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HYPOCOERCIVITY PROPERTIES OF ADAPTIVE LANGEVIN DYNAMICS*

BENEDICT LEIMKUHLER', MATTHIAS SACHS ¥, AND GABRIEL STOLTZS

After publication, an error in Lemma 2.7 came to light, which, when corrected, results in a
different scaling of the lower bound (2.12) on the exponential convergence rate in Theorem 2.1,
the factor ~y in the minimum over four terms being changed to y/e%. The convergence result, its
corollaries, and the various estimates in the proof of these results have been updated accordingly in
this corrected version. In particular, the results now agree with the ones recently obtained by Lois
Delande in [7], who pointed out the mistake.

Abstract. Adaptive Langevin dynamics is a method for sampling the Boltzmann—Gibbs distribution at pre-
scribed temperature in cases where the potential gradient is subject to stochastic perturbation of unknown magnitude.
The method replaces the friction in underdamped Langevin dynamics with a dynamical variable, updated according
to a negative feedback loop control law as in the Nosé-Hoover thermostat. Using a hypocoercivity analysis we show
that the law of Adaptive Langevin dynamics converges exponentially rapidly to the stationary distribution, with a
rate that can be quantified in terms of the key parameters of the dynamics. This allows us in particular to obtain a
central limit theorem with respect to the time averages computed along a stochastic path. Our theoretical findings
are illustrated by numerical simulations involving classification of the MNIST data set of handwritten digits using
Bayesian logistic regression.

Key words. Langevin dynamics, hypocoercivity, Bayesian inference, stochastic gradients, Nosé-Hoover, sam-
pling
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1. Introduction. Langevin dynamics [29, 21, 24] is a system of stochastic differential equa-
tions which is traditionally derived as a model of a coarse-grained particle system:

dg=M"1pdt,

(1.1) 3
dp = (F(q) — (M~ 'p) dt + o dW.
Here q € R” represents a vector of particle positions, p is the corresponding vector of momenta,
the mass matrix M € R™ "™ is symmetric positive definite, F is the force field (normally the
negative gradient of a potential energy function U), ¢ € R is a (constant) friction coefficient, and
o € R represents the strength of coupling to the stochastic driving force defined by the Wiener
increment dW. Although conceived as a dynamical model, Langevin dynamics is among the most
versatile and popular methods for computing the statistical properties in high dimension, e.g.
for molecular systems or, more recently, for many problems in high-dimensional data analysis.
In this approach, the dynamical properties are ignored and the stochastic differential equations
are discretized to produce “sampling paths” with weights approximating those associated to the
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(prescribed) Boltzmann-Gibbs stationary distribution with density pg o e AU where, in physical
settings, [ is the reciprocal of the temperature scaled by Boltzmann’s constant.

The key benefit of Langevin dynamics for sampling, compared to simpler methods such as
random walk Monte Carlo, is the use it makes of the gradient of the energy function (or, in the
case of data analysis, the “log posterior”; see Section 4.3 for an example of Bayesian data analysis)
which can effectively guide the collection of sampling paths, resulting in less wasted computation.
The use of Langevin dynamics as a sampling scheme is further supported by its well-understood
ergodic properties (see [25, 35, 4, 33] and references therein), which ensure exponential convergence
of averages to their stationary values, a property which under certain technical conditions on the
potential function U can be shown to carry to numerical discretization [25, 35, 22, 3, 19].

Despite these advantages of Langevin dynamics, in many applications (e.g. mixed quantum
and classical molecular dynamics [36, 21] or “big data” [6]) the computation of the force is itself a
very challenging task, thus the gradient may be effectively corrupted (due to approximation error)
which leads to severe biasing of the invariant distribution. It was for precisely such cases that the
Adaptive Langevin dynamics method [17, 8, 34, 23] was created. In this method, the friction ¢ in
(1.1) is reinterpreted as a dynamical variable, defined by a negative feedback loop control law (as
in the Nosé-Hoover method [28]). For concreteness, we suppose the gradient noise to be modelled
by an additional stochastic process. As discussed in [34], this can, in many cases, be interpreted
as an additional (unknown) Itd perturbation o dW¢, where o is unknown and scales linearly
with the stepsize used in the discretization of the respective continuous formulation. The system
of equations now becomes'

dqg =M 'pdt,
dp = (~VU(q) — (M~ 'p) dt + 0c dWg + o4 dW 4,

(1.2)
ac = (p2p -

%Tr (M—1)> dt,

where (3, og, oa, and v are positive scalars, and W, W are two independent Wiener processess
in R™ with independent components (“A” stands for “applied”, “G” for “gradient”). The auxiliary
variable { now acts as a variable friction which restores the canonical distribution associated with
the prescribed inverse temperature 8. The system (1.2) admits the invariant probability measure
(see Section 2)

p’M~'p

(1.3) n(dqdpd¢) = Z ' exp (—ﬁ [ 5

+U(q) + g(é - V)QD dqdpdg,

where Z is a normalization constant and

_ Blog+0d)

(1.4) .

Assuming ergodicity, the system (1.2) allows sampling of the Gibbs-Boltzmann probability measure

with density proportional to e AlP ™M™ 'p/24U ()]

momenta are ignored.

, by marginalization, and proportional to pg if the

IThe formulation in [34] is slightly different in the form of the control law as a consequence of a linear transfor-
mation of the momenta in the presentation of the frictional force.
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The practical value of (1.2) is that it allows simulations to be performed for complicated
systems in which the potential energy function U and its gradient are the consequence of substantial
calculations and thus entail computational errors. The original motivation of the article of Jones
and Leimkuhler [17] was in the context of multiscale models of molecular systems where the force
laws were computed using a separate numerical method and the error in this process assumed to
have the character of white noise. More recently, (1.2) has been adopted in the setting of sampling of
Bayesian posterior distributions in large scale data science applications [5], where the gradient noise
is the consequence of incomplete calculation of the log-likelihood function based on subsampling
data points from a large data set, as in the stochastic gradient Langevin dynamics method [38]. In
this setup the potential function U corresponds to the negative log posterior density of a statistical

model, i.e., for independent observations z',z2, ..., 2", the negative gradient of U is of the form
N
(1.5) ~VU(q) = Vlogpo(q) + Y Viogp(a | q)
j=1

where pg is a prior density and p(z7 | q) is the likelihood of the j-th observation. In order to avoid
the linear scaling in N of the computational cost per evaluation of the force (1.5), the gradient force
—VU(q) is commonly replaced by an unbiased estimator —VU(q) in discretizations of (1.2). That
is,

N N ,
— — _ J
(1.6) VU(q) = Vlogn(q) + - JEEB Vlogp(z? | q),

where B = {J;}]2,, m < N is a subset of the complete data index set —commonly referred to
as a minibatch— which is comprised of uniformly and independently sampled data point indices
Jy€{l,...,N},1=1,...,m, which are resampled with replacement at the beginning of every time
step of a discretization of (1.2).

Although the presence of noise in the Adaptive Langevin model in contact with all momenta
suggests hypoellipticity (as for Langevin dynamics [25]), the way in which convergence is achieved
in the Adaptive Langevin system is not straightforward. Given a stochastic differential equation
system with generator £, let us recall that there are several well studied frameworks which can
be used to derive exponential convergence rates for the semi-group e** (or equivalently for the
respective adjoint semi-group) in certain functional spaces.

First, there are probabilistic techniques, which allow the derivation of exponential convergence
rates of e*“ when considered as a family of operators on weighted L spaces (see e.g. [26, 27, 25]),
or exponential convergence rates of the formally adjoint semi-group acting on Wasserstein metric
spaces (see e.g. [11, 12]).

Second, there also exist functional analytic proofs for exponential convergence for the case of
weighted L spaces; see [31, 13]. The naive application of these methods fails in the case of (1.2)
due to a lack of direct stochastic control of the auxiliary variable {. It was only very recently
shown in [14], that a suitable Lyapunov function can be constructed for this system which allows
to conclude exponential convergence in a weighted L space.

The approach taken here is based on a third method, the alternative hypocoercivity framework
of Villani [37], as further developed by Dolbeault, Mouhot, and Schmeiser [9, 10], which can be used
to derive exponential convergence rates of the semi-group when considered as a family of operators
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acting on subspaces of L?(u), where p denotes the (unique) invariant measure of the stochastic
process under consideration. This technique can be applied to derive geometric convergence esti-
mates for the underdamped Langevin equation [10, 32, 16]. We show that this framework can also
be applied directly to the system (1.2), thus demonstrating the rapid convergence in law of the
Adaptive Langevin system.

The exponential convergence shown here has important consequences for the statistics of the
samples obtained using the Adaptive Langevin method. In particular it allows to establish a central
limit theorem. Our approach also allows us to characterize the asymptotic scaling of the spectral
gap of the generator associated with (1.2) when considered as an operator on the respective weighted
L? space as O(min(yv =1, v~ yv,y~tv71)); a qualitative characterization of the spectral gap which
is missing in the analysis in [14]. The scaling is confirmed in [7] using techniques from semi-classical
analysis, with additional information on leading eigenvectors and eigenfunctions of the generator of
the dynamics in the small temperature regime. The derived asymptotic scaling on the lower bounds
of the spectral gap allows in turn to conclude an asymptotic scaling of the asymptotic variance in
the above mentioned central limit theorem as O(max(vy, v~ v, yv, v 1v71)); see the discussion in
Remark 2.3 for an informal motivation of some terms in this asymptotic scaling.

