, ν is the outward unit normal vector on

∂Ω, δ1, δ2, δ3 are positive constants, and λ(x), Hu(x), σi(x) (i = 1, 2), β(x) and µ(x)

are strictly positive and belong to Cα(Ω). The asymptotic properties of R0 for this

model has been investigated in [31], see also [30] for the global dynamics. We revisit it

to show that the main results in Section 3 can be applied to this model to determine

the asymptotic behavior of basic reproduction number R0.

Letting

n = 3, m = 2 and (u1, u2, u3) = (Hi, Vi, Vu),
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we could use the framework in Section 3. It follows from [31] that model (4.1) has a

unique disease-free steady state u0(x) =
(

0, 0, V̂ (x)
)

, where V̂ (x) satisfies

lim
δ3→0

V̂ (x) =
β(x)

µ(x)
and lim

δ3→∞
V̂ (x) =

∫

Ω
β(x)dx

∫

Ω
µ(x)dx

in C(Ω). (4.2)

This implies that assumptions (A7) and (A8) are satisfied. For model (4.1),

V (x, u) =





λ(x) −σ1(x)Hu(x)

0 µ(x)u3



 , F (x, u) =





0 0

σ2(x)u3 0



 , (4.3)

where u = (u1, u2, u3)
T , and

B = (δ1∆, δ2∆)T − V (x, u0(x)). (4.4)

Then the basic reproduction number is given by

R0 = r
(

−F (x, u0(x))B−1
)

. (4.5)

Moreover, for model (4.1),

ũ =

(

0, 0,

∫

Ω
βdx

∫

Ω
µdx

)

and c(x) =

(

0, 0,
β(x)

µ(x)

)

,

and a direct computation implies that all the assumptions of Theorem 3.1 and 3.3 are

satisfied. Then we have the following results.

Proposition 4.1. For model (4.1), the following statements hold.

(i)

lim
(δ1,δ2,δ3)→(∞,∞,∞)

R0 =

∫

Ω

σ1Hudx

∫

Ω

σ2dx
∫

Ω

λdx

∫

Ω

µdx

.

(ii)

lim
(δ1,δ2,δ3)→(0,0,0)

R0 = max
x∈Ω

σ1(x)σ2(x)Hu(x)

λ(x)µ(x)
.
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Next we consider another vector-host epidemic model:























































∂I

∂t
= d1∆I + βs(x)SV − (b(x) + γ(x)) I, x ∈ Ω, t > 0,

∂V

∂t
= d2∆V + βm(x)MI − c(x)V, x ∈ Ω, t > 0,

∂S

∂t
= d3∆S + λ1(x)− b(x)S + γ(x)I − βs(x)SV, x ∈ Ω, t > 0,

∂M

∂t
= d4∆M + λ2(x)− c(x)M − βm(x)MI, x ∈ Ω, t > 0,

∂I

∂ν
=

∂V

∂ν
=

∂S

∂ν
=

∂M

∂ν
= 0, x ∈ ∂Ω, t > 0,

(4.6)

where I(x, t), V (x, t), S(x, t) and M(x, t) are the densities of infected hosts, infected

vectors, susceptible hosts and susceptible vectors at space x and time t, respectively, Ω

is a bounded domain with smooth boundary ∂Ω, ν is the outward unit normal vector

on ∂Ω, d1, d2, d3, d4 are positive constants, and λi(x) (i = 1, 2), βs(x), βm(x), b(x), γ(x)

and c(x) are strictly positive and belong to Cα(Ω). The model was originally an ODE

model (i.e., d1 = d2 = d3 = d4 = 0) proposed by Feng and Velasco-Hernández [14], and

R0 of the ODE model was obtained in [14, 40].

