
HYPOCOERCIVITY PROPERTIES OF ADAPTIVE LANGEVIN DYNAMICS∗
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After publication, an error in Lemma 2.7 came to light, which, when corrected, results in a
different scaling of the lower bound (2.12) on the exponential convergence rate in Theorem 2.1,
the factor γ in the minimum over four terms being changed to γ/ε2. The convergence result, its
corollaries, and the various estimates in the proof of these results have been updated accordingly in
this corrected version. In particular, the results now agree with the ones recently obtained by Löıs
Delande in [7], who pointed out the mistake.

Abstract. Adaptive Langevin dynamics is a method for sampling the Boltzmann–Gibbs distribution at pre-
scribed temperature in cases where the potential gradient is subject to stochastic perturbation of unknown magnitude.
The method replaces the friction in underdamped Langevin dynamics with a dynamical variable, updated according
to a negative feedback loop control law as in the Nosé–Hoover thermostat. Using a hypocoercivity analysis we show
that the law of Adaptive Langevin dynamics converges exponentially rapidly to the stationary distribution, with a
rate that can be quantified in terms of the key parameters of the dynamics. This allows us in particular to obtain a
central limit theorem with respect to the time averages computed along a stochastic path. Our theoretical findings
are illustrated by numerical simulations involving classification of the MNIST data set of handwritten digits using
Bayesian logistic regression.
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1. Introduction. Langevin dynamics [29, 21, 24] is a system of stochastic differential equa-
tions which is traditionally derived as a model of a coarse-grained particle system:

(1.1)
dq = M−1p dt,

dp =
(
F(q)− ζM−1p

)
dt+ σ dW.

Here q ∈ Rn represents a vector of particle positions, p is the corresponding vector of momenta,
the mass matrix M ∈ Rn×n is symmetric positive definite, F is the force field (normally the
negative gradient of a potential energy function U), ζ ∈ R is a (constant) friction coefficient, and
σ ∈ R represents the strength of coupling to the stochastic driving force defined by the Wiener
increment dW. Although conceived as a dynamical model, Langevin dynamics is among the most
versatile and popular methods for computing the statistical properties in high dimension, e.g.
for molecular systems or, more recently, for many problems in high-dimensional data analysis.
In this approach, the dynamical properties are ignored and the stochastic differential equations
are discretized to produce “sampling paths” with weights approximating those associated to the
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(prescribed) Boltzmann-Gibbs stationary distribution with density ρβ ∝ e−βU , where, in physical
settings, β is the reciprocal of the temperature scaled by Boltzmann’s constant.

The key benefit of Langevin dynamics for sampling, compared to simpler methods such as
random walk Monte Carlo, is the use it makes of the gradient of the energy function (or, in the
case of data analysis, the “log posterior”; see Section 4.3 for an example of Bayesian data analysis)
which can effectively guide the collection of sampling paths, resulting in less wasted computation.
The use of Langevin dynamics as a sampling scheme is further supported by its well-understood
ergodic properties (see [25, 35, 4, 33] and references therein), which ensure exponential convergence
of averages to their stationary values, a property which under certain technical conditions on the
potential function U can be shown to carry to numerical discretization [25, 35, 22, 3, 19].

Despite these advantages of Langevin dynamics, in many applications (e.g. mixed quantum
and classical molecular dynamics [36, 21] or “big data” [6]) the computation of the force is itself a
very challenging task, thus the gradient may be effectively corrupted (due to approximation error)
which leads to severe biasing of the invariant distribution. It was for precisely such cases that the
Adaptive Langevin dynamics method [17, 8, 34, 23] was created. In this method, the friction ζ in
(1.1) is reinterpreted as a dynamical variable, defined by a negative feedback loop control law (as
in the Nosé-Hoover method [28]). For concreteness, we suppose the gradient noise to be modelled
by an additional stochastic process. As discussed in [34], this can, in many cases, be interpreted
as an additional (unknown) Itô perturbation σG dWG, where σ

2
G is unknown and scales linearly

with the stepsize used in the discretization of the respective continuous formulation. The system
of equations now becomes1

(1.2)

dq = M−1pdt,

dp =
(
−∇U(q)− ζM−1p

)
dt+ σG dWG + σA dWA,

dζ =
1

ν

(
pTM−2p− 1

β
Tr
(
M−1

))
dt,

where β, σG, σA, and ν are positive scalars, and WA,WG are two independent Wiener processess
in Rn with independent components (“A” stands for “applied”, “G” for “gradient”). The auxiliary
variable ζ now acts as a variable friction which restores the canonical distribution associated with
the prescribed inverse temperature β. The system (1.2) admits the invariant probability measure
(see Section 2)

(1.3) π(dq dp dζ) = Z−1 exp

(
−β
[
pTM−1p

2
+ U(q) +

ν

2
(ζ − γ)2

])
dq dp dζ,

where Z is a normalization constant and

(1.4) γ =
β(σ2

G + σ2
A)

2
.

Assuming ergodicity, the system (1.2) allows sampling of the Gibbs-Boltzmann probability measure

with density proportional to e−β[pTM−1p/2+U(q)], by marginalization, and proportional to ρβ if the
momenta are ignored.

1The formulation in [34] is slightly different in the form of the control law as a consequence of a linear transfor-
mation of the momenta in the presentation of the frictional force.
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The practical value of (1.2) is that it allows simulations to be performed for complicated
systems in which the potential energy function U and its gradient are the consequence of substantial
calculations and thus entail computational errors. The original motivation of the article of Jones
and Leimkuhler [17] was in the context of multiscale models of molecular systems where the force
laws were computed using a separate numerical method and the error in this process assumed to
have the character of white noise. More recently, (1.2) has been adopted in the setting of sampling of
Bayesian posterior distributions in large scale data science applications [5], where the gradient noise
is the consequence of incomplete calculation of the log-likelihood function based on subsampling
data points from a large data set, as in the stochastic gradient Langevin dynamics method [38]. In
this setup the potential function U corresponds to the negative log posterior density of a statistical

model, i.e., for independent observations x1, x2, . . . , xÑ , the negative gradient of U is of the form

−∇U(q) = ∇ log p0(q) +

Ñ∑

j=1

∇ log p(xj | q)(1.5)

where p0 is a prior density and p(xj | q) is the likelihood of the j-th observation. In order to avoid

the linear scaling in Ñ of the computational cost per evaluation of the force (1.5), the gradient force

−∇U(q) is commonly replaced by an unbiased estimator −∇̂U(q) in discretizations of (1.2). That
is,

(1.6) − ∇̂U(q) = ∇ log π(q) +
Ñ

m

∑

j∈B

∇ log p(xj | q),

where B = {Jl}ml=1, m ≪ Ñ is a subset of the complete data index set –commonly referred to
as a minibatch– which is comprised of uniformly and independently sampled data point indices
Jl ∈ {1, . . . , Ñ}, l = 1, . . . ,m, which are resampled with replacement at the beginning of every time
step of a discretization of (1.2).

Although the presence of noise in the Adaptive Langevin model in contact with all momenta
suggests hypoellipticity (as for Langevin dynamics [25]), the way in which convergence is achieved
in the Adaptive Langevin system is not straightforward. Given a stochastic differential equation
system with generator L, let us recall that there are several well studied frameworks which can
be used to derive exponential convergence rates for the semi-group etL (or equivalently for the
respective adjoint semi-group) in certain functional spaces.

First, there are probabilistic techniques, which allow the derivation of exponential convergence
rates of etL when considered as a family of operators on weighted L∞ spaces (see e.g. [26, 27, 25]),
or exponential convergence rates of the formally adjoint semi-group acting on Wasserstein metric
spaces (see e.g. [11, 12]).

Second, there also exist functional analytic proofs for exponential convergence for the case of
weighted L∞ spaces; see [31, 13]. The naive application of these methods fails in the case of (1.2)
due to a lack of direct stochastic control of the auxiliary variable ζ. It was only very recently
shown in [14], that a suitable Lyapunov function can be constructed for this system which allows
to conclude exponential convergence in a weighted L∞ space.

The approach taken here is based on a third method, the alternative hypocoercivity framework
of Villani [37], as further developed by Dolbeault, Mouhot, and Schmeiser [9, 10], which can be used
to derive exponential convergence rates of the semi-group when considered as a family of operators
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acting on subspaces of L2(µ), where µ denotes the (unique) invariant measure of the stochastic
process under consideration. This technique can be applied to derive geometric convergence esti-
mates for the underdamped Langevin equation [10, 32, 16]. We show that this framework can also
be applied directly to the system (1.2), thus demonstrating the rapid convergence in law of the
Adaptive Langevin system.