The remainder of this paper is structured as follows. In Section 2 we begin by rewriting
the generators of the dynamics (1.2), where we also check the invariance of the probability mea-
sure (1.3). In Subsection 2.1 we normalize the dynamics (1.2) in order to study limiting regimes
associated with vanishing or diverging key parameters of the dynamics (namely the thermal mass v
and the magnitude of the fluctuation). We can then discuss requirements of the potential energy
function (Subsection 2.2), and state the exponential convergence of the evolution semigroup in
Subsection 2.3. The central limit theorem (CLT) is derived in Section 3, with upper bounds on
the asymptotic variance made precise in terms of the key parameters of the dynamics. Finally, we
show in Subsection 3.1 that the asymptotic variance converges in the large thermal mass limit to
the asymptotic variance of standard Langevin dynamics. Section 4 contains numerical experiments
assessing the relevance of parameter scalings used and demonstrating the CLT in an application to
Bayesian sampling.

2. Hypocoercivity of Adaptive Langevin dynamics. We assume that the potential en-
ergy function U is smooth and such that e #V(9) is integrable. In particular, (1.3) is a well defined
probability measure. We first show that the probability measure (1.3) is indeed invariant under the
dynamics (1.2).

The generator of (1.2) acts on functions ¢ = ¢(q, p,¢) with (q, p,¢) € R?"*1. It can be written
as Laqr, = Ly +vLo + v~ L with

Ly =p"M'V, - VU(q)TV, = 3 (v V= ViV,) =5 Za*l y — O

(2.1) n
— 1 1 * 1 *

Lo=-p"M 'V, + BA,, = —vavp =—- Za Oy,

and
1
Lyu = -v((—7)p'M 'V, + <PTM_2P - BTT (M_1)> ¢

(2.2)

== ((0c = ViV, + Asde — A0
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where adjoints are taken on L?(). A simple computation indeed shows that 9;, = —9,, + 304, U (q),
9y, = —0p, + B(M™'p);, 9f = —0¢ + Br(¢ — ) and

Ar=A,—28p"M 'V, + 8? <pT1\/I2p — %Tr (M1)> .
The above rewriting in terms of the elementary operators dy, , Op,, 0¢ and their adjoints immediately
shows that Lo is symmetric, while L and Lyyg are antisymmetric. Let us however emphasize that
this decomposition is only used for mathematical convenience: the parameter « is in fact unknown
since o is not known in practice.

Another benefit of the rewriting (2.1)-(2.2) is that the actions of the operators Ly, Lo, Lnu
make it clear that the measure with density (1.3) is indeed invariant since A1 = 0 for A €
{Lu, Lo, Lxu}, so that (denoting by C§°(R?*"T1 R) the space of C°° functions with compact sup-
port in R27+1)

Yo € C° (R R), / .Agodw:o/ e Aldr =0,
R2n+1 R2n+1

with 0 =1 for A = Lo and 0 = —1 for A € {Ly, Lxu}, and where we relied for Lnyg on the fact
that elementary operators acting on different variables commute. Therefore,

Vo € C° (R R), / Laqrpdr =0,
R2n+1

which proves the invariance of 7 under the dynamics (1.2) (see for instance [24]).

2.1. Normalization of the dynamics. To simplify the notation we let M = I. Let us how-
ever emphasize that our proofs and results can be adapted in a straightforward way to accomodate
general mass matrices. As one of our interests in this work is to understand the limiting regimes
~v — 0 or +oo and/or v — 0 or +oo of the Adaptive Langevin dynamics, we also need to rescale the
friction variable ¢ in order for the invariant measure to be independent of the parameter v. More
precisely, we set ¢ = /v and consider £ = \/v({ —7), i.e.

C=7+§
9

The latter change of variables is motivated by the fact that the invariant measure (1.3) now becomes
(slightly abusing the notation )

£

T -1
PMIP L g+ ]) dqdp d¢.

2
(2.3) m(dgdpdé) = Z texp <5 { 5 5

Let us emphasize that this invariant probability measure does not depend on the parameters 7, .
The dynamics (1.2) then becomes

dq = pdt,

(2.4) dp = (—VU(q) - gp - vp) dt + \/?dW,

g =1 (b~ % ) .
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where |p| = m is the Euclidean norm of p € R"™. The generator of this SDE is
(2.5) LadL = Lu+7Lo +& ' Lnu,

with the above definitions (2.1) for £y and Lo (upon replacing M with I) and

n
8

2.2. Assumptions and notation. We denote by 7,4, m,, m¢ the marginals of the probability
measure (2.3) in the variables q, p, and &, respectively, so that 7(dqdp d¢) = m,(dq)m, (dp)me (d€).
Further let || - || 2(x) be the norm on the Hilbert space L?(r) induced by the canonical scalar product,
and denote by L2(r) the subspace of L?(r) of functions with vanishing mean:

/ pdr = O}7
R2n+1

and by Iy : L?(r) — L2(7) the orthogonal projection operator onto this subspace, i.e.,

1 * * * *
(2.6) Lyu = (IPI2 - ) O —Ep'V, = 7 (0 = 02)VyVp + A0 — AO;) -

(27) L3(r) = {@ € I(r)

(2.8) Iop = — / pdm.
R2n+1

In the remainder of this article we consider all operators as being defined on L?(7) unless explicitly
specified otherwise. The associated operator norm for bounded operators on L?(7) is

1Tl 2 (r)

171 = TR
peL?(m)\{0} ||80||L2(7r)

For an operator 7 on L?(7) with dense domain, we denote by 7* its L?(r)-adjoint. Throughout the
remainder of this article we assume that the potential function U satisfies the following assumption.

ASSUMPTION 1. The potential function U is smooth, and the associated probability measure
mq(dq) = Z;le*BU(Q)dq satisfies a Poincaré inequality: there exists kg > 0 such that

(2.9) Yo € H1(7rq)7 Hap —/ pdmy

1
< ;HV@HL?(ﬁqy
L2(ry)  Ha

Moreover, there exist c; > 0, ca € [0,1) and c3 > 0 such that
(2.10) AU < er + %|VU|2, IV2U| < 3 (1+ |VU).

The second condition, taken from [10, Section 3], ensures that the operator (1 + V;Vq)_l is
bounded from L?(7,) to H?(m,). It will be used in technical estimates related to the proof of
exponential convergence of the semigroup (see Lemma 2.9).

A sufficient condition on U for 7, to satisfy a Poincaré inequality is for example the following
(see [1, Corollary 1.6]): there exists a € (0,1), ¢ > 0 and R > 0 such that

Vg € R™ such that |¢| > R, aB|VU(q)|? — AU(q) > c.

The latter condition and (2.10) hold for instance for potentials which behave asymptotically as |g|®
with o > 1 as |q| — oc.
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2.3. Exponential convergence of the law and invertibility of the generator. The
following result states the exponential convergence in L?(7) of the semigroup e‘“Adt associated
with the dynamics (2.4).

THEOREM 2.1. There exist C, X such that, for any e,y > 0, there is Aey > 0 for which

(2.11) YVt >0, Ve L*(n), etbadry /(pdﬂ' < Ce el — /(pdﬂ' ,
L2() L2 ()
with the lower bound
N s 11 2 7
(2.12) e,y = Amin (7’ @,’ya ,62> .

Theorem 2.1 immediately implies the existence of the inverse of Laqr, on L3(r), and allows to
obtain bounds on the norm of the inverse in terms of the parameters v, € (see [24, Proposition 2.1]).

COLLORARY 1. The operator Laar, considered on L3(r) is invertible and

—1 > tLAdL -1 c £ 2 1
Lyar = — 0 € dt, HEAdLHB(LS(w)) < imax ’Ya;ﬁﬁ 7? .

Simple computations show that some of these bounds on the resolvent are sharp. Indeed,
1
Laa (W +p"VV) =p" (V2V)p— [VV[* = —¢p"VV,

which shows that there exists b > 0 such that HE;
Moreover,

(11LHB(L§(7T)) = by by choosing v large and € = 1.

Il

1 1 1 1
Laar (755 + 7I)TVV> = —g§|p|2 =+ %pTVV - g (pT (V2V) p- |VV|2) )

which shows that there exists ¢ > 0 such that HLKéLHB(LQ(W > cye? by choosing v > ¢ > 1.
0

)

2
LadL (U+|12|> =~ {Z <1+fg> pz} ,

which implies that there exists a > 0 such that HEX;L

Finally,

_1 .
HB(L%(W)) > ay~" by choosing v small and

~ve large. This is however weaker than the scaling max(e2,e=2)y~1. It is in particular not so easy
to find functions which saturate the upper bound 1/(ye?) of the resolvent since this requires a
careful analysis in the regime & — 0, which corresponds to a singular limit where the dominant part
of the dynamics is the deterministic Nosé—Hoover feedback; see Remark 3.2 below. We however
demonstrate numerically the sharpness of the upper bound in Section 4.1.