Letting

n = 4, m = 2 and (u1, u2, u3, u4) = (I, V, S,M),

we could use the framework in Section 3. The model (4.6) has a unique disease-free

steady state

u0(x) = (0, 0, Ŝ(x), M̂(x)),

where
(

Ŝ(x), M̂(x)
)

satisfies

lim
(d3,d4)→(0,0)

(

Ŝ(x), M̂(x)
)

=

(

λ1(x)

b(x)
,
λ2(x)

c(x)

)

lim
(d3,d4)→(0,0)

(

Ŝ(x), M̂(x)
)

=

(

∫

Ω
λ1dx

∫

Ω
bdx

,

∫

Ω
λ2dx

∫

Ω
cdx

) in C(Ω,R2). (4.7)

This implies that assumptions (A7) and (A8) are satisfied. A direct computation

implies that, for model (4.6),

F (x, u) =





0 βs(x)u3

βm(x)u4 0



 , V (x, u) =





b(x) + γ(x) 0

0 c(x)



 (4.8)
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for u = (u1, u2, u3, u4)
T , and

B = (d1∆, d2∆)T − V (x, u0(x)).

Then the basic reproduction number is also given by (4.5). Finally for model (4.6),

ũ =

(

0, 0,

∫

Ω
λ1dx

∫

Ω
bdx

,

∫

Ω
λ2dx

∫

Ω
cdx

)

and c(x) =

(

0, 0,
λ1(x)

b(x)
,
λ2(x)

c(x)

)

.

It is easy to check that all the assumptions of Theorem 3.1 and 3.3 are satisfied. Then

we have the following results.

Proposition 4.2. For model (4.6), the following statements hold.

(i)

lim
(d1,d2,d3,d4)→(∞,∞,∞,∞)

R0 =

√

∫

Ω
λ1dx

∫

Ω
λ2dx

∫

Ω
βsdx

∫

Ω
βmdx

∫

Ω
bdx

(∫

Ω
cdx
)2 ∫

Ω
(b+ γ)dx

.

(ii)

lim
(d1,d2,d3,d4)→(0,0,0,0)

R0 = max
x∈Ω

√

λ1(x)λ2(x)βs(x)βm(x)

b(x)c2(x)(b(x) + γ(x))
.

4.2 Staged progression model

In this subsection, we consider a staged progression model proposed in [19]. This model

has a single uninfected compartment, and the infected individuals could pass through

several stages of the disease with changing infectivity. It could be applied to model the

transmission of many disease, such as HIV/AIDS, see [19]. The original model was an

ODE model, and the reproduction number was obtained in [17, 40]. Here we consider

the associated reaction-diffusion case:


































































∂I1
∂t

= d1∆I1 + h(N)

(

m
∑

k=1

βk(x)SIk

)

− (ν1(x) + γ1(x))I1, x ∈ Ω, t > 0,

∂Ii
∂t

= di∆Ii + νi−1(x)Ii−1 − (νi(x) + γi(x))Ii, x ∈ Ω, t > 0, 2 ≤ i ≤ m,

∂Im+1

∂t
= dm+2∆Im+1 + νm(x)Im − γm+1Im+1, x ∈ Ω, t > 0,

∂S

∂t
= dm+1∆S + λ(x)− b(x)S − h(N)

(

m
∑

k=1

βk(x)SIk

)

, x ∈ Ω, t > 0,

∂S

∂ν
=

∂Ii
∂ν

= 0, x ∈ ∂Ω, t > 0, 1 ≤ i ≤ m,
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where N = S +

m
∑

i=1

Ii, h(N) = N−α with α ∈ [0, 1], S(x, t) is the density of the

susceptible individuals, Ii(i = 1, . . . , m + 1) is the density of the infected individuals

at stage i, Ω is a bounded domain with smooth boundary ∂Ω, ν is the outward unit

normal vector on ∂Ω, di (i = 1, . . . , m+2) are positive constants, and λ(x), b(x), βi(x)