The exponential convergence shown here has important consequences for the statistics of the
samples obtained using the Adaptive Langevin method. In particular it allows to establish a central
limit theorem. Our approach also allows us to characterize the asymptotic scaling of the spectral
gap of the generator associated with (1.2) when considered as an operator on the respective weighted
L2 space as O(min(γν−1, γ−1, γν, γ−1ν−1)); a qualitative characterization of the spectral gap which
is missing in the analysis in [14]. The scaling is confirmed in [7] using techniques from semi-classical
analysis, with additional information on leading eigenvectors and eigenfunctions of the generator of
the dynamics in the small temperature regime. The derived asymptotic scaling on the lower bounds
of the spectral gap allows in turn to conclude an asymptotic scaling of the asymptotic variance in
the above mentioned central limit theorem as O(max(γ, γ−1ν, γν, γ−1ν−1)); see the discussion in
Remark 2.3 for an informal motivation of some terms in this asymptotic scaling.

The remainder of this paper is structured as follows. In Section 2 we begin by rewriting
the generators of the dynamics (1.2), where we also check the invariance of the probability mea-
sure (1.3). In Subsection 2.1 we normalize the dynamics (1.2) in order to study limiting regimes
associated with vanishing or diverging key parameters of the dynamics (namely the thermal mass ν
and the magnitude of the fluctuation). We can then discuss requirements of the potential energy
function (Subsection 2.2), and state the exponential convergence of the evolution semigroup in
Subsection 2.3. The central limit theorem (CLT) is derived in Section 3, with upper bounds on
the asymptotic variance made precise in terms of the key parameters of the dynamics. Finally, we
show in Subsection 3.1 that the asymptotic variance converges in the large thermal mass limit to
the asymptotic variance of standard Langevin dynamics. Section 4 contains numerical experiments
assessing the relevance of parameter scalings used and demonstrating the CLT in an application to
Bayesian sampling.

2. Hypocoercivity of Adaptive Langevin dynamics. We assume that the potential en-
ergy function U is smooth and such that e−βU(q) is integrable. In particular, (1.3) is a well defined
probability measure. We first show that the probability measure (1.3) is indeed invariant under the
dynamics (1.2).

The generator of (1.2) acts on functions φ = φ(q,p, ζ) with (q,p, ζ) ∈ R2n+1. It can be written
as LAdL = LH + γLO + ν−1LNH with

(2.1)

LH = pTM−1∇q −∇U(q)T∇p =
1

β

(
∇∗

p∇q −∇∗
q∇p

)
=

1

β

n∑

i=1

∂∗pi
∂qi − ∂∗qi∂pi

,

LO = −pTM−1∇p +
1

β
∆p = − 1

β
∇∗

p∇p = − 1

β

n∑

i=1

∂∗pi
∂pi ,

and

(2.2)

LNH = −ν(ζ − γ)pTM−1∇p +

(
pTM−2p− 1

β
Tr
(
M−1

))
∂ζ

=
1

β2

(
(∂ζ − ∂∗ζ )∇∗

p∇p +∆∗
p∂ζ −∆p∂

∗
ζ

)
,
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where adjoints are taken on L2(π). A simple computation indeed shows that ∂∗qi = −∂qi +β∂qiU(q),
∂∗pi

= −∂pi + β(M−1p)i, ∂
∗
ζ = −∂ζ + βν(ζ − γ) and

∆∗
p = ∆p − 2βpTM−1∇p + β2

(
pTM−2p− 1

β
Tr
(
M−1

))
.

The above rewriting in terms of the elementary operators ∂qi , ∂pi
, ∂ζ and their adjoints immediately

shows that LO is symmetric, while LH and LNH are antisymmetric. Let us however emphasize that
this decomposition is only used for mathematical convenience: the parameter γ is in fact unknown
since σG is not known in practice.

Another benefit of the rewriting (2.1)-(2.2) is that the actions of the operators LH,LO,LNH

make it clear that the measure with density (1.3) is indeed invariant since A1 = 0 for A ∈
{LH,LO,LNH}, so that (denoting by C∞

0 (R2n+1,R) the space of C∞ functions with compact sup-
port in R2n+1)

∀φ ∈ C∞
0 (R2n+1,R),

∫

R2n+1

Aφdπ = σ

∫

R2n+1

φA1dπ = 0,

with σ = 1 for A = LO and σ = −1 for A ∈ {LH,LNH}, and where we relied for LNH on the fact
that elementary operators acting on different variables commute. Therefore,

∀φ ∈ C∞
0 (R2n+1,R),

∫

R2n+1

LAdLφdπ = 0,

which proves the invariance of π under the dynamics (1.2) (see for instance [24]).

2.1. Normalization of the dynamics. To simplify the notation we let M = I. Let us how-
ever emphasize that our proofs and results can be adapted in a straightforward way to accomodate
general mass matrices. As one of our interests in this work is to understand the limiting regimes
γ → 0 or +∞ and/or ν → 0 or +∞ of the Adaptive Langevin dynamics, we also need to rescale the
friction variable ζ in order for the invariant measure to be independent of the parameter ν. More
precisely, we set ε =

√
ν and consider ξ =

√
ν(ζ − γ), i.e.

ζ = γ +
ξ

ε
.

The latter change of variables is motivated by the fact that the invariant measure (1.3) now becomes
(slightly abusing the notation π)

(2.3) π(dq dpdξ) = Z−1 exp

(
−β
[
pTM−1p

2
+ U(q) +

ξ2

2

])
dq dp dξ.

Let us emphasize that this invariant probability measure does not depend on the parameters γ, ε.
The dynamics (1.2) then becomes

(2.4)

dq = p dt,

dp =

(
−∇U(q)− ξ

ε
p− γp

)
dt+

√
2γ

β
dW,

dξ =
1

ε

(
|p|2 − n

β

)
dt,
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where |p| =
√
p21 + · · ·+ p2n is the Euclidean norm of p ∈ Rn. The generator of this SDE is

(2.5) LAdL = LH + γLO + ε−1LNH,

with the above definitions (2.1) for LH and LO (upon replacing M with I) and

(2.6) LNH =

(
|p|2 − n

β

)
∂ξ − ξ pT∇p =

1

β2

(
(∂ξ − ∂∗ξ )∇∗

p∇p +∆∗
p∂ξ −∆p∂

∗
ξ

)
.

2.2. Assumptions and notation. We denote by πq, πp, πξ the marginals of the probability
measure (2.3) in the variables q,p, and ξ, respectively, so that π(dq dp dξ) = πq(dq)πp(dp)πξ(dξ).
Further let ∥ · ∥L2(π) be the norm on the Hilbert space L2(π) induced by the canonical scalar product,
and denote by L2

0(π) the subspace of L2(π) of functions with vanishing mean:

(2.7) L2
0(π) =

{
φ ∈ L2(π)

∣∣∣∣
∫

R2n+1

φdπ = 0

}
,

and by Π0 : L2(π) → L2
0(π) the orthogonal projection operator onto this subspace, i.e.,

(2.8) Π0φ = φ−
∫

R2n+1

φdπ.

In the remainder of this article we consider all operators as being defined on L2(π) unless explicitly
specified otherwise. The associated operator norm for bounded operators on L2(π) is

∥T ∥ = sup
φ∈L2(π)\{0}

∥T φ∥L2(π)

∥φ∥L2(π)
.

For an operator T on L2(π) with dense domain, we denote by T ∗ its L2(π)-adjoint. Throughout the
remainder of this article we assume that the potential function U satisfies the following assumption.

Assumption 1. The potential function U is smooth, and the associated probability measure
πq(dq) = Z−1

q e−βU(q)dq satisfies a Poincaré inequality: there exists κq > 0 such that

(2.9) ∀φ ∈ H1(πq),

∥∥∥∥φ−
∫

Rn

φdπq

∥∥∥∥
L2(πq)

⩽
1

κq
∥∇φ∥L2(πq).

Moreover, there exist c1 > 0, c2 ∈ [0, 1) and c3 > 0 such that

(2.10) ∆U ⩽ c1 +
c2
2
|∇U |2, |∇2U | ⩽ c3 (1 + |∇U |) .

The second condition, taken from [10, Section 3], ensures that the operator (1 + ∇∗
q∇q)

−1 is
bounded from L2(πq) to H2(πq). It will be used in technical estimates related to the proof of
exponential convergence of the semigroup (see Lemma 2.9).