The proof of Theorem 2.1 relies on the hypercoercive framework of [9, 10]. The exponential
decay is obtained by a Grénwall inequality in a modified norm on L?(r). The choice of the modified
norm is motivated by the fact that Lagqr, is coercive in the corresponding scalar product. More
precisely, we consider

1
(2.13) H () = Sl () + ey (A, ) 12
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where A, is a bounded operator constructed from the antisymmetric part o := Ly + ¢ 'Lnu of
the generator, and a. , € (0,1) is a constant. The expression of A, distinguishes whether ¢ <1 or
e > 1. For € € (0,1], the small term in 7 is the Hamiltonian one and the expression of A, is the

one suggested in [10], namely — [1 — IL&/211] ~' L7, where II is the orthogonal projector on L?()
corresponding to the partial integration with respect to m,(dp):

(214) 10 (@.6) = [ plap.mldp).

For ¢ € [1,00), the small term in % is the one associated with the Nosé-Hoover-like feedback
mechanism, in which case one should rescale the generator as e£aqr, in order to avoid degeneracies
as € = +o0o. Up to this multiplication by e, the regularization operator is defined as above, and
therefore reads —e [1 — e?ILZ/1I] “'ILez.. This modification turns out to be crucial to obtain the
key partial coercivity (2.19) with the appropriate rate (see the discussion following this inequality).
We therefore use the following regularization operator, which reduces to the expressions discussed
above upon distinguishing e < 1or e > 1:

-1
A. := —min (1, 1) [min (1, 12) — H.foﬂ} A
€ €
_ 1 _ 1 on ., 1_, -1
= — min (1, 8) |:m1n (1, 52> + H <W8£8€ + 6quq> H:| H,!Z{E

The second expression is a consequence of the following equalities:

1 & 1
2 * * *
LA = — 2 > 110,05, 110;,0,, = —5ViVa
=1
1 * *
OLnuLlull = Ly Laull = 0,

L3, = — 8585,

52

which are direct consequences of the expressions (2.1) and (2.6) for the generators in terms of the
elementary operators 0, Op,, O¢, as well as the following rules (which can be checked by direct
computations):

* * %\ 2
(2.15) 0y, 11 =0, 119, =0, Oy, 0y 11 = P11, 02 (0y,)" T = 23°115;;.

It can be shown that the norm of A, is bounded by 1/2 (see Lemma 2.4), so that /J7(-)
defines a norm equivalent to the standard norm on L?() for any a. ., € (—1,1):

[1— |ac 4] 1+ |ac 4|
(2.16) EPY||80||L2(7T) VA 767” | 22 ()

By polarization we can define a real valued inner product associated with /J2(-) as

(fsg)ey =(f+9g)—HA(f) = H(g)
=(f,9)rz 7r)+a6,v<A /s >L2(7r —I—a577< Eg7f>L2(7r)-

Most importantly, the construction of the operator A, ensures that £aqr, is coercive for the modified
scalar product (2.17), as made precise in the following key result (see Section 2.4 for the proof).

(2.17)
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PROPOSITION 2.2. There ezist a € (0,1) and X > 0 such that, for any e,7 > 0 and upon
choosing a. , = amin(y/e, vy, v, (ve) 1) in (2.13),
o'} n Y. Yy 1 1
Vo € CREMNIAM,  (~Lamprpdes > min (5,296 5 ) el
Theorem 2.1 then follows from the inequality

d

<. 1 1
= [% (etLAdLQD)] _ <<£AdLetLAdLS07etEAdLSD»EW < —Amin (;, 57752’ ,}/€2> HetﬁAdLSDHiZ(T() ,

upon using the equivalence of norms (2.16) and resorting to a Gronwall lemma.

Remark 2.3. We motivate why some of the four terms are expected in the scaling (2.12) of the
lower bound. First, if Lyg = 0, the remaining part Ly + vLo of the generator corresponds to the
underdamped Langevin equation, whose spectral gap is bounded from above by a term proportional
to O(min(y,y~1)). Similarly, in the case Ly = 0, it can be verified that the framework of [9] can
be directly applied to Laar, = e~ *(e7Lo + Lnu) considered as an operator on L%(m,7¢), meaning
that the spectral gap of this operator scales as O (5_1 min(ve, (’yzs)_l)) =0 (min(%*y_ls_Q). By
this simple analysis, we correctly predict the terms v and 1/ve2, but we miss the term ve? and we
incorrectly predict a scaling of order ~ instead of v/ in the limit ¢ — oo and v — 0. The origin of
these limitations on the convergence rate comes from an interaction between the Hamiltonian and
Nosé-Hoover parts, as discussed in Remark 2.8 below.

2.4. Proof of Proposition 2.2. In the remainder of this section, we use the shorthand
notation
ne = min(1,e71).

We first review a few properties of the operator A, (obtained by a straightforward adaptation of [10,
Lemma 1]).

LEMMA 2.4. The operators A. and /. A. are bounded, and I1A. = A.. Furthermore, for any
fe L*(m),

1
1Az < SIA=IDfllz2emy,  NeAefllzm < el =) fllzz -

Proof. Consider f € L?(mr) and u = A.f. Then, (n? — ILeZ2I)u = —n.IlaZ f. This equality
already shows that Ilu = u, i.e. [IA. = A.. Moreover, upon taking the scalar product with u, and
noting that I1.eZ 11 = 0,

USHU“ZB(TQ + ||%HU||%2(W) = —ne(u, (1 - H)f>L2(7r)
2
n
S el eIl 2y (1= T fll 2y < ZE N = IO FIL2 () + [ TTu] T2 ),

which implies the claimed inequalities. 0
We now fix ¢ € C§°(R?" 1) N LE(7) and evaluate

(2 18) «_EAdL(pa 90»8,7 = _7<[’O<pa 30>L2(7r) + ae,w(%Aswa SO>L2(7T)
— Qg y <A5%907 90>L2(71-) — VAg,y <AE£OSD7 90>L2(7r)7

where we have used the fact that (LaaLe, ¥)r2(r) = (Low, ¥)12(r), and LoA. = LoIIA. = 0. We
next consider the four terms on the right-hand side of (2.18):



10 B. LEIMKUHLER, M. SACHS, AND G. STOLTZ

e The expression (2.1) shows that —(Log, ©)12(x) = ﬂ_1||Vp<p||%2(7r) > ﬂ_lli%H(l—H)gOH%g(ﬂ_)
from a Poincaré inequality for the Gaussian measure in p, pointwise in (q,£) and then
integrated with respect to m4(dq) m¢(d§) (in fact, k, = \/5/m).

e The term (@A, 0)r2(r) is equal to (FAcp, (1 — 1)) 2 (r) since [LeZIl = 0, and is
therefore larger than —n.||(1 — H)g0||%2(ﬂ) in view of Lemma 2.4.

e We decompose the term —(A. oL, ©) 12 (x) as —(Ac 1L, @) 12 () = (Ac e (1=11) @, 0) L2(x)-
We first observe that the operator A..o/ Il can be written, using spectral calculus, as

N
Ve

2 1
ﬁagag i ﬁv;vq) I,  f(z)=

Moreover, from Poincaré inequalities for m, and m¢ (with constants r, and ke = /),

AcetiTI = . (T). Tn(

2nk? K2
T = a (1 — IIy), aszmin< ¢ ,

(Be)?” B
so that
NeQe
2.1 A I1 > ATI(1 — 1), A= .
(219) (1-Tho) o

Note that A, is of order 1 when ¢ < 1, and of order ¢! for ¢ > 1. It is precisely at this
place that it is crucial to modify the definition of A.. Indeed, if one keeps the regularization
operator — [1 — IL&Z211] -t I, as for € < 1, the rate A. would be replaced by a. /(14 a;),
which behaves as a. ~ 72 for ¢ large.

The quantity (A. o (1—11)@, 9)r2(r) = (Ae@(1=11)@, @) 12(5) can be shown to be larger
than —Cy max(1,e™")||TIp|| L2(x) || (1 — I1)@|| £2(x) upon proving that the operator A..o7 (1 —
II) is bounded by C; max(1,e71); see Lemma 2.7 below.

e Finally, in order to lower bound (4. Lo, ) 12(x) = (AcLo(1-11)p, 1) 12 () by —Co [Tl L2 | (1-]}
)| 12 (xy, we prove in Lemma 2.6 that the operator A.Lo is uniformly bounded with re-
spect to € by some constant Cs.