(i = 1, . . . , m), νi(x) (i = 1, . . . , m), γi(x) (i = 1, . . . , m + 1) are strictly positive and

belong to Cα(Ω). Note that Im+1 decouples from the others, and consequently we could

consider the following model



















































∂I1
∂t

= d1∆I1 + h(N)

(

m
∑

k=1

βk(x)SIk

)

− (ν1(x) + γ1(x))I1, x ∈ Ω, t > 0,

∂Ii
∂t

= di∆Ii + νi−1(x)Ii−1 − (νi(x) + γi(x))Ii, x ∈ Ω, t > 0, 2 ≤ i ≤ m,

∂S

∂t
= dm+1∆S + λ(x)− b(x)S − h(N)

(

m
∑

k=1

βk(x)SIk

)

, x ∈ Ω, t > 0,

∂S

∂ν
=

∂Ii
∂ν

= 0, x ∈ ∂Ω, t > 0, 1 ≤ i ≤ m.

(4.9)

Letting

n = m+ 1, (u1, . . . , um) = (I1, . . . , Im) and um+1 = S,

we could use the framework in Section 3. The model (4.9) has a unique disease-free

steady state

u0(x) = (0, . . . , 0, Ŝ(x)),

where Ŝ(x) satisfies

lim
dm+1→0

Ŝ(x) =
λ(x)

b(x)
and lim

dm+1→∞
Ŝ(x) =

∫

Ω
λdx

∫

Ω
bdx

in C(Ω,R). (4.10)

This implies that assumptions (A7) and (A8) are satisfied. For model (4.9),

V (x, u) = (Vij(u))1≤i,j≤m and F (x, u) = (Fij(x, u))1≤i,j≤m ,

where for u = (u1, . . . , um)
T ,

Fij(x, u) =











h
(
∑m+1

k=1 uk

)

βj(x)um+1 + h′
(
∑m+1

k=1 uk

)

(
∑m

k=1 βk(x)uk)um+1 i = 1, 1 ≤ j ≤ m,

0 otherwise,
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Vij(x, u) =



























νi(x) + γi(x) 1 ≤ i ≤ m, j = i,

−νi−1(x) 2 ≤ i ≤ m, j = i− 1,

0 otherwise,

and

B = (d1∆, . . . , dm∆)T − V (x, u0(x)).

And the basic reproduction number is given by (4.5). Also for model (4.9),

ũ =

(

0, . . . , 0,

∫

Ω
λdx

∫

Ω
bdx

)

and c(x) =

(

0, . . . , 0,
λ(x)

b(x)

)

.

Since this model is more complex, we show that all the assumptions of Theorems 3.1

and 3.3 are satisfied.

Lemma 4.3. The following statements hold.

(i) For any a > 0 and x ∈ Ω, −V (x, c(x)) + aF (x, c(x)) is irreducible.

(ii) r(V̌ −1F̌ ) is the unique positive eigenvalue of V̌ −1F̌ , where V̌ −1 and F̌ are defined

as in (3.15).

Proof. Let Qij(x) = −Vij(x, c(x)) + aFij(x, c(x)). Then a direct computation implies

that

Qij(x) =



























































aβ1(x)
λ(x)

b(x)
h

(

λ(x)

b(x)

)

− ν1(x)− γ1(x) i = 1, j = 1,

aβj(x)
λ(x)

b(x)
h

(

λ(x)

b(x)

)

i = 1, 2 ≤ j ≤ m,

−νi(x)− γi(x) 2 ≤ i ≤ m, j = i,

νi−1(x) 2 ≤ i ≤ m, j = i− 1,

0 otherwise.

(4.11)

For i = 1, 2 ≤ j ≤ m,

Q1j = aβj(x)
λ(x)

b(x)
h

(

λ(x)

b(x)

)

6= 0,

and for any 2 ≤ i ≤ m, j > i,

Qi(i−1) · · ·Q21Q1j = aνi−1(x) · · ·ν1(x)βj(x)
λ(x)

b(x)
h

(

λ(x)

b(x)

)

6= 0.
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Similarly, for 1 ≤ j ≤ m, i > j,

Qi(i−1)Q(i−1)(i−2) · · ·Q(j+1)j = νi−1(x) · · ·νj(x) 6= 0.