A sufficient condition on U for πq to satisfy a Poincaré inequality is for example the following
(see [1, Corollary 1.6]): there exists a ∈ (0, 1), c > 0 and R ⩾ 0 such that

∀q ∈ Rn such that |q| ⩾ R, aβ|∇U(q)|2 −∆U(q) ⩾ c.

The latter condition and (2.10) hold for instance for potentials which behave asymptotically as |q|α
with α > 1 as |q| → ∞.
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2.3. Exponential convergence of the law and invertibility of the generator. The
following result states the exponential convergence in L2(π) of the semigroup etLAdL associated
with the dynamics (2.4).

Theorem 2.1. There exist C, λ such that, for any ε, γ > 0, there is λε,γ > 0 for which

(2.11) ∀t ⩾ 0, ∀φ ∈ L2(π),

∥∥∥∥etLAdLφ−
∫
φdπ

∥∥∥∥
L2(π)

⩽ Ce−λε,γ

∥∥∥∥φ−
∫
φdπ

∥∥∥∥
L2(π)

,

with the lower bound

(2.12) λε,γ ⩾ λmin

(
1

γ
,

1

γε2
, γε2,

γ

ε2

)
.

Theorem 2.1 immediately implies the existence of the inverse of LAdL on L2
0(π), and allows to

obtain bounds on the norm of the inverse in terms of the parameters γ, ε (see [24, Proposition 2.1]).

Collorary 1. The operator LAdL considered on L2
0(π) is invertible and

L−1
AdL = −

∫ ∞

0

etLAdLdt,
∥∥L−1

AdL

∥∥
B(L2

0(π))
⩽
C

λ
max

(
γ,
ε2

γ
, γε2,

1

γε2

)
.

Simple computations show that some of these bounds on the resolvent are sharp. Indeed,

LAdL

(
γV + pT∇V

)
= pT

(
∇2V

)
p− |∇V |2 − 1

ε
ξpT∇V,

which shows that there exists b > 0 such that
∥∥L−1

AdL

∥∥
B(L2

0(π))
⩾ bγ by choosing γ large and ε = 1.

Moreover,

LAdL

(
γεξ +

|p|2

2
− 1

γ
pT∇V

)
= −1

ε
ξ|p|2 + 1

γε
pT∇V − 1

γ

(
pT
(
∇2V

)
p− |∇V |2

)
,

which shows that there exists c > 0 such that
∥∥L−1

AdL

∥∥
B(L2

0(π))
⩾ cγε2 by choosing γ ≫ ε ≫ 1.

Finally,

LAdL

(
U +

|p|2

2

)
= γ

[
n

β
−
(
1 +

ξ

γε

)
|p|2

]
,

which implies that there exists a > 0 such that
∥∥L−1

AdL

∥∥
B(L2

0(π))
⩾ aγ−1 by choosing γ small and

γε large. This is however weaker than the scaling max(ε2, ε−2)γ−1. It is in particular not so easy
to find functions which saturate the upper bound 1/(γε2) of the resolvent since this requires a
careful analysis in the regime ε→ 0, which corresponds to a singular limit where the dominant part
of the dynamics is the deterministic Nosé–Hoover feedback; see Remark 3.2 below. We however
demonstrate numerically the sharpness of the upper bound in Section 4.1.

The proof of Theorem 2.1 relies on the hypercoercive framework of [9, 10]. The exponential
decay is obtained by a Grönwall inequality in a modified norm on L2(π). The choice of the modified
norm is motivated by the fact that LAdL is coercive in the corresponding scalar product. More
precisely, we consider

(2.13) H (φ) =
1

2
∥φ∥2L2(π) + aε,γ⟨Aεφ,φ⟩L2(π),
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where Aε is a bounded operator constructed from the antisymmetric part Aε := LH + ε−1LNH of
the generator, and aε,γ ∈ (0, 1) is a constant. The expression of Aε distinguishes whether ε ⩽ 1 or
ε ⩾ 1. For ε ∈ (0, 1], the small term in Aε is the Hamiltonian one and the expression of Aε is the

one suggested in [10], namely −
[
1−ΠA 2

ε Π
]−1

ΠAε where Π is the orthogonal projector on L2(π)
corresponding to the partial integration with respect to πp(dp):

(2.14) (Πφ) (q, ξ) =

∫

Rn

φ(q,p, ξ)πp(dp).

For ε ∈ [1,∞), the small term in Aε is the one associated with the Nosé–Hoover-like feedback
mechanism, in which case one should rescale the generator as εLAdL in order to avoid degeneracies
as ε → +∞. Up to this multiplication by ε, the regularization operator is defined as above, and

therefore reads −ε
[
1− ε2ΠA 2

ε Π
]−1

ΠAε. This modification turns out to be crucial to obtain the
key partial coercivity (2.19) with the appropriate rate (see the discussion following this inequality).
We therefore use the following regularization operator, which reduces to the expressions discussed
above upon distinguishing ε ⩽ 1 or ε ⩾ 1:

Aε := −min

(
1,

1

ε

)[
min

(
1,

1

ε2

)
−ΠA 2

ε Π

]−1

ΠAε

= −min

(
1,

1

ε

)[
min

(
1,

1

ε2

)
+Π

(
2n

(βε)2
∂∗ξ∂ξ +

1

β
∇∗

q∇q

)
Π

]−1

ΠAε.

The second expression is a consequence of the following equalities:

ΠL2
HΠ = − 1

β2

n∑

i=1

Π∂pi∂
∗
pi
Π∂∗qi∂qi = − 1

β
∇∗

q∇q,

ΠL2
NHΠ = − 1

β4
Π∆p∆

∗
pΠ∂

∗
ξ∂ξ = −2n

β2
∂∗ξ∂ξ,

ΠLNHLHΠ = ΠLHLNHΠ = 0,

which are direct consequences of the expressions (2.1) and (2.6) for the generators in terms of the
elementary operators ∂qi , ∂pi

, ∂ξ, as well as the following rules (which can be checked by direct
computations):

(2.15) ∂pi
Π = 0, Π∂∗pi

= 0, ∂pi
∂∗pi

Π = βΠ, ∂2pj

(
∂∗pi

)2
Π = 2β2Πδij .

It can be shown that the norm of Aε is bounded by 1/2 (see Lemma 2.4), so that
√

H (·)
defines a norm equivalent to the standard norm on L2(π) for any aε,γ ∈ (−1, 1):

(2.16)

√
1− |aε,γ |

2
∥φ∥L2(π) ⩽

√
H (φ) ⩽

√
1 + |aε,γ |

2
∥φ∥L2(π).

By polarization we can define a real valued inner product associated with
√

H (·) as

(2.17)
⟪f, g⟫ε,γ := H (f + g)− H (f)− H (g)

= ⟨f, g⟩L2(π) + aε,γ⟨Aεf, g⟩L2(π) + aε,γ⟨Aεg, f⟩L2(π).

Most importantly, the construction of the operator Aε ensures that LAdL is coercive for the modified
scalar product (2.17), as made precise in the following key result (see Section 2.4 for the proof).
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Proposition 2.2. There exist a ∈ (0, 1) and λ̃ > 0 such that, for any ε, γ > 0 and upon
choosing aε,γ = amin(γ/ε, γ−1, γε2, (γε)−1) in (2.13),

∀φ ∈ C∞
0 (R2n+1) ∩ L2

0(π), ⟪−LAdLφ,φ⟫ε,γ ⩾ λ̃min

(
γ

ε2
,
1

γ
, γε2,

1

γε2

)
∥φ∥2L2(π).

Theorem 2.1 then follows from the inequality

d

dt

[
H
(
etLAdLφ

)]
= ⟪LAdLe

tLAdLφ, etLAdLφ⟫ε,γ ⩽ −λ̃min

(
γ

ε2
,
1

γ
, γε2,

1

γε2

)∥∥etLAdLφ
∥∥2
L2(π)

,

upon using the equivalence of norms (2.16) and resorting to a Grönwall lemma.

Remark 2.3. We motivate why some of the four terms are expected in the scaling (2.12) of the
lower bound. First, if LNH = 0, the remaining part LH + γLO of the generator corresponds to the
underdamped Langevin equation, whose spectral gap is bounded from above by a term proportional
to O(min(γ, γ−1)). Similarly, in the case LH = 0, it can be verified that the framework of [9] can
be directly applied to LAdL = ε−1(εγLO + LNH) considered as an operator on L2(πpπξ), meaning
that the spectral gap of this operator scales as O

(
ε−1 min(γε, (γε)−1)

)
= O

(
min(γ, γ−1ε−2

)
. By

this simple analysis, we correctly predict the terms γ and 1/γε2, but we miss the term γε2 and we
incorrectly predict a scaling of order γ instead of γ/ε2 in the limit ε→ ∞ and γ → 0. The origin of
these limitations on the convergence rate comes from an interaction between the Hamiltonian and
Nosé–Hoover parts, as discussed in Remark 2.8 below.