Gathering all estimates, we obtain, for ¢ € L3(7) (so that (1 —II)p = ¢),

2
Trp

B

1
~acy (Comax (1.2) +9C2 ) 1Mellol (0 = Ml

(—LaaLe, ey = < - %Ws) (1 =T @l[Z2(x) + e ATl 2 )

(2.20)

which can be rewritten as

(2.21)
HSQHL2 B l31.2
—L AL, >X"B.,X, X= I (@), B..,= 1 2012
<< AdLY @»s,’y e,y <||(1 _ H)<,0||L2(7T) ey %31,2 Ba.s
with

1 yK2
(2.22) Bl71 = ag),yAE, Bl,g = —aaﬂ (Cl max (1, 6) + 702) 5 3272 = Tp — ae’,y’lk.
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The result then follows from lower bounds on the smallest eigenvalue of B, ., which reads
4B11Ba s — Bi ,

(2.23) A(B: ) = '
Bi1+Bao+ \/(Bl,l — By2)? + B%,Q

The scaling of a. ~ as a function of €, vy is obtained by requiring that the determinant

B2 /{2 2 1 2
(2.24) B11B2s - f = (7513 - am) ey e — ai’; <01 max (1, 6) +702)

is positive. We distinguish two cases:
e For ¢ < 1, n. = 1 and the factor A, is of order 1. The scaling of a. - as a function of €,~
suggested by (2.24) is

_ Y _ e
2.25 Ue~y =G = ae
229 A ) A e

for @ > 0 sufficiently small. We further distinguish two cases: (i) For ye < 1, the scal-
ing (2.25) leads to the choice a. , = @ye? for @ > 0 sufficiently small, in which case the
smallest eigenvalue of B. ., is easily seen to be of order v&? (since (2.23) is the ratio of a
numerator of order 722 and a denominator of order v); (ii) For e > 1, the scaling (2.25)
leads to the choice a. ., = @/ for @ > 0 sufficiently small, in which case the smallest ei-
genvalue of B. , is easily seen to be of order min(vy,y ') (since the numerator in (2.23) is
of order 1, while the denominator is the sum of terms proportional to v and v~1). In fact,
since € < 1 and e > 1, it holds v > 1, so that the smallest eigenvalue of B, , for ye > 1
is of order y~!.

e For ¢ > 1, the factor A, is of order ¢! and 7. = ¢~ L.
of €,v suggested by (2.24) is

The scaling of a. , as a function

a i

e (1+7)?
for @ > 0 sufficiently small. An analysis similar to the one performed above, by further
distinguishing v < 1 and > 1, shows that the smallest eigenvalue of B, , scales as a. /¢,
i.e. e ?min(y,y")

_ In conclusion, there exists A > 0 such that the smallest eigenvalue of B. . is lower bounded by

Amin(y =1 ye 72, 4e2, (ve2) 7).

(2.26) Qe y =

We conclude this section with the proofs of the two technical lemmas used above. In these
proofs, we denote by

2n 1 !
_ 2 * *
so that A, = —n.G.1leZ.. We will repeatedly use in the proofs that G., when restricted to some
subspace of Lj(m), behaves as (1 + 90 IT)~" or (1 +TIV;V,IT)~". More precisely, introduce the
orthogonal projectors P, and Pg, which correspond to a partial integration with respect to m4(dq)
and ¢ (d€) (they are the counterparts for the variables q, & of the projector II defined in (2.14)):

ex) PEO- [ dapOmnda. (P @p) = [ elapo ),
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Note that Py, P¢ both commute with IL, ViV, and 970¢ (in fact P,ViVy = ViV, P, = 0 and
Pe0;0¢ = 0;0¢ P; = 0) and therefore also with G, and that

(2.29) IP,Ly =0, TP:Lxu =0,

by the invariance of the measure m,(dq)m,(dp) by L, and the invariance of m,(dp)ms(d§) by Lnu.
Moreover, IIVZV, 11 > /{31’[(1 — P,) from a Poincaré inequality for my; and similarly, HOZ O >
/@21’[(1 — P¢) from a Gaussian Poincaré inequality for m¢. This leads to the following result.

LEMMA 2.5. The operators G.(1+TIV;V,II)(1 — P,) and e=?G. (1 + HOF0:IT) (1 — Pe) are uni-
formly bounded with respect to €. More precisely,

(2.30) 1G-(1 + IV VIN)(1 — Pl < B (1 + 1,7),
and

N B2 —2\ 2
(2.31) 16-(1 + oz G (1 - Po)|| < 5~ (1—1—/@5 )s .

Moreover, g§/2(1 + HV;VqH)l/Q(l — P,) and 5’1951/2(1 + H@E@gﬂ)lﬂ(l — P¢) are also uniformly
bounded with respect to €.

Proof. Denoting by A, = (1 — P)IIV;V,II(1 - F,),

G-(1 + IIVEV I (1 — Py) = (1 — P,)G.(1 — P)(1 + 1IV:V,II)(1 — P,)
= (1= P+ A)Y? [ + 2n(Be) 2HO 0L + BIVIV,I] ™ (1 - Py + A/

2n N _ -t
W(l — POTOLOII(1 — Py) + B Ag| (1= P+ Ag)'/2,

where all operators on the last right-hand side are considered on the subspace (1 — P,)L2(7), on
which A, > k2. Therefore, in the sense of symmetric operators on (1 — Py)L§(),

:(1_Pq+Aq)1/2 77?(1_Pq)+

0< G+ TVIVIDN(1— P) < (L4+ A2 2 + 5714, (1+4)Y? < g. (4,),

with
(@) 1+
T) = .
gE 77? +B_1x
This leads to (2.30) since g.(x2) < go(x2). Similar computations lead to

14z
min(1,e?) + 2nB—2z’

|G=(1 + O IT) (1 — Pe)|| < ho(kd)e?,  helx) =

which gives (2.31). The estimates on G2/*(1+1IV;V,I)"/2(1~P,) and e ' G2/*(1+118; ¢ I1)/2(1~
P¢) are obtained in a similar way. o

LEMMA 2.6. The operator AcLo is uniformly bounded for € > 0: There exists Co > 0 such that
|[A:Lo|| < Cs.
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Proof. Since A.Lo = —1.G.1ILuLo —nee G IILNu Lo, it suffices to prove that each operator
in the right-hand side of this equality is uniformly bounded with respect to € > 0. First, in view
of (2.29), the operator

T]EQEH‘CHEO = negan(l - Pq)‘CHEO
= 1:G:(1 + IV, VI (1 — P,) (1 + LIV, VII) " I(1 — P,)LuLo
is the product of the operator G (1+11V;V,IT)(1—P,;) (uniformly bounded in € from (2.30)) and the

operator (1+IIV;V,II)~'TI(1— P,)Lu Lo, which is bounded (see for instance [32, Proposition A.3]);
multiplied by the prefactor 7. < 1. We next consider

nee "G IILNuLO = nee” "G (1 + IO OIT) (1 — Pe)(1 + IO I) "' I(1 — Pe)LxuLlo.

Note first that the norm of the operator 7)55’195(14—1—18;851_[)(1 — P¢) is of order min(1,¢) by (2.31).
It remains to prove that (1 + H@gagﬂ)_lﬂ(l — P¢)LnuLo is bounded. We note for this that

1 * * * * *

(1 = Pe)LxnLo = —

1 * *
= E(l — P)O;TIA,V, V,,
where we used (2.15). The conclusion then follows from the fact that IIA, V3V, is bounded (see
Lemma 2.10 below) as well as T¢ = (1 — P¢)(1 + H@gagﬂ)_lﬂ(l — P¢)0; (by computing 7¢7;" and
using spectral calculus together with the lower bound 90 > £Z(1 — P¢) on (1 — P¢) L3 (m)).

In conclusion, A.Lo = —n.G.1LyLo — n.e G IILxuLo is bounded, with an operator norm
of order 1. + min(1, ), which is of order 1 uniformly in € > 0. ]

LEMMA 2.7. There exists Cy > 0 such that
1
Ve > 0, |AceZe (1 — II)|| < Cy max <1,€) .

Proof. Since (Ace.(1 —11))* = (1 — )/ AF = n.(1 — 1) /211G, the result is a consequence
of the bound

1
Vs, 2N < Comax (= 1)

In fact, using LxlIP,; = 0 and LyullP: = 0,

1
%Qngs = LHII(1 — Py)G. + — LEuII(1 - Pe)Ge
(2.32) : e? )
+ gﬁNHﬁHH(l — Pq)gs + gﬁHﬁNHH(l — Pg)gs.

Let us consider successively the various terms on the right-hand side. First, in view of the
rules (2.15),

n n

BLATI(1 — P,)G. = zn: zn: (02,00 = P)G.) (85,05, 10) = 323" (93.04,(1 = Po)G.) (9y,0;,11)

i=1 j=1 i=1 j=1
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which is a sum of bounded operators in view of Lemmas 2.9 and 2.10. Similarly,

11

-5z [(0e — 07)0: V3V + F AL — 90 Ay AZTI(1 — Pe)Ge,

1

5—2£12\,HH(1 — P:)G.11
is a sum of bounded operators in view of Lemmas 2.9 and 2.10. Consider now the terms involving
both Ly and Lxu. We need to introduce projectors 1—F, and 1— P in order to rely on Lemma 2.5.
We note to this end that LyaLull(1l — Py) = Lyu(1 — Pe)Lull(1 — Py) + LyuPeLull(1 — P,) and
Lulnull(l—Pe) = Lu(1— Py)Lxall(1 — Pe) + La Py Lxull(1 — Pe). Straightforward computations
show that

1 1
gﬁNprﬁHH(l — Py)Gep = —gﬁpTVq (ILP(1 = Py)Gep)

which is the product of two functions depending on the variables £, p and q, respectively, with
(p, &) — &p belonging to L?(m, m¢). Note also that the operators 9,,I1P¢(1 — P,)G. are uniformly
bounded in € > 0 in view of (2.30), so that finally e~* Lxg P:LuIl(1 — P,) has an operator norm of
order e !. A similar reasoning shows that the operator

1 2
~LuPyLaull(1 - P:)G.p = —ngVV(?g (ILP(1 — P¢)G.p)
is bounded, with an operator norm of order € by Lemma 2.5. In addition,

1
ELNH(l — Pe)Lull(1 — P,)G.

1 J1 . . 1 N «
Z@ g(aé—85)(1—Pf)vpvp+g8£(1—P£)Ap—gag(l—Pf)Ap VoVl = PG,

and

11
B3 e
are sums of bounded operators in view of Lemma 2.9. Therefore, e~ LxuLull(1 — P,)G. and
e Ly Lynll(1—P¢)G. are bounded operators with operator norms respectively of order max(1,e71)
and max(1,¢). This finally gives the claimed result. d

1
~Lu(1 = P)Lxull(l = Po)Ge = 5= (V3V, = V;V,)(1 — P)%(1 ~ PG

Remark 2.8. Among the various terms in the decomposition of A, 4% (1 —1II) we consider in the
proof of Lemma 2.7, the only one which is not bounded as ¢ — 0 is e ™' Lxyu PeLu (1 — P,)IIG.. This
term arises from the interaction between the Hamiltonian and Nosé—Hoover parts of the dynamics,
and is responsible for the factor max(1,e71) in the expression of Bj o in (2.22), which itself leads
to the extra term ve2 in the scaling of the lower bound of Proposition 2.2.