Therefore, −V (x, c(x)) + aF (x, c(x)) is irreducible for any a > 0 and x ∈ Ω. This

completes the proof of part (i).

Let V̌ −1 = (αij)1≤i,j≤m. From [40] and a direct computation, we see that

αij =



































0 1 ≤ i ≤ m, j > i,

1
∫

Ω
(νi + γi)dx

1 ≤ i ≤ m, j = i,
∏i−1

k=j

∫

Ω
νkdx

∏i
k=j

∫

Ω
(νk + γk)dx

1 ≤ i ≤ m, j < i.

(4.12)

Let F̌ V̌ −1 = (α̃ij)1≤i,j≤m. Then ãij = 0 for any 2 ≤ i ≤, m and 1 ≤ j ≤ m, and

ã11 =

(

m
∑

j=1

∫

Ω
βjdx

∏j−1
k=1

∫

Ω
νkdx

∏j
k=1

∫

Ω
(νk + γk)dx

)

∫

Ω
λdx

∫

Ω
bdx

h

(

∫

Ω
λdx

∫

Ω
bdx

)

. (4.13)

Therefore, r(V̌ −1F̌ ) = ã11 is the unique positive eigenvalue of V̌ −1F̌ . This completes

the proof of part (ii).

The other assumptions of Theorems 3.1 and 3.3 are easy to verified, and we omit

the proof. Then we have the following results.

Proposition 4.4. Let R0 be the basic reproduction number of model (4.9). Then

(i)

lim
(d1,...,dm+1)→(0,...,0)

R0 = max
x∈Ω

(

m
∑

j=1

βj(x)
∏j−1

k=1 νk(x)
∏j

k=1(νk(x) + γk(x))

)

λ(x)

b(x)
h

(

λ(x)

b(x)

)

.

(ii)

lim
(d1,...,dm+1)→(∞,...,∞)

R0 =

(

m
∑

j=1

∫

Ω
βjdx

∏j−1
k=1

∫

Ω
νkdx

∏j
k=1

∫

Ω
(νk + γk)dx

)

∫

Ω
λdx

∫

Ω
bdx

h

(

∫

Ω
λdx

∫

Ω
bdx

)

.
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5 Appendix

In this part, we prove a result that verifies the continuity of functions F c
ǫ, F

c

ǫ, V
c
ǫ, V

c

ǫ,

F x
ǫ , F

x

ǫ , V
x
ǫ and V

x

ǫ , which are defined in Eqs. (3.3) and (3.6).

Proposition 5.1. Let f(x, u) ∈ C(Ω×R,R) and c(x) ∈ C(Ω,R), where Ω is a bounded

domain in R
N (N ≥ 1). Denote

Dc
ǫ = {(x, u) : x ∈ Ω, u ∈ [c(x)− ǫ, c(x) + ǫ]}, Dx

ǫ = {u : u ∈ [c(x)− ǫ, c(x) + ǫ]},

and

H(ǫ) = max
(x,u)∈Dc

ǫ

f(x, u), G(x, ǫ) = max
u∈Dx

ǫ

f(x, u).

Then H(ǫ) ∈ C([0, 1],R) and G(x, ǫ) ∈ C(Ω× [0, 1],R).

Proof. We first consider the continuity of H(ǫ). Let

C1 := min
x∈Ω

c(x)− 2 and C2 =: max
x∈Ω

c(x) + 2.

The continuity of f(x, u) implies that f(x, u) is uniformly continuous on Ω× [C1, C2].