2.4. Proof of Proposition 2.2. In the remainder of this section, we use the shorthand
notation

ηε = min(1, ε−1).

We first review a few properties of the operator Aε (obtained by a straightforward adaptation of [10,
Lemma 1]).

Lemma 2.4. The operators Aε and AεAε are bounded, and ΠAε = Aε. Furthermore, for any
f ∈ L2(π),

∥Aεf∥L2(π) ⩽
1

2
∥(1−Π)f∥L2(π), ∥AεAεf∥L2(π) ⩽ ηε∥(1−Π)f∥L2(π).

Proof. Consider f ∈ L2(π) and u = Aεf . Then, (η2ε − ΠA 2
ε Π)u = −ηεΠAεf . This equality

already shows that Πu = u, i.e. ΠAε = Aε. Moreover, upon taking the scalar product with u, and
noting that ΠAεΠ = 0,

η2ε∥u∥2L2(π) + ∥AεΠu∥2L2(π) = −ηε⟨AεΠu, (1−Π)f⟩L2(π)

⩽ ηε∥AεΠu∥L2(π)∥(1−Π)f∥L2(π) ⩽
η2ε
4
∥(1−Π)f∥2L2(π) + ∥AεΠu∥2L2(π),

which implies the claimed inequalities.

We now fix φ ∈ C∞
0 (R2n+1) ∩ L2

0(π) and evaluate

(2.18)
⟪−LAdLφ,φ⟫ε,γ = −γ⟨LOφ,φ⟩L2(π) + aε,γ⟨AεAεφ,φ⟩L2(π)

− aε,γ⟨AεAεφ,φ⟩L2(π) − γaε,γ⟨AεLOφ,φ⟩L2(π),

where we have used the fact that ⟨LAdLφ,φ⟩L2(π) = ⟨LOφ,φ⟩L2(π), and LOAε = LOΠAε = 0. We
next consider the four terms on the right-hand side of (2.18):
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• The expression (2.1) shows that −⟨LOφ,φ⟩L2(π) = β−1∥∇pφ∥2L2(π) ⩾ β−1κ2p∥(1−Π)φ∥2L2(π)

from a Poincaré inequality for the Gaussian measure in p, pointwise in (q, ξ) and then
integrated with respect to πq(dq)πξ(dξ) (in fact, κp =

√
β/m).

• The term ⟨AεAεφ,φ⟩L2(π) is equal to ⟨AεAεφ, (1 − Π)φ⟩L2(π) since ΠAεΠ = 0, and is
therefore larger than −ηε∥(1−Π)φ∥2L2(π) in view of Lemma 2.4.

• We decompose the term −⟨AεAεφ,φ⟩L2(π) as −⟨AεAεΠφ,φ⟩L2(π)−⟨AεAε(1−Π)φ,φ⟩L2(π).
We first observe that the operator AεAεΠ can be written, using spectral calculus, as

AεAεΠ = fε (T ) , T = Π

(
2n

(βε)2
∂∗ξ∂ξ +

1

β
∇∗

q∇q

)
Π, fε(x) =

ηεx

η2ε + x
.

Moreover, from Poincaré inequalities for πq and πξ (with constants κq and κξ =
√
β),

T ⩾ αεΠ(1−Π0), αε = min

(
2nκ2ξ
(βε)2

,
κ2q
β

)
,

so that

(2.19) AεAεΠ ⩾ ΛεΠ(1−Π0), Λε =
ηεαε

η2ε + αε
.

Note that Λε is of order 1 when ε ⩽ 1, and of order ε−1 for ε ⩾ 1. It is precisely at this
place that it is crucial to modify the definition of Aε. Indeed, if one keeps the regularization

operator −
[
1−ΠA 2

ε Π
]−1

ΠAε as for ε ⩽ 1, the rate Λε would be replaced by αε/(1+αε),
which behaves as αε ∼ ε−2 for ε large.
The quantity ⟨AεAε(1−Π)φ,φ⟩L2(π) = ⟨AεAε(1−Π)φ,Πφ⟩L2(π) can be shown to be larger
than −C1 max(1, ε−1)∥Πφ∥L2(π)∥(1−Π)φ∥L2(π) upon proving that the operator AεAε(1−
Π) is bounded by C1 max(1, ε−1); see Lemma 2.7 below.

• Finally, in order to lower bound ⟨AεLOφ,φ⟩L2(π) = ⟨AεLO(1−Π)φ,Πφ⟩L2(π) by−C2∥Πφ∥L2(π)∥(1−
Π)φ∥L2(π), we prove in Lemma 2.6 that the operator AεLO is uniformly bounded with re-
spect to ε by some constant C2.

Gathering all estimates, we obtain, for φ ∈ L2
0(π) (so that (1−Π0)φ = φ),

(2.20)

⟪−LAdLφ,φ⟫ε,γ ⩾

(
γκ2p
β

− aε,γηε

)
∥(1−Π)φ∥2L2(π) + aε,γΛε∥Πφ∥2L2(π)

− aε,γ

(
C1 max

(
1,

1

ε

)
+ γC2

)
∥Πφ∥L2(π)∥(1−Π)φ∥L2(π),

which can be rewritten as
(2.21)

⟪−LAdLφ,φ⟫ε,γ ⩾ XTBε,γX, X =

(
∥Πφ∥L2(π)

∥(1−Π)φ∥L2(π)

)
, Bε,γ =

(
B1,1

1
2B1,2

1
2B1,2 B2,2

)
,

with

(2.22) B1,1 = aε,γΛε, B1,2 = −aε,γ
(
C1 max

(
1,

1

ε

)
+ γC2

)
, B2,2 =

γκ2p
β

− aε,γηε.
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The result then follows from lower bounds on the smallest eigenvalue of Bε,γ , which reads

(2.23) λ(Bε,γ) =
4B1,1B2,2 −B2

1,2

B1,1 +B2,2 +
√
(B1,1 −B2,2)2 +B2

1,2

.

The scaling of aε,γ as a function of ε, γ is obtained by requiring that the determinant

(2.24) B1,1B2,2 −
B2

1,2

4
=

(
γκ2p
β

− aε,γ

)
aε,γΛε −

aε,γ
2

4

(
C1 max

(
1,

1

ε

)
+ γC2

)2

is positive. We distinguish two cases:
• For ε ⩽ 1, ηε = 1 and the factor Λε is of order 1. The scaling of aε,γ as a function of ε, γ
suggested by (2.24) is

(2.25) aε,γ = a
γ

(ε−1 + γ)2
= aε

γε

(1 + γε)2

for a > 0 sufficiently small. We further distinguish two cases: (i) For γε ⩽ 1, the scal-
ing (2.25) leads to the choice aε,γ = aγε2 for a > 0 sufficiently small, in which case the
smallest eigenvalue of Bε,γ is easily seen to be of order γε2 (since (2.23) is the ratio of a
numerator of order γ2ε2 and a denominator of order γ); (ii) For γε ⩾ 1, the scaling (2.25)
leads to the choice aε,γ = a/γ for a > 0 sufficiently small, in which case the smallest ei-
genvalue of Bε,γ is easily seen to be of order min(γ, γ−1) (since the numerator in (2.23) is
of order 1, while the denominator is the sum of terms proportional to γ and γ−1). In fact,
since ε ⩽ 1 and γε ⩾ 1, it holds γ ⩾ 1, so that the smallest eigenvalue of Bε,γ for γε ⩾ 1
is of order γ−1.

• For ε ⩾ 1, the factor Λε is of order ε−1 and ηε = ε−1. The scaling of aε,γ as a function
of ε, γ suggested by (2.24) is

(2.26) aε,γ =
a

ε

γ

(1 + γ)2

for a > 0 sufficiently small. An analysis similar to the one performed above, by further
distinguishing γ ⩽ 1 and γ ⩾ 1, shows that the smallest eigenvalue of Bε,γ scales as aε,γ/ε,
i.e. ε−2 min(γ, γ−1)

In conclusion, there exists λ > 0 such that the smallest eigenvalue of Bε,γ is lower bounded by
λmin(γ−1, γε−2, γε2, (γε2)−1).