Note that, crucially, operators in the £ variable in the computations of the proof of Lemma 2.7
always appear with a prefactor e~'. The fact that this is the correct scaling for the boundedness
of these operators comes from the following result.

LEMMA 2.9. The operators 831,’%(1 = P))Ge, 0;,04;(1 — Py)Ge, 5’182(1 — P:)0,, (1 — PG,
e710y,(1 = Py)Oe(1 — Pe)Ge, €105 (1 — Pp)0:(1 — Pe)G., 672(3?(1 — PG, 6723.;6&(1 — P¢)G. are
uniformly bounded with respect to € > 0.

Proof. Consider for instance 831,,%(1 — P,)G.. It is sufficient by Lemma 2.5 to prove that
Bi’qj(l — P)(1 + IOV, V,II)~! is bounded, and in fact that operators of the form T; = 9y, (1 —
Pp) (141197, 04,11) 7/ and 92 (1— P,)(1+1IV;V4II)~! are bounded. The first statement is clear by
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calculating 7;*7; and using spectral calculus; while for the second one we use [10, Section 3]. Similar
reasonings can be used to bound 9}, dy; (1 — Py)G.. Bounds on e 29Z(1 — Pe)Ge, e 29; 0¢ (1 — Pe)Ge
are obtained in a similar way, considering the specific case of quadratic potentials in £ (so that
estimates similar to those of [10, Section 3] hold in the & variable).

Consider next e 10 (1 — P¢)d;. (1 — Py)G. = Te Ry, Sy ¢ with

Spc = e (1= Po)(1+ 920D >(1 — Py)(1 4TIV, V,11) /%G,

uniformly bounded in € by Lemma 2.5, T¢ = 8¢(1 — P¢)(1 + 197 8¢IT)~*/2 bounded by considering
T¢Te and resorting to spectral calculus, and Ry, = 0y, (1 — Py)(1 + IIV;V,II)~*/2. To prove that
the latter operator is bounded, we write it as the sum of —0,,(1 — Py)(1 + HV;V[IH)’U2 (which

is bounded by the same reasoning as the one used to prove that 7 is bounded) and 0,V (1 —
Py)(1+TIV;V,II)~'/2, which is bounded in view of the inequality
IVVIRl L2 () < C (1MllL2(rg) + IV L2(r,))

provided by [37, Lemma A.24]. The boundedness of e719,,(1 — P,)9¢(1 — P¢)G. and €19, (1 —
Py)0; (1 — P¢)G. follows by similar arguments. |

The proof of the following lemma is obtained by straightforward computations based on inte-
gration by parts in the integral involved in the definition of II.

LEMMA 2.10. For any oy, 9,3 € N and i,5,k € {1,...,n}, the operators I10;} <8Zj> ’ op?

are bounded (and so are their adjoints on L*(m,) and L*(w)). In particular, 85, 9y 11 and 9,05 11
are bounded.

3. Pathwise ergodicity and functional central limit theorem. Consider, for p € L'()
given, the trajectory average of ¢ evaluated along a realization of the solution of the SDE (2.4):

Y
(3].) Yt = ?/ (P(qsvpsags)ds’
0

The almost-sure convergence of this estimator to E.(¢) holds by the results of [18] since the
dynamics admits an invariant probability measure with a positive density, and the generator is
hypoelliptic [15]. The latter property follows from the following computations on commutators:
[ﬁH, azn] = _aqw and [ﬁNHa api] = _2pia§ + 58 . SO that [[ACNH; 8pi},8pi] = 285.

In fact, by the results from [2], a natural central limit theorem is a consequence of the bound-
edness of the inverse of the generator obtained in Collorary 1.

COLLORARY 2 (Central limit theorem for AdL). Consider ¢ € L?(w). Then
~ law
(32) \/% (% - ]ETrQO) ;?} (07 0'?77((,0)),

where the asymptotic variance reads

ol (p) =2 / (=L Hop) Mopdr.
R2n+1

Collorary 1 provides the following bounds on the asymptotic variance:

2Cl¢l|7- 2 1
2 L2(m) £ 2
(3.3) 0<o:,(p) < — max ('y, ;,75 7%:2) .
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This inequality shows that integration times of order t = 7 max (7, ~le? ~ye?, (’y52)_1) should be
considered in order for the estimator (3.1) to have a variance of order 1/7.

3.1. Langevin limit ¢ — +o0o. We consider in this section the convergence of the asymp-
totic variance in the limit when € — 400, which should be thought of as being somewhat similar
to overdamped limits of Langevin dynamics. We do not consider the regime ¢ — 0 which is a
mathematically a singular limit (see however Remark 3.2 below), and is also not a regime which is
numerically convenient because of the stiffness of the resulting dynamics, which typically calls for
integration schemes with timesteps of order € (or the construction of dedicated numerical schemes
based on averaging ideas for instance).

In the limit € — +o0, for a given test function ¢ € C§°(R?*"*1), the function Laqrp converges
t0 Lrangy where Lyang = Lu + vLo is the generator of the standard underdamped Langevin
dynamics. To understand the behavior of the limiting asymptotic variance, we restrict ourselves
to functions of (q, p) only, since the variable £ evolves very slowly and should therefore not be of
interest. Since the slow convergence to equilibrium is due to the relaxation of the £ variable in the
regime € — 400, we expect that restricting the attention to such observables allows the variance
to remain bounded. In fact, the following result holds (see Section 3.2 for the proof).

PROPOSITION 3.1. Fix v > 0. Assume that U satisfies Assumption 1, is semi-convex (there
exists a bounded smooth function Uy with bounded derivatives and a smooth convex function Us
such that U = Uy + Us), grows at most polynomially at infinity and its derivatives as well, and that
there exist K > 0,R € R and a € (0,1) such that

1 a2—a

LT VU(@) > al() + e Diq - K, Ula)> Rlal

2 8(1 —a)

Consider a smooth function ¢ = ¢(q,p) growing at most polynomially in (q,p) and whose de-
rivatives grow at most polynomially. Then there exists C > 0 (depending on v, p) such that the
asymptotic variance agﬁ(gp) defined in Corollary 2 satisfies

C
Ve > 1, |U§,fy(§0) - O'Zo,'y((p)| < ;7
where Jgoﬂ (¢) involves only asymptotic variances of underdamped Langevin dynamics. More pre-
cisely,

<vp@—l,qu)0>%2(7rqﬂp) 62<¢_1’£Hq>0>%2(ﬂqﬂp)>

B ”qu)*l”?ﬂ( ’VHVP<I>,1H%2

TqTp) (mqmp)

2
O'go,’y(sp) -2 <’Y||qu)0”2L2(7rq7rp) -7

where &y = — L7}

LangHO‘P and ®_, = — L7}

2
Lang (p - %)

Note that the first term on the right-hand side of the expression of 020_7(@) corresponds to
the asymptotic variance of a standard underdamped Langevin dynamics. The Nosé-Hoover like
thermostat adds two terms in the large € limit, one nonpositive and one nonnegative, so that it is
not clear in general whether o2, _ () is larger than 2987 [[V,®¢l|7. (mymy)- Overall, it however still

holds a?m (¢) = 0 as expected since a Cauchy-Schwarz inequality shows that the sum of the two
first terms in the brackets on the right-hand side is indeed nonnegative.
The extra conditions on the potential, taken from [19], are satisfied for potentials growing at

infinity as |q|® with o > 2. They ensure that Lljng stabilizes the vector space of smooth functions
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of (q, p) with mean zero with respect to 7, 7, growing at most polynomially at infinity, and whose
derivatives grow at most polynomially at infinity.

It is in fact possible to write an expansion in inverse powers of ¢ for the difference aiv((p) —
02077 (¢), and in particular to make precise the leading order term in this expansion. We however
refrain from doing so because the expressions are cumbersome. Note also that the proof of Propo-
sition 3.1 allows to write the action of £} on LZ(r) at leading order =2 (in a similar fashion
to the results presented in [22, Theorem 2.5], which provides an expansion of the resolvent of the

generator of the underdamped Langevin dynamics in inverse powers of v); see Remark 3.3.

Remark 3.2. In the limit € — 0, the dynamics (2.4) behaves at dominant order as the following
ordinary differential equation:

dq =0,

dp = —§p dt,
€

ag=~ (|p|2 - g) dt.

The only equilibrium points correspond to |p|? = n3~! and £ = 0. A simple computation shows
that
2n

B

is an invariant of the dynamics. It is therefore expected that (2.4) corresponds to a fast averaging
on the level sets of @, with a superimposed slow variation of the values of ® induced by the Langevin
part of the dynamics. Since the dynamics is at leading order a dynamics on the two one-dimensional
variables P = |p|? and ¢ only, it might be possible to adapt the techniques from [30] in order to
determine the dominant behavior of the asymptotic variance in the regime ¢ — 0.