Then, for any give γ > 0, there exists δ > 0 such that, for any (x1, u1), (x2, u2) ∈

Ω× [C1, C2] satisfying |x1 − x2| < δ and |u1 − u2| < δ,

|f(x1, u1)− f(x2, u2)| < γ. (5.1)

Assume that 0 ≤ ǫ1 < ǫ2 ≤ 1 and ǫ2 − ǫ1 < δ. Clearly, H(ǫ1) ≤ H(ǫ2). Noticing that

Dc
ǫ2 is compact, we see that there exists (x0, u0) ∈ Dc

ǫ2 such that H(ǫ2) = f(x0, u0).

Then there exists (x0, u1) such that (x0, u1) ∈ Dc
ǫ1

and |u1 − u0| < δ. It follows from

Eq. (5.1) that f(x0, u0) < f(x0, u1) + γ, which implies that H(ǫ2) < H(ǫ1) + γ. Then

exchanging the position of ǫ1 and ǫ2, we can also obtain that, for any 0 ≤ ǫ2 < ǫ1 ≤ 1

and ǫ1 − ǫ2 < δ,

H(ǫ2) ≤ H(ǫ1) ≤ H(ǫ2) + γ.

Therefore, for any given γ > 0, there exists δ > 0 such that, for any ǫ1, ǫ2 ∈ [0, 1]

satisfying |ǫ1 − ǫ2| < δ,

|H(ǫ1)−H(ǫ2)| < γ.
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This implies that H(ǫ) ∈ C([0, 1],R).

Then we consider the continuity of G(x, ǫ). Note that c(x) is continuous. Then, for

the above δ, there exists δ1 ∈ (0, δ) such that, for any x1, x2 ∈ Ω satisfying |x1−x2| < δ1,

|c(x1)− c(x2)| < δ/2.

Clearly, if |ǫ1 − ǫ2| < δ/2 and |x1 − x2| < δ1, then

|c(x2) + ǫ2 − c(x1)− ǫ1| < δ and |c(x2)− ǫ2 − c(x1) + ǫ1| < δ. (5.2)

Choose (x1, ǫ1), (x2, ǫ2) ∈ Ω× [0, 1] satisfying

|x1 − x2|, |ǫ1 − ǫ2| < δ2,

where δ2 := min{δ/2, δ1}. Clearly, there exists u1 ∈ [c(x1) − ǫ1, c(x1) + ǫ1] such that

G(x1, ǫ1) = f(x1, u1). Then we claim that

G(x1, ǫ1) < G(x2, ǫ2) + γ,

and the proof is divided into two cases.

Case 1. u1 ∈ [c(x2)− ǫ2, c(x2) + ǫ2].

Since |x1 − x2| < δ2 < δ, it follows from Eq. (5.1) that

G(x1, ǫ1) = f(x1, u1) < f(x2, u1) + γ ≤ G(x2, ǫ2) + γ.

Case 2. u1 6∈ [c(x2)− ǫ2, c(x2) + ǫ2].

Then u1 > c(x2) + ǫ2 or u1 < c(x2)− ǫ2. We only consider the case of u1 > c(x2) + ǫ2,

and the other case could be proved similarly. Then c(x2) + ǫ2 < u1 ≤ c(x1) + ǫ1, This,

combined with Eq. (5.2), implies that |c(x2) + ǫ2 − u1| < δ. Then it follows from Eq.

(5.1) that

G(x1, ǫ1) = f(x1, u1) < f (x2, c(x2) + ǫ2) + γ ≤ G(x2, ǫ2) + γ.

Then exchanging the positions of (x1, ǫ1) and (x2, ǫ2), we also have

G(x2, ǫ2) < G(x1, ǫ1) + γ.
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This implies that for any given γ > 0, there exists δ2 > 0 such that, for any

(x1, ǫ1), (x2, ǫ2) ∈ Ω× [0, 1]

satisfying |x1 − x2| < δ2 and |ǫ1 − ǫ2| < δ2,

|G(x1, ǫ1)−G(x2, ǫ2)| ≤ γ. (5.3)

This completes the proof.
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