We conclude this section with the proofs of the two technical lemmas used above. In these
proofs, we denote by

(2.27) Gε =

(
η2ε +Π

[
2n

(βε)2
∂∗ξ∂ξ +

1

β
∇∗

q∇q

]
Π

)−1

,

so that Aε = −ηεGεΠAε. We will repeatedly use in the proofs that Gε, when restricted to some
subspace of L2

0(π), behaves as (1 + Π∂∗ξ∂ξΠ)−1 or (1 + Π∇∗
q∇qΠ)−1. More precisely, introduce the

orthogonal projectors Pq and Pξ, which correspond to a partial integration with respect to πq(dq)
and πξ(dξ) (they are the counterparts for the variables q, ξ of the projector Π defined in (2.14)):

(2.28) (Pqφ) (p, ξ) =

∫

Rn

φ(q,p, ξ)πq(dq), (Pξφ) (q,p) =

∫

R
φ(q,p, ξ)πξ(dξ).
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Note that Pq, Pξ both commute with Π,∇∗
q∇q and ∂∗ξ∂ξ (in fact Pq∇∗

q∇q = ∇∗
q∇qPq = 0 and

Pξ∂
∗
ξ∂ξ = ∂∗ξ∂ξPξ = 0) and therefore also with Gε, and that

(2.29) ΠPqLH = 0, ΠPξLNH = 0,

by the invariance of the measure πq(dq)πp(dp) by LH, and the invariance of πp(dp)πξ(dξ) by LNH.
Moreover, Π∇∗

q∇qΠ ⩾ κ2qΠ(1 − Pq) from a Poincaré inequality for πq; and similarly, Π∂∗ξ∂ξΠ ⩾
κ2ξΠ(1− Pξ) from a Gaussian Poincaré inequality for πξ. This leads to the following result.

Lemma 2.5. The operators Gε(1+Π∇∗
q∇qΠ)(1−Pq) and ε

−2Gε(1+Π∂∗ξ∂ξΠ)(1−Pξ) are uni-
formly bounded with respect to ε. More precisely,

(2.30) ∥Gε(1 + Π∇∗
q∇qΠ)(1− Pq)∥ ⩽ β

(
1 + κ−2

q

)
,

and

(2.31)
∥∥Gε(1 + Π∂∗ξ∂ξΠ)(1− Pξ)

∥∥ ⩽
β2

2n

(
1 + κ−2

ξ

)
ε2.

Moreover, G1/2
ε (1 + Π∇∗

q∇qΠ)1/2(1− Pq) and ε−1G1/2
ε (1 + Π∂∗ξ∂ξΠ)1/2(1− Pξ) are also uniformly

bounded with respect to ε.

Proof. Denoting by Aq = (1− Pq)Π∇∗
q∇qΠ(1− Pq),

Gε(1 + Π∇∗
q∇qΠ)(1− Pq) = (1− Pq)Gε(1− Pq)(1 + Π∇∗

q∇qΠ)(1− Pq)

= (1− Pq +Aq)
1/2
[
η2ε + 2n(βε)−2Π∂∗ξ∂ξΠ+ β−1Π∇∗

q∇qΠ
]−1

(1− Pq +Aq)
1/2

= (1− Pq +Aq)
1/2

[
η2ε(1− Pq) +

2n

(βε)2
(1− Pq)Π∂

∗
ξ∂ξΠ(1− Pq) + β−1Aq

]−1

(1− Pq +Aq)
1/2,

where all operators on the last right-hand side are considered on the subspace (1 − Pq)L
2
0(π), on

which Aq ⩾ κ2q. Therefore, in the sense of symmetric operators on (1− Pq)L
2
0(π),

0 ⩽ Gε(1 + Π∇∗
q∇qΠ)(1− Pq) ⩽ (1 +Aq)

1/2
[
η2ε + β−1Aq

]−1
(1 +Aq)

1/2 ⩽ gε (Aq) ,

with

gε(x) =
1 + x

η2ε + β−1x
.

This leads to (2.30) since gε(κ
2
q) ⩽ g0(κ

2
q). Similar computations lead to

∥∥Gε(1 + Π∂∗ξ∂ξΠ)(1− Pξ)
∥∥ ⩽ h0(κ

2
ξ)ε

2, hε(x) =
1 + x

min(1, ε2) + 2nβ−2x
,

which gives (2.31). The estimates on G1/2
ε (1+Π∇∗

q∇qΠ)1/2(1−Pq) and ε
−1G1/2

ε (1+Π∂∗ξ∂ξΠ)1/2(1−
Pξ) are obtained in a similar way.

Lemma 2.6. The operator AεLO is uniformly bounded for ε > 0: There exists C2 > 0 such that
∥AεLO∥ ⩽ C2.
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Proof. Since AεLO = −ηεGεΠLHLO− ηεε
−1GεΠLNHLO, it suffices to prove that each operator

in the right-hand side of this equality is uniformly bounded with respect to ε > 0. First, in view
of (2.29), the operator

ηεGεΠLHLO = ηεGεΠ(1− Pq)LHLO

= ηεGε(1 + Π∇∗
q∇qΠ)(1− Pq)(1 + Π∇∗

q∇qΠ)−1Π(1− Pq)LHLO

is the product of the operator Gε(1+Π∇∗
q∇qΠ)(1−Pq) (uniformly bounded in ε from (2.30)) and the

operator (1+Π∇∗
q∇qΠ)−1Π(1−Pq)LHLO, which is bounded (see for instance [32, Proposition A.3]);

multiplied by the prefactor ηε ⩽ 1. We next consider

ηεε
−1GεΠLNHLO = ηεε

−1Gε(1 + Π∂∗ξ∂ξΠ)(1− Pξ)(1 + Π∂∗ξ∂ξΠ)−1Π(1− Pξ)LNHLO.

Note first that the norm of the operator ηεε
−1Gε(1+Π∂∗ξ∂ξΠ)(1−Pξ) is of order min(1, ε) by (2.31).

It remains to prove that (1 + Π∂∗ξ∂ξΠ)−1Π(1− Pξ)LNHLO is bounded. We note for this that

Π(1− Pξ)LNHLO = − 1

β3
(1− Pξ)Π

(
(∂ξ − ∂∗ξ )∇∗

p∇p +∆∗
p∂ξ −∆p∂

∗
ξ

)
∇∗

p∇p

=
1

β3
(1− Pξ)∂

∗
ξΠ∆p∇∗

p∇p,

where we used (2.15). The conclusion then follows from the fact that Π∆p∇∗
p∇p is bounded (see

Lemma 2.10 below) as well as Tξ = (1− Pξ)(1 + Π∂∗ξ∂ξΠ)−1Π(1− Pξ)∂
∗
ξ (by computing TξT ∗

ξ and

using spectral calculus together with the lower bound ∂∗ξ∂ξ ⩾ κ2ξ(1− Pξ) on (1− Pξ)L
2
0(π)).

In conclusion, AεLO = −ηεGεΠLHLO − ηεε
−1GεΠLNHLO is bounded, with an operator norm

of order ηε +min(1, ε), which is of order 1 uniformly in ε > 0.

Lemma 2.7. There exists C1 > 0 such that

∀ε > 0, ∥AεAε(1−Π)∥ ⩽ C1 max

(
1,

1

ε

)
.

Proof. Since (AεAε(1 − Π))∗ = (1 − Π)AεA
∗
ε = ηε(1 − Π)A 2

ε ΠGε, the result is a consequence
of the bound

∀ε > 0, ∥A 2
ε ΠGε∥ ⩽ C1 max

(
ε,

1

ε

)
.

In fact, using LHΠPq = 0 and LNHΠPξ = 0,

(2.32)
A 2

ε ΠGε = L2
HΠ(1− Pq)Gε +

1

ε2
L2
NHΠ(1− Pξ)Gε

+
1

ε
LNHLHΠ(1− Pq)Gε +

1

ε
LHLNHΠ(1− Pξ)Gε.