®(q,p,&) =&+ |p/* — = In|p|?

3.2. Proof of Proposition 3.1. The idea of the proof is to construct an approximate solution
1 to the Poisson equation —Laq1,¢. = Iy, using asymptotic analysis. The scaling of the resolvent
—Laqr as given by Corollary 1 suggests that, in the limit & — 400,

(3.4) Ve =2V o+ eV g + Uy +e 10y + ..
The various functions in (3.4) formally satisfy, by identifying powers of ¢,

,ﬁLang\I/—Q = O7 *ﬁLang\IJ_l = ,CNH\I/_Q, 7£Lang\110 = HO(P + £NH\IJ—17
_‘CLang\IIi = ['NH\I/i—l for ¢ > 1.

The strategy of the proof is to construct the leading order terms ¥_o, W_q,..., ¥y € LE(7) in
order to obtain some approximate solution ¢, (obtained by a truncation of (3.4)), and then to use
resolvent estimates to conclude that ¢. — 9. is small.

We will repeatedly use the fact that the unique solution G of —LpangG = ¢ for g a smooth
function with average 0 with respect to m,(dp)m,(dq) growing at most polynomially at infinity and
whose derivatives also grow at most polynomially at infinity, is a well defined smooth function,
which grows at most polynomially at infinity and whose derivatives also grow at most polynomially
at infinity (by the results of [19]).
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Construction of the leading order terms in the expansion. The equation —Lyang¥_o = 0 shows
that ¥_o(q,p,§) = f-2(§). Next, —Lrang¥ -1 = Lya¥P_2 = (p2 —nB71)f 5(£), so that

n

U_1(q,p,€) = o) 1(a,p) + f1(E),  @1(q,p) = —Lia, <p2 - 6) :

The equation for ¥y then reads

—Lrang o = oy + fﬁz(f) <P2 - Z) b1 + f/—1(§) <P2 - Z) - ffl—z(f)PTvp(I)—l-

The solvability condition for this equation is that the right-hand side has average 0 with respect to
the probability measure 7,(dq)7,(dp). Integration by parts shows that, for any test function ¢,

/ pTV,bdm, =B [ & <p2 - ") dr,,
. o 5

so that the solvability condition reads

(3.5) alegefoo = f/ ypdm, dmrg =0, a= / <p2 — n) ®_ydmpdmg 20,
R2n R2n 5

where Leg ¢ is the generator of an effective Ornstein-Uhlenbeck process acting on functions u = u(§)
as Logr,eu = u”—Béu’. In fact a > 0 since a = y871|V,®_1||> = 0 would imply that ®_; is constant
in p, which is in contradiction to the definition of ®_; because

(—Lrang®-1) (@, p) =p" - VyP_1(q) # (P2 - g) .

The fact that a is nonzero implies that the first equality in (3.5) holds if and only if f_o = 0, so
that ¥_9 =0 and ¥_; = f_1. Moreover,

Uo(q,p, &) = Po(q,p) + f1(£)P_1(q,p) + fo(£), g = —Lp,Top.

Remark 3.3. The equality (3.5) shows that the action of leading order of the resolvent for
Adaptive Langevin for functions ¢ € L3(7) is a_lszﬁgﬂl’gﬂPq@ (with P, defined in (2.28)).

The condition at next order reads

n
~Lrang V1 = LanTo = —Ep? V@0 — £f/1p" V@1 + (p2 - 5) [fo+ f7i®_].

The solvability condition reads alegef-1 = &by with by = ILP,(pTV,®), so that f_i(§) =
—&bo/(ap), and

b
Ui(q,p:€) = f5()P-1(a,p) +ERr(a,p) + f1(6),  ®1=—Li,, (angquM - pTVp<I>o> :

Next,

n
~LrangVs = Lan¥1 = —EfipT V@1 — E2pTV, &1 + (D2 - 5) (@1 + fi+ fo®1],
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for which the solvability condition reads aLef ¢ fo = (£2 — 87 1)by with by = IIP,(p” V,®1). There-
fore, fo(€) = (871 — £2)by/(2Ba), so that

_ n b _ b
Ua(q,p,§) = LLalng sz - ﬁ) (6;@—1 - q)1>:| +§2£Lalng <pTvp(I)1 - BZPTqu’A)

+ f1(6)®_1(a,p) + f2(€).

Obtaining bounds on the difference of the variances. We now choose f; = fo = 0 and compute
1 1 1
Laar | e¥_1+ ¥o + E\IH + ;2‘1/2 — ¢ | = ?ENH\I]Z
We deduce, in view of Corollary 1, that there exists a constant C,, € Ry such that, for any ¢ > 1,

1 1 C
V1 4 Up+ - Wi+ 50z — ¢ < 1LwuPe pag

L2(m)

and in fact
Ry

[eW_1 4+ Vo — dellp2(r) <

€
for some constant R, , € R;. The asymptotic variance agﬁ,y(go) then coincides up to an error of
order ¢! with

~ b
o) =2 [ (Wt ) Tapdn =2 [ (cbo - °<I>1) o d,
’ R2n+1 R2n+1 aﬁ

where we used for the second equality the fact that the average with respect to 7 of the product of
a function of £ and Ilyp vanishes. Finally, by integrating in & and expressing a, by in terms of the
generator of the Langevin dynamics, namely,

Y
o= [ (Cran®) s drydm, = 19,81 ey

n
bo = (p2 - > Dg dry dr, = —f3 (LLang® 1) @ drr, drr,
RQn ﬁ R2n

it follows that

~ B{Lrang® 1, P0) L2 (rym,) (LLangP0s P_1) L2 (x, 7,
U?,w(‘ﬁ) =2 (/2 DIl dmy dm, — g ( ) g ( )
R2n

’Y”qu)—l ||2L2(7rq

Tp)
Now,
(Lrang®-1,P0) L2 (nym,) = *%(qu’—l,qu’o)m(wqﬂp) — (-1, LuPo) L2 (xymy)>
(Lrang®o, 1) L2(xym,) = —%qu’—h Vyp®@0) 12(rymy) T (P-1, LuPo) L2 ()
so that

- 2
U?,’y(@) = E <7||Vp¢0||%2(ﬂ'qﬂ'p) -7

which gives the claimed result.

<vp®*17vp¢0>%2(ﬂ'qﬂ-p) B2<(I)71’£H(I)O>%2(Wqﬂp)
||qu)—1||%2(7rq7rp) 'YHVp(p—lniz(ﬂqﬂp) 7
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4. Numerical results. In this section, we present the results of several numerical experi-
ments. First, we consider a simple illustration to demonstrate the scaling of the spectral gap as a
function of v and ¢ as predicted in Section 2. Second, we demonstrate the scaling of the asymptotic
variance, as predicted in Section 3. We also verify the existence of an asymptotic central limit
theorem for the case of a Bayesian data analysis problem.

4.1. Spectral gap in Galerkin subspace. Let U : R — R, U(q) = %qQ. Moreover, denote

by h; the I-th Hermite polynomial as defined in (A.1), and consider for prescribed integers L € N
the finite dimensional Galerkin subspace G;, spanned by polynomials of the form

(41) wk’,l,m(paqu) = hk(p)hl(f)hm(Q), 0 < l, k,m < L— 17

and the associated projection operator

L—-1L-1L-1

(42> Héalerkin : L2(7T) — gL) P = Z Z Z uk,hmwk,l,ma

k=0 1=0 m=0

where ug i m = (0, Yk1,m)12(r). In order to simplify notation we consider a linear indexing of
the coefficients uy ;, and the polynomials ¥y ; , using a hash map of the form I : (k,l,m) —
1+ m + Lk + L?1 so that we can write the action of the Galerkin operator on functions ¢ € L3()
in the compact form

Héalerkin@ =u- 1/’7
where u = [U;]1<i<zs and ¥ = [Jz‘hgigm? where © and 7:/; are such that w; = ug ., and {l;z = Yi.im
for i = I(k,l,m).
Let G& := GX N L(w). For observables ¢ € G¥, one can derive (see Appendix A) a stiffness

matrix A € RE°XL? in terms of which the action of the generator Laqr, = Ly +7Lo + ¢ ' Lnu can
be written as

(43) LAdLSO = EAdL (u . ’l/J) = (Au) . ’l,b

Consequently, the spectrum of Laqr, in the respective Galerkin subspace is exactly given by the
eigenvalues of A and we can numerically compute the spectral gap A. 4 of —Laqr, restrained to the
respective Galerkin subspace by diagonalizing the matrix A. Figure 1 shows the spectral gap of
—A for L = 10. As suggested by (2.12) we observe for all considered values of v a scaling of A, , as
O(g?) when ¢ — 0 and as O(¢2) when € — oo (see Figure 1, Panel A). Similarly, for fixed values
of € we observe a scaling of XEW as O(y) when v — 0 and as O(y~!) when v — oo (see Figure 1,
Panel B). Finally, consider the scaling of the spectral gap Xa,a as a function of the single scalar «.
As o — 00, we expect Xa,a = O(a™3), and as o — 0, we expect Xa’a = O(a?). Indeed, this is what
we observe (see Figure 1, Panel C).