Let us consider successively the various terms on the right-hand side. First, in view of the
rules (2.15),

β2L2
HΠ(1− Pq)Gε =

n∑

i=1

n∑

j=1

(
∂2qi,qj (1− Pq)Gε

)(
∂∗pi

∂∗pj
Π
)
−

n∑

i=1

n∑

j=1

(
∂∗qi∂qj (1− Pq)Gε

) (
∂pi

∂∗pj
Π
)
,
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which is a sum of bounded operators in view of Lemmas 2.9 and 2.10. Similarly,

1

ε2
L2
NHΠ(1− Pξ)GεΠ =

1

β4

1

ε2
[
(∂ξ − ∂∗ξ )∂ξ∇∗

p∇p + ∂2ξ∆
∗
p − ∂∗ξ∂ξ∆p

]
∆∗

pΠ(1− Pξ)Gε,

is a sum of bounded operators in view of Lemmas 2.9 and 2.10. Consider now the terms involving
both LH and LNH. We need to introduce projectors 1−Pq and 1−Pξ in order to rely on Lemma 2.5.
We note to this end that LNHLHΠ(1− Pq) = LNH(1− Pξ)LHΠ(1− Pq) + LNHPξLHΠ(1− Pq) and
LHLNHΠ(1−Pξ) = LH(1−Pq)LNHΠ(1−Pξ)+LHPqLNHΠ(1−Pξ). Straightforward computations
show that

1

ε
LNHPξLHΠ(1− Pq)Gεφ = −1

ε
ξpT∇q (ΠPξ(1− Pq)Gεφ) ,

which is the product of two functions depending on the variables ξ,p and q, respectively, with
(p, ξ) 7→ ξp belonging to L2(πp πξ). Note also that the operators ∂qiΠPξ(1 − Pq)Gε are uniformly
bounded in ε > 0 in view of (2.30), so that finally ε−1LNHPξLHΠ(1−Pq) has an operator norm of
order ε−1. A similar reasoning shows that the operator

1

ε
LHPqLNHΠ(1− Pξ)Gεφ = −2

ε
pT∇V ∂ξ (ΠPq(1− Pξ)Gεφ)

is bounded, with an operator norm of order ε by Lemma 2.5. In addition,

1

ε
LNH(1− Pξ)LHΠ(1− Pq)Gε

=
1

β3

[
1

ε
(∂ξ − ∂∗ξ )(1− Pξ)∇∗

p∇p +
1

ε
∂ξ(1− Pξ)∆

∗
p −

1

ε
∂∗ξ (1− Pξ)∆p

]
∇∗

p∇q(1− Pq)Gε,

and
1

ε
LH(1− Pq)LNHΠ(1− Pξ)Gε =

1

β3

1

ε
(∇∗

p∇q −∇∗
q∇p)(1− Pq)∂ξ(1− Pξ)Gε∆

∗
pΠ,

are sums of bounded operators in view of Lemma 2.9. Therefore, ε−1LNHLHΠ(1 − Pq)Gε and
ε−1LHLNHΠ(1−Pξ)Gε are bounded operators with operator norms respectively of order max(1, ε−1)
and max(1, ε). This finally gives the claimed result.

Remark 2.8. Among the various terms in the decomposition of AεAε(1−Π) we consider in the
proof of Lemma 2.7, the only one which is not bounded as ε→ 0 is ε−1LNHPξLH(1−Pq)ΠGε. This
term arises from the interaction between the Hamiltonian and Nosé–Hoover parts of the dynamics,
and is responsible for the factor max(1, ε−1) in the expression of B1,2 in (2.22), which itself leads
to the extra term γε2 in the scaling of the lower bound of Proposition 2.2.

Note that, crucially, operators in the ξ variable in the computations of the proof of Lemma 2.7
always appear with a prefactor ε−1. The fact that this is the correct scaling for the boundedness
of these operators comes from the following result.

Lemma 2.9. The operators ∂2qi,qj (1 − Pq)Gε, ∂
∗
qi∂qj (1 − Pq)Gε, ε

−1∂∗ξ (1 − Pξ)∂qi(1 − Pq)Gε,

ε−1∂qi(1− Pq)∂ξ(1− Pξ)Gε, ε
−1∂∗qi(1− Pq)∂ξ(1− Pξ)Gε, ε

−2∂2ξ (1− Pξ)Gε, ε
−2∂∗ξ∂ξ(1− Pξ)Gε are

uniformly bounded with respect to ε > 0.

Proof. Consider for instance ∂2qi,qj (1 − Pq)Gε. It is sufficient by Lemma 2.5 to prove that

∂2qi,qj (1 − Pq)(1 + Π∇∗
q∇qΠ)−1 is bounded, and in fact that operators of the form Ti = ∂qi(1 −

Pq)(1+Π∂∗qi∂qiΠ)−1/2 and ∂2qi(1−Pq)(1+Π∇∗
q∇qΠ)−1 are bounded. The first statement is clear by
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calculating T ∗
i Ti and using spectral calculus; while for the second one we use [10, Section 3]. Similar

reasonings can be used to bound ∂∗qi∂qj (1−Pq)Gε. Bounds on ε
−2∂2ξ (1−Pξ)Gε, ε

−2∂∗ξ∂ξ(1−Pξ)Gε

are obtained in a similar way, considering the specific case of quadratic potentials in ξ (so that
estimates similar to those of [10, Section 3] hold in the ξ variable).

Consider next ε−1∂ξ(1− Pξ)∂
∗
qi(1− Pq)Gε = TξRqiSq,ξ with

Sq,ξ = ε−1(1− Pξ)(1 + Π∂∗ξ∂ξΠ)1/2(1− Pq)(1 + Π∇∗
q∇qΠ)1/2Gε

uniformly bounded in ε by Lemma 2.5, Tξ = ∂ξ(1− Pξ)(1 + Π∂∗ξ∂ξΠ)−1/2 bounded by considering

T ∗
ξ Tξ and resorting to spectral calculus, and Rqi = ∂∗qi(1 − Pq)(1 + Π∇∗

q∇qΠ)−1/2. To prove that

the latter operator is bounded, we write it as the sum of −∂qi(1 − Pq)(1 + Π∇∗
q∇qΠ)−1/2 (which

is bounded by the same reasoning as the one used to prove that Tξ is bounded) and β∂qiV (1 −
Pq)(1 + Π∇∗

q∇qΠ)−1/2, which is bounded in view of the inequality

∥|∇V |h∥L2(πq) ⩽ C
(
∥h∥L2(πq) + ∥∇h∥L2(πq)

)

provided by [37, Lemma A.24]. The boundedness of ε−1∂qi(1 − Pq)∂ξ(1 − Pξ)Gε and ε−1∂qi(1 −
Pq)∂

∗
ξ (1− Pξ)Gε follows by similar arguments.

The proof of the following lemma is obtained by straightforward computations based on inte-
gration by parts in the integral involved in the definition of Π.

Lemma 2.10. For any α1, α2, α3 ∈ N and i, j, k ∈ {1, . . . , n}, the operators Π∂α1
pi

(
∂∗pj

)α2

∂α3
pk

are bounded (and so are their adjoints on L2(πp) and L2(π)). In particular, ∂∗pi
∂∗pj

Π and ∂pi∂
∗
pj
Π

are bounded.

3. Pathwise ergodicity and functional central limit theorem. Consider, for φ ∈ L1(π)
given, the trajectory average of φ evaluated along a realization of the solution of the SDE (2.4):

(3.1) φ̂t :=
1

t

∫ t

0

φ(qs,ps, ξs) ds.

The almost-sure convergence of this estimator to Eπ(φ) holds by the results of [18] since the
dynamics admits an invariant probability measure with a positive density, and the generator is
hypoelliptic [15]. The latter property follows from the following computations on commutators:
[LH, ∂pi

] = −∂qi , and [LNH, ∂pi
] = −2pi∂ξ + ξ∂pi

so that [[LNH, ∂pi
], ∂pi

] = 2∂ξ.
In fact, by the results from [2], a natural central limit theorem is a consequence of the bound-

edness of the inverse of the generator obtained in Collorary 1.

Collorary 2 (Central limit theorem for AdL). Consider φ ∈ L2(π). Then

(3.2)
√
t (φ̂t − Eπφ)

law−−−−→
t→+∞

N (0, σ2
ε,γ(φ)),

where the asymptotic variance reads

σ2
ε,γ(φ) = 2

∫

R2n+1

(
−L−1

AdLΠ0φ
)
Π0φdπ.

Collorary 1 provides the following bounds on the asymptotic variance:

(3.3) 0 ⩽ σ2
ε,γ(φ) ⩽

2C∥φ∥2L2(π)

λ
max

(
γ,
ε2

γ
, γε2,

1

γε2

)
.
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This inequality shows that integration times of order t = τ max
(
γ, γ−1ε2, γε2, (γε2)−1

)
should be

considered in order for the estimator (3.1) to have a variance of order 1/τ .

3.1. Langevin limit ε → +∞. We consider in this section the convergence of the asymp-
totic variance in the limit when ε → +∞, which should be thought of as being somewhat similar
to overdamped limits of Langevin dynamics. We do not consider the regime ε → 0 which is a
mathematically a singular limit (see however Remark 3.2 below), and is also not a regime which is
numerically convenient because of the stiffness of the resulting dynamics, which typically calls for
integration schemes with timesteps of order ε (or the construction of dedicated numerical schemes
based on averaging ideas for instance).

In the limit ε→ +∞, for a given test function φ ∈ C∞
0 (R2n+1), the function LAdLφ converges

to LLangφ where LLang = LH + γLO is the generator of the standard underdamped Langevin
dynamics. To understand the behavior of the limiting asymptotic variance, we restrict ourselves
to functions of (q,p) only, since the variable ξ evolves very slowly and should therefore not be of
interest. Since the slow convergence to equilibrium is due to the relaxation of the ξ variable in the
regime ε → +∞, we expect that restricting the attention to such observables allows the variance
to remain bounded. In fact, the following result holds (see Section 3.2 for the proof).

Proposition 3.1. Fix γ > 0. Assume that U satisfies Assumption 1, is semi-convex (there
exists a bounded smooth function U1 with bounded derivatives and a smooth convex function U2

such that U = U1 +U2), grows at most polynomially at infinity and its derivatives as well, and that
there exist K > 0,R ∈ R and a ∈ (0, 1) such that

1

2
qT∇U(q) ⩾ aU(q) + γ2

a(2− a)

8(1− a)
|q|2 −K, U(q) ⩾ R|q|2.

Consider a smooth function φ = φ(q,p) growing at most polynomially in (q,p) and whose de-
rivatives grow at most polynomially. Then there exists C > 0 (depending on γ, φ) such that the
asymptotic variance σ2

ε,γ(φ) defined in Corollary 2 satisfies

∀ε ⩾ 1,
∣∣σ2

ε,γ(φ)− σ2
∞,γ(φ)

∣∣ ⩽ C

ε
,

where σ2
∞,γ(φ) involves only asymptotic variances of underdamped Langevin dynamics. More pre-

cisely,

σ2
∞,γ(φ) =

2

β

(
γ∥∇pΦ0∥2L2(πqπp)

− γ
⟨∇pΦ−1,∇pΦ0⟩2L2(πqπp)

∥∇pΦ−1∥2L2(πqπp)

+
β2⟨Φ−1,LHΦ0⟩2L2(πqπp)

γ∥∇pΦ−1∥2L2(πqπp)

)

where Φ0 = −L−1
LangΠ0φ and Φ−1 = −L−1

Lang

(
p2 − n

β

)
.

Note that the first term on the right-hand side of the expression of σ2
∞,γ(φ) corresponds to

the asymptotic variance of a standard underdamped Langevin dynamics. The Nosé–Hoover like
thermostat adds two terms in the large ε limit, one nonpositive and one nonnegative, so that it is
not clear in general whether σ2

∞,γ(φ) is larger than 2γβ−1∥∇pΦ0∥2L2(πqπp)
. Overall, it however still

holds σ2
∞,γ(φ) ⩾ 0 as expected since a Cauchy-Schwarz inequality shows that the sum of the two

first terms in the brackets on the right-hand side is indeed nonnegative.
The extra conditions on the potential, taken from [19], are satisfied for potentials growing at

infinity as |q|α with α > 2. They ensure that L−1
Lang stabilizes the vector space of smooth functions
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of (q,p) with mean zero with respect to πq πp, growing at most polynomially at infinity, and whose
derivatives grow at most polynomially at infinity.

It is in fact possible to write an expansion in inverse powers of ε for the difference σ2
ε,γ(φ) −

σ2
∞,γ(φ), and in particular to make precise the leading order term in this expansion. We however

refrain from doing so because the expressions are cumbersome. Note also that the proof of Propo-
sition 3.1 allows to write the action of L−1

AdL on L2
0(π) at leading order ε−2 (in a similar fashion

to the results presented in [22, Theorem 2.5], which provides an expansion of the resolvent of the
generator of the underdamped Langevin dynamics in inverse powers of γ); see Remark 3.3.

Remark 3.2. In the limit ε→ 0, the dynamics (2.4) behaves at dominant order as the following
ordinary differential equation:

dq = 0,

dp = −ξ
ε
p dt,

dξ =
1

ε

(
|p|2 − n

β

)
dt.

The only equilibrium points correspond to |p|2 = nβ−1 and ξ = 0. A simple computation shows
that

Φ(q,p, ξ) = ξ2 + |p|2 − 2n

β
ln |p|2

is an invariant of the dynamics. It is therefore expected that (2.4) corresponds to a fast averaging
on the level sets of Φ, with a superimposed slow variation of the values of Φ induced by the Langevin
part of the dynamics. Since the dynamics is at leading order a dynamics on the two one-dimensional
variables P = |p|2 and ξ only, it might be possible to adapt the techniques from [30] in order to
determine the dominant behavior of the asymptotic variance in the regime ε→ 0.

3.2. Proof of Proposition 3.1. The idea of the proof is to construct an approximate solution
ψε to the Poisson equation −LAdLϕε = Π0φ, using asymptotic analysis. The scaling of the resolvent
−LAdL as given by Corollary 1 suggests that, in the limit ε→ +∞,

(3.4) ψε = ε2Ψ−2 + εΨ−1 +Ψ0 + ε−1Ψ1 + ...

The various functions in (3.4) formally satisfy, by identifying powers of ε,

−LLangΨ−2 = 0, −LLangΨ−1 = LNHΨ−2, −LLangΨ0 = Π0φ+ LNHΨ−1,

−LLangΨi = LNHΨi−1 for i ⩾ 1.

The strategy of the proof is to construct the leading order terms Ψ−2,Ψ−1, . . . ,Ψ2 ∈ L2
0(π) in

order to obtain some approximate solution ψε (obtained by a truncation of (3.4)), and then to use
resolvent estimates to conclude that ϕε − ψε is small.

We will repeatedly use the fact that the unique solution G of −LLangG = g for g a smooth
function with average 0 with respect to πp(dp)πq(dq) growing at most polynomially at infinity and
whose derivatives also grow at most polynomially at infinity, is a well defined smooth function,
which grows at most polynomially at infinity and whose derivatives also grow at most polynomially
at infinity (by the results of [19]).
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Construction of the leading order terms in the expansion. The equation −LLangΨ−2 = 0 shows
that Ψ−2(q,p, ξ) = f−2(ξ). Next, −LLangΨ−1 = LNHΨ−2 = (p2 − nβ−1)f ′−2(ξ), so that

Ψ−1(q,p, ξ) = f ′−2(ξ)Φ−1(q,p) + f−1(ξ), Φ−1(q,p) = −L−1
Lang

(
p2 − n

β

)
.

The equation for Ψ0 then reads

−LLangΨ0 = Π0φ+ f ′′−2(ξ)

(
p2 − n

β

)
Φ−1 + f ′−1(ξ)

(
p2 − n

β

)
− ξf ′−2(ξ)p

T∇pΦ−1.

The solvability condition for this equation is that the right-hand side has average 0 with respect to
the probability measure πq(dq)πp(dp). Integration by parts shows that, for any test function ϕ,

∫

Rn

pT∇pϕdπp = β

∫

Rn

ϕ

(
p2 − n

β

)
dπp,

so that the solvability condition reads

(3.5) aLeff,ξf−2 = −
∫

R2n

Π0φdπp dπq = 0, a =

∫

R2n

(
p2 − n

β

)
Φ−1 dπp dπq ⩾ 0,

where Leff,ξ is the generator of an effective Ornstein–Uhlenbeck process acting on functions u = u(ξ)
as Leff,ξu = u′′−βξu′. In fact a > 0 since a = γβ−1∥∇pΦ−1∥2 = 0 would imply that Φ−1 is constant
in p, which is in contradiction to the definition of Φ−1 because

(−LLangΦ−1) (q,p) = pT · ∇qΦ−1(q) ̸=
(
p2 − n

β

)
.

The fact that a is nonzero implies that the first equality in (3.5) holds if and only if f−2 = 0, so
that Ψ−2 = 0 and Ψ−1 = f−1. Moreover,

Ψ0(q,p, ξ) = Φ0(q,p) + f ′−1(ξ)Φ−1(q,p) + f0(ξ), Φ0 = −L−1
LangΠ0φ.

Remark 3.3. The equality (3.5) shows that the action of leading order of the resolvent for
Adaptive Langevin for functions φ ∈ L2

0(π) is a
−1ε2L−1

eff,ξΠPqφ (with Pq defined in (2.28)).