4.2. Scaling of asymptotic variance and demonstration of CLT. We next consider a
simple skewed double-well potential U : R — R, of the form

(4.4) U(q):g(qz—a)Q-i-cq

which we parameterize as b = 1,a = 1,¢ = 1/2. We use the BADODAB symmetric splitting scheme
from [23] (see also Appendix C) to simulate trajectories of the SDE (2.4). In a first set of simulations



HYPOCOERCIVITY PROPERTIES OF ADAPTIVE LANGEVIN 21

: |
will/ N AN \
i //AREANIRY NIV \

— Acy,y =107t V] §— A.,,e=10"" \
10-7 Xe,ms v =1 1= Xey e =1
— Xey,y =101 N| § — .. c=10"
T T T T T T T
1073107210~ 10° 10! 102 10® 1073107210"' 10° 10' 10% 10% 1072 107! 10° 10! 102
£ v «

Fig. 1: Spectral gap, )\E > of =Laqr, when considered as an operator on Gk, with L = 10. Panel A
shows . ¢~ as a function of ¢ for fixed . Panel B shows Ae ¢,y as a function of v for fixed . Panel C
shows )‘a,a as a function of the scalar a.

we consider different parameterizations with e taking values within the interval [1072,10] and ~y
taking values within the interval [107%,102]. For each parameterization we simulate N = 10,000
independent replicas for K = 100, 000 time steps at unit temperature using a stepsize At = 2x 1073,
We randomly initialized each replica according to the associated equilibrium measure 7 using a
simple rejection sampling algorithm. We denote by

1 K-1
= > e(a?,p®. M),
k=0

the time average of the observable ¢ evaluated along a finite trajectory (q(k),p(k),f(k))lgkgj( of
the discretized process which we use as a (biased, due to discretization) Monte Carlo estimate of
the expectation E.(p). Let (ﬁ(;g) denote the Monte Carlo estimate obtained from the trajectory of

the n-th replica, and denote by

1 N
(4.5) =% Z

the empirical mean of the respective estimates over the N independent replicas. We estimate the
asymptotic variance of ¢ under the discretized dynamics using
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Figure 2 shows such computed estimates of the asymptotic variance as a function of ¢ (Panel A),
and as a function of v (Panel B), respectively. We confirm the qualitative behaviour predicted
in Section 3 for the asymptotic variance: for fixed v = 1, the asymptotic variance 52 . (K) of
observables scales at most quadratically in € as € — oo. Similarly, as ¢ — 0, the estimated
asymptotic variance 62, (K) of the observables we consider remains of order 1 (while it could
increase as €2 at most according to (3.3)). For fixed e = 1, the estimated asymptotic variance
of observables scales as at most linearly in v as v — oco. For the considered model system and
observables the increase of the estimated asymptotic variance agw (K) is sub-linear in y~* as v — 0.
We provide additional results for a slightly modified version of the model system considered here in

Appendix B, where the increase of the asymptotic variance of certain observables is indeed observed

to be asymptotically linear in 4y~ as v — 0.
A B
101 -
100
Y 10°- ]
[
.© |
S 1
> _ 107" 3
o 10775 5
-
2 ]
=3 -2
g 10—2 i 10 '
(] ]
<
1073 4 1073 4
10° 10! 103 1072 107! 10° 10%
£ Y

Fig. 2: Estimated asymptotic variance 62 (K) for various observables with fixed = 1 as a function

of ¢ (Panel A), and with fixed € = 1 as a function of v (Panel B), respectively. The dashed line in
Panel A corresponds to the slope of a quadratic function in €. The dashed line in Panel B indicates
the slope of a linear function in ~.

We use a second set of simulations to demonstrate the central limit theorem obtained in Collo-
rary 2 for estimates @ obtained as Monte Carlo estimates from the discretization of the SDE (2.4).
That is, we show that for sufficiently large K € N the law of the estimated rescaled residual error

(4.6 | 7215 @~ Bl

is approximately Gaussian with vanishing mean and variance 35,7(90) (we treat any systematic
bias induced by the discretization as negligible). For parameter values v = ¢ = 1, we simulate
N = 500,000 independent trajectories for up to Ka.x = 1000 steps using the stepsize At = 1071,
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For each trajecotry we compute an estimate of the rescaled residual errors by replacing E,(¢) and
o?.,() in the expression (4.6) by the Monte Carlo estimates Py, and 62 . (Kmax), respectively.
Figure 3, Panel A and Figure 3, Panel B, show the empirical probability density function of the
rescaled residual errors of the estimated mean and the estimated variance of the position variable
q, respectively. The empirical probability density functions are plotted for different values of K.
As K increases we observe that for sufficiently large K the computed empirical probability density

functions indeed closely follow the predicted Gaussian limiting distributions.

A B
0.40 A 0.40 A
0.35 A 0.35 4
0.30 A 0.30 A
0.25 A 0.25 4
L
2 0.20 0.20
N
0.15 A 0.15 4
0.10 A 0.10 4
0.05 ~ 0.05 4
0.00 A 0.00 A
-4 A 0 2 4 -4 -2 0 2 4
Residual error Residual error

Fig. 3: Empirical probability distribution (EPDF) of the rescaled residual error at different times
T = KAt. Panel A shows the EPDF of the residual error of the estimated mean of the position
variable q, i.e., ¢ : (q,p,§) — q. Panel B shows the residual error of the estimated second moment
of the position variable, i.e., ¢ : (q,p,&) — q2. Dotted lines show the density N'(0,02%(y)), where
02 () corresponds to the asymptotic variance of the respective observable, which is estimated using
the complete trajectory data up to index K = 1000.

4.3. Application to Bayesian logistic regression. For the purpose of demonstrating the
CLT in a Bayesian posterior sampling application we consider a Bayesian logistic regression trained
on a subset of the MNIST benchmark data set [20] of handwritten digits for binary classification
of the digits 7 and 9. We preprocess the data by means of a principal component analysis. After
centering the mean of each pixel, we retain the first 100 principal components and whiten the
obtained data by normalizing the variance of the corresponding loadings. The corresponding data
points are denoted by z7. Pictures corresponding to the number 7 are associated with ¢/ = 0, while
y? = 1 corresponds to pictures of 9. Training is run on a subset of 12,251 data points and testing on
a separate subset of 2000 data points. Assuming a weakly informative Gaussian prior distribution
on the parameters q € R'% to sample, with density po(q) o exp(—q”q/(20?)) where 0 = 100,
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and a likelihood ( ( _)T )
o exp (¥ (27)" q
p(y’, 27 [q) =

" Tt o (@)7a)’
where N = 12251, 7 € {0,1}, 29 € R0 the corresponding posterior distribution is of the form

(4.7) m(q)dq < po(q) | | (47,27 | @) dq =: exp(~U(q)) dq.

<E2z

Il
N

J

We use the ODABADO scheme described in Appendix C in order to numerically discretize (1.2)
in combination with an unbiased estimator —VU (q) of the gradient force which we obtain by
subsampling data points as specified in (1.6) using minibatches of size m = 100. Besides the
introduced gradient noise we do not apply additional random forces, i.e., oo = 0.

21971712179 71
ql7l712171%

Fig. 4: Examples of images from the MNIST data set. The upper row shows the original images as
obtained from the repository [20]. The lower row shows the projection of the same images onto the
first 100 principal components which were used for inference in the numerical experiments presented
in this article.

-
2{cl7

A

In a first set of simulations we generate N = 10,000 independent trajectories for a total number
of K = 10,000 steps using a stepsize of At = 1072 with coupling parameter v = 1. We initialize
the position variable of all replicas at the same location which is a point close to the mode of the
target distribution, set the initial value £(0) of the friction variable to 0, and for each trajectory
we independently sample the initial momenta from the stationary measure, i.e., p(0) ~ N(0,I,).
Following the same steps as described above in the demonstration of the CLT in the previous
example we compute the appropriately rescaled residual errors of the estimated mean and the
estimated variance at various time points of the single coordinate variable q; whose index i = 65
we randomly selected. Figure 5 shows the histograms of the empirical distribution of the residual
error of these estimates after an increasing number of time steps. Again, as in the example of the
previous section we observe that for a sufficiently large number of time steps, the distribution of
the residual error follows closely the anticipated Gaussian distribution. We confirm that we observe
that also for other choices of the coordinate index ¢ the empirical law of the residual error converges
to a centered Gaussian distribution.

In a second set of simulations we investigate the effect of different values of the thermal mass v
on the convergence speed of the estimates of expectations of certain observables obtained from
single trajectories. We consider the same setup as described above but generate single trajectories
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Fig. 5: Empirical probability distribution (EPDF) of the rescaled residual error at different times
T = KAt in the case of the Bayesian logistic regression posterior sampling problem. Panel A shows
the EPDF of the rescaled residual error of the estimated mean of the 65-th regression variable.
Panel B shows the residual error of the estimated variance of the same regression variable

for different values of the coupling parameter, i.e., v = €2 € {1,10,100}. As observables we consider
again the projection onto a single coordinate variable, and the average likelihood over the test set
—a quantity commonly used for benchmarking purposes in machine learning applications, i.e.,

N N

_ 1 i q) = Ly (@) a)
Pap8) =53 o e =53 1 gy

where N = 2000, and (z%,y%),i=1,..., N are the data points of the test data set.

Figure 6 shows the time evolution of the corresponding Monte Carlo estimates of the mean of
the 65-th component (Panel A), and the average likelihood over the test set (Panel B). As one may
have anticipated based on the asymptotic scaling of the spectral gap as O(v~!) as v — oo, the
convergence of the respective cumulative averages (in time) of the observables under consideration
becomes slower with increasing values of v. We mention that estimates appear to converge to
different values in the limit 7= AtK — oo. This observation can be explained by the fact that
the invariant measure of the discretized dynamics can be expected to depend on the value of the
coupling parameter v. We refer to [23] for a detailed analysis of this dependency in the case of
the similar BADODAB splitting scheme. A reduction of this discrepancy can be achieved by a
reduction of the stepsize At.
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Fig. 6: Number of time steps K vs. value of the Monte Carlo estimate of the mean of the 65-
th regression variable (Panel A), and the value of the estimated average likelihood over the test
(Panel B).
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Appendix. This appendix contains additional details on the numerical experiments presented
in Section 4 of the main text. In Section A we present details on the derivation of the stiffness matrix
of the generator of adaptive Langevin dynamics in the considered Galerkin subspace. Section B
contains complementary numerical experiments which demonstrate the predicted asymptotic scaling
of the asymptotic variance of some observables as 1/ in the underdamped limit. Section C details
the numerical integrators used to obtain the results presented in Sections 4.2 and 4.3 of the main
text.

Appendix A. Derivation of the stiffness matrix in the Hermite Galerkin projection.

In this section we outline the derivation of the stiffness matrix A = yAqy + e ' Axn + An, where

Aou, Ann, and Ag denote the stiffness matrices associated with the generators Lo, Lnu, and Ly,
respectively. Let h; denote the [-th Hermite Polynomial, i.e.,

(A1) hu(z) = %ﬁl (V). i) = (_Dleﬁ/ad% (7).

Simple computations show

(A.2) Oplu(x) = /Bl _1(x), O3hu(x) = /BU+ Dhisa (),

where 0} denotes the adjoint of 9, in L? (e*(ﬁ/Q)ﬁdx). Rewriting the generators Lo, Lng and Ly
in terms of the operators 0y, 9, 9¢, 0f, 0 and 9y (see (2.1) and (2.6)), and using (A.2) we find

s Ops
(A.3) LoVki,m = —k{r,1,m,
Laiapm = B2 (k\/lwk,lﬂ,m +VE+ 1)k +2)s20-1.m

— VT + Wy ig1,m — \/mﬁfk—z,m,m),
(A.5) Latitm = Vmlk+ Dvertm-1 — V(M + Dkre—1me1,

with ¢ 1 m as defined in (4.1). For 4,5 e N, let E; ; € RL*XL? denote the matrix with entries

(A4)

(A.6)

g Jidighicjrcrs, 1<E <L
n 0, otherwise.

Then, recalling the definition of the hash function I given in Section 4.1 and defining I : (k,[,m) —
I(k,l,m)1g01,.. -1y (K)1g01,....0—13 () 1{0,1,...L.—13 (m), the stiffness matrices associated with the
operators Lo, Lxu, and Ly follow from (A.3)—(A.5) as

L—-1L-1L-1

Aoy = Z Z Z —KE (1 1m) F (ks 1m)

k=0 =0 m=0
L-1L-1L-1

Ang=8"123"3" % ( — kVIE o1 1y tenm) — V &+ DE+2)E o 1) ik m)
k=0 1=0 m=0

= kVI+ 1Ef G 11 m) B kmy T VE(E = 1)1+ 1)Ef(k_2,z+1,m)j(k,z,m))»

Ay = Z Z Z ( m(k + 1)Ef(k+17l,m—l),f(k,l7m) - (m + 1)kE1:(Ic—1,l,m+1)7f(k,l,m)) )
k=0 =0 m=0
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respectively.

Appendix B. Additional numerical experiment. In order to demonstrate the predicted
behaviour of the asymptotic variance as v — 0, we consider the setup described in Section 4.2

with the modified parametrization @ = 1, b = 4, ¢ = 1/2 of the potential function U(q) =

g (q2 - a)2 + c¢q. This change of parameterization results in an increased barrier height between

the two local minima of the potential function. Using a stepsize of At = 107!, we obtain estimates
of the asymptotic variance for certain observables by following the same procedure and using the
same number of replicas and iterations as in the numerical experiment described in Section 4.2.
Fig 7 shows the estimated asymptotic variance as a function of the friction coefficient ~. The
value of the coupling parameter, £, was set to 1 in all runs. As predicted, we find that for certain
observables the asymptotic variance increases linearly in y~! as v — 0.
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Fig. 7: Estimated asymptotic variance 52  (K) for various observables with fixed € = 1 as a function

of . The dashed line corresponds to the slope of a linear function in y~*.

Appendix C. Numerical integrators. In this section we briefly describe the construction
of the numerical integrators for the SDEs (2.4) and (1.2), respectively, which we use in the numerical
experiments described in Section 4. We construct these integrators as Strang splittings based the
decomposition of the generator into elementary pieces.

C.1. Numerical integrator for (2.4). Denote by

1
£A=nvmz%=—vmm-%»ﬁD=g@W—g)@

the Liouville operators associated with the differential equations

(€1 a=p. b=-vU(@. =1 (o~ 7)
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respectively. Moreover, denote by a) = — (’y + g) p-Vp+ %Ap the generator associated with the
differential equation
) 3 27 4

C.2 =— = —W.
(C.2) P (7 t2)Pty
Define coefficients

T— e 2BK)/(20), if C#0
C3 A) = B, Glo¢ A1) = | TV ’ ’
( ) a(¢, At) € ) (0,¢, At) U\/E, if¢ =0,

so that the stochastic update
(04) Pk+1 = Oé(g, At)pk + G(Ua C7 At),Rfkrv Rk ~ N(07 In)a
is equivalent to evolving the SDE p = —(p + oW, ¢,0 € R for time At > 0.

Consider the numerical method

At

Pk+1/2 = Pk — 7VU(C1k),
At

Ai+1/2 = dk + o Prt1/2;

At n
Ehy1/2 = &k + e (|Pk+1/2|2 - 5) ;

R _ 2 _
Priije =a (e Euy1yo + 7, At) Pry1j2 + G (\/ %76 Yy + %At) Rk, R ~N(0,1,),

At (. 5 M
Ekt1 = Ept1/2 + % <pk+1/2| - 5) ,
At
Adk+1 = dk+1/2 + 5 Ph+1/2;

R At
Pk+1 = Phy1/2 — 7VU(011¢+1)-

This corresponding to a symmetric splitting the propagator of the SDE (2.4):
(C.5) eAtLAdL — o5 Lp oS La S LD gAtL0 o B LD o5 Lo S Lo | o(At?),

in accordance with the naming in [23]. We refer to this as the BADODAB scheme.

C.2. Numerical integrator for (1.2). While the above BADODAB integration scheme can
be adapted to the setup of (1.2), the resulting numerical scheme does not correspond to a splitting
of propagator of the respective SDE in the presence of a gradient noise. In particular the weak
convergence order of that integrator can only be expected to be of order 1 (this is in comparison
to a weak convergence of order 2 in the absence of a gradient noise). In what follows we briefly
describe an integrator for the SDE (1.2) which in the presence of a gradient noise still corresponds
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to a symmetric splitting of the associated propagator, which means that the weak error as well as
the error in ergodic averages decay at least quadratically as At — 0.
Let the operator £ be as defined above. Denote by

(C.6) Lp = % <p2 - Z) ¢

the Liouville operator associated with the differential equation

(1) ac=1 (pF - g) dt,

and denote by

2
—~ o
(C.8) Lo=—Cp Vy+ 4,
the generator of the SDE
(C.9) dp = —(pdt + oA dWa.

If the exact gradient force is replaced by an unbiased estimator VU (qx), then, under the
assumption that the residual error Rgr = VU(qx) — YU (qx) is Gaussian, and independent of
the value of q, i.e., Rar ~ N(0,6%), where 6 = var(VU(q)), an Euler update of the form
Pk+1 = Pk — At%U(qk) can be viewed as an exact solution of the SDE

(C.10) dp = —VU(q)dt + VAt 56 dWg,

with associated generator

. 2
(C.11) Ls=-VU(Q) V,+ At%@‘AP.
Let
Prt1/2 = @ (G, At/2) pr + G (04, Cr, At/2) Ry, Ry ~ N(0,1,),

At n
Cht1/2 = Ck + % <|P1~c+1/2|2 - ﬁ) ;

At
Ap+1/2 = Ak + 71\/1 "Prt1/2,

Prt+1/2 = Prky1/2 — At%U(qk-&-l/Z)a

At .
dk+1 = drt1/2 + 71\/[ "Prt1/2;

At (. 5 M
Cet+1 = Cry1/2 + % <|pk+1/2 - 5) ;

Prt1 = @ (Ceg1, At/2) pr + G (04, Cos1, At/2) Rit1/2, Ri1/2 ~ N(0,1,),
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with coefficients a, G as defined in (C.3). This corresponds to the following decomposition of the
propagator of the SDE (1.2):

Atpo Atps At Atpe Atp Atpo At E
(C.12) eAtEadL — o T Lo T LDe T LapT LT Lag £re 2 Lo 1 O(ALY).

We refer to this as the ODABADO scheme.

Acknowledgments. The above discussed ODABADO splitting scheme was previously pro-
posed in 2016 as a second order scheme for noisy gradient systems by Xiaocheng Shang.
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