The condition at next order reads

−LLangΨ1 = LNHΨ0 = −ξpT∇pΦ0 − ξf ′−1p
T∇pΦ−1 +

(
p2 − n

β

)[
f ′0 + f ′′−1Φ−1

]
.

The solvability condition reads aLeff,ξf−1 = ξb0 with b0 = ΠPq(p
T∇pΦ0), so that f−1(ξ) =

−ξb0/(aβ), and

Ψ1(q,p, ξ) = f ′0(ξ)Φ−1(q,p) + ξΦ1(q,p) + f1(ξ), Φ1 = −L−1
Lang

(
b0
aβ

pT∇pΦ−1 − pT∇pΦ0

)
.

Next,

−LLangΨ2 = LNHΨ1 = −ξf ′0pT∇pΦ−1 − ξ2pT∇pΦ1 +

(
p2 − n

β

)
[Φ1 + f ′1 + f ′′0 Φ−1] ,
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for which the solvability condition reads aLeff,ξf0 = (ξ2 − β−1)b1 with b1 = ΠPq(p
T∇pΦ1). There-

fore, f0(ξ) = (β−1 − ξ2)b1/(2βa), so that

Ψ2(q,p, ξ) = L−1
Lang

[(
p2 − n

β

)(
b1
βa

Φ−1 − Φ1

)]
+ ξ2L−1

Lang

(
pT∇pΦ1 −

b1
βa

pT∇pΦ−1

)

+ f ′1(ξ)Φ−1(q,p) + f2(ξ).

Obtaining bounds on the difference of the variances. We now choose f1 = f2 = 0 and compute

LAdL

(
εΨ−1 +Ψ0 +

1

ε
Ψ1 +

1

ε2
Ψ2 − ϕε

)
=

1

ε3
LNHΨ2.

We deduce, in view of Corollary 1, that there exists a constant Cγ ∈ R+ such that, for any ε ⩾ 1,
∥∥∥∥εΨ−1 +Ψ0 +

1

ε
Ψ1 +

1

ε2
Ψ2 − ϕε

∥∥∥∥
L2(π)

⩽
Cγ

ε
∥LNHΨ2∥L2(π) ,

and in fact

∥εΨ−1 +Ψ0 − ϕε∥L2(π) ⩽
Rγ,φ

ε

for some constant Rγ,φ ∈ R+. The asymptotic variance σ2
ε,γ(φ) then coincides up to an error of

order ε−1 with

σ̃2
ε,γ(φ) = 2

∫

R2n+1

(εΨ−1 +Ψ0)Π0φdπ = 2

∫

R2n+1

(
Φ0 −

b0
aβ

Φ−1

)
Π0φdπ,

where we used for the second equality the fact that the average with respect to π of the product of
a function of ξ and Π0φ vanishes. Finally, by integrating in ξ and expressing a, b0 in terms of the
generator of the Langevin dynamics, namely,

a = −
∫

R2n

(LLangΦ−1) Φ−1 dπq dπp =
γ

β
∥∇pΦ−1∥2L2(πqπp)

,

b0 = β

∫

R2n

(
p2 − n

β

)
Φ0 dπq dπp = −β

∫

R2n

(LLangΦ−1) Φ0 dπq dπp

it follows that

σ̃2
ε,γ(φ) = 2

(∫

R2n

Φ0Π0φdπq dπq −
β⟨LLangΦ−1,Φ0⟩L2(πqπp)⟨LLangΦ0,Φ−1⟩L2(πqπp)

γ∥∇pΦ−1∥2L2(πqπp)

)
.

Now,

⟨LLangΦ−1,Φ0⟩L2(πqπp) = −γ
β
⟨∇pΦ−1,∇pΦ0⟩L2(πqπp) − ⟨Φ−1,LHΦ0⟩L2(πqπp),

⟨LLangΦ0,Φ−1⟩L2(πqπp) = −γ
β
⟨∇pΦ−1,∇pΦ0⟩L2(πqπp) + ⟨Φ−1,LHΦ0⟩L2(πqπp),

so that

σ̃2
ε,γ(φ) =

2

β

(
γ∥∇pΦ0∥2L2(πqπp)

− γ
⟨∇pΦ−1,∇pΦ0⟩2L2(πqπp)

∥∇pΦ−1∥2L2(πqπp)

+
β2⟨Φ−1,LHΦ0⟩2L2(πqπp)

γ∥∇pΦ−1∥2L2(πqπp)

)
,

which gives the claimed result.
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4. Numerical results. In this section, we present the results of several numerical experi-
ments. First, we consider a simple illustration to demonstrate the scaling of the spectral gap as a
function of γ and ε as predicted in Section 2. Second, we demonstrate the scaling of the asymptotic
variance, as predicted in Section 3. We also verify the existence of an asymptotic central limit
theorem for the case of a Bayesian data analysis problem.

4.1. Spectral gap in Galerkin subspace. Let U : R → R, U(q) = 1
2q

2. Moreover, denote
by hl the l-th Hermite polynomial as defined in (A.1), and consider for prescribed integers L ∈ N
the finite dimensional Galerkin subspace GL spanned by polynomials of the form

(4.1) ψk,l,m(p, ξ,q) = hk(p)hl(ξ)hm(q), 0 ⩽ l, k,m ⩽ L− 1,

and the associated projection operator

(4.2) ΠL
Galerkin : L2(π) → GL, φ 7→

L−1∑

k=0

L−1∑

l=0

L−1∑

m=0

uk,l,mψk,l,m,

where uk,l,m := ⟨φ,ψk,l,m⟩L2(π). In order to simplify notation we consider a linear indexing of
the coefficients uk,l,m and the polynomials ψk,l,m using a hash map of the form I : (k, l,m) 7→
1 +m+ Lk + L2l so that we can write the action of the Galerkin operator on functions φ ∈ L2

0(π)
in the compact form

ΠL
Galerkinφ = u ·ψ,

where u = [ũi]1⩽i⩽L3 and ψ = [ψ̃i]1⩽i⩽L3 , where ũ and ψ̃ are such that ũi = uk,l,m and ψ̃i = ψk,l,m

for i = I(k, l,m).
Let GL

0 := GL ∩ L2
0(π). For observables φ ∈ GL

0 , one can derive (see Appendix A) a stiffness

matrix A ∈ RL3×L3

in terms of which the action of the generator LAdL = LH + γLO + ε−1LNH can
be written as

(4.3) LAdLφ = LAdL (u ·ψ) = (Au) ·ψ.

Consequently, the spectrum of LAdL in the respective Galerkin subspace is exactly given by the
eigenvalues of A and we can numerically compute the spectral gap λ̂ε,γ of −LAdL restrained to the
respective Galerkin subspace by diagonalizing the matrix A. Figure 1 shows the spectral gap of
−A for L = 10. As suggested by (2.12) we observe for all considered values of γ a scaling of λ̂ε,γ as
O(ε2) when ε → 0 and as O(ε−2) when ε → ∞ (see Figure 1, Panel A). Similarly, for fixed values

of ε we observe a scaling of λ̂ε,γ as O(γ) when γ → 0 and as O(γ−1) when γ → ∞ (see Figure 1,

Panel B). Finally, consider the scaling of the spectral gap λ̂α,α as a function of the single scalar α.

As α→ ∞, we expect λ̂α,α = O(α−3), and as α→ 0, we expect λ̂α,α = O(α3). Indeed, this is what
we observe (see Figure 1, Panel C).

4.2. Scaling of asymptotic variance and demonstration of CLT. We next consider a
simple skewed double-well potential U : R → R, of the form

(4.4) U(q) =
b

a

(
q2 − a

)2
+ cq

which we parameterize as b = 1, a = 1, c = 1/2. We use the BADODAB symmetric splitting scheme
from [23] (see also Appendix C) to simulate trajectories of the SDE (2.4). In a first set of simulations
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Fig. 1: Spectral gap, λ̂ε,γ , of −LAdL when considered as an operator on GL
0 , with L = 10. Panel A

shows λ̂ε,γ as a function of ε for fixed γ. Panel B shows λ̂ε,γ as a function of γ for fixed ε. Panel C

shows λ̂α,α as a function of the scalar α.

we consider different parameterizations with ε taking values within the interval [10−2, 10] and γ
taking values within the interval [10−4, 102]. For each parameterization we simulate N = 10, 000
independent replicas forK = 100, 000 time steps at unit temperature using a stepsize ∆t = 2×10−3.
We randomly initialized each replica according to the associated equilibrium measure π using a
simple rejection sampling algorithm. We denote by

φ̂K =
1

K

K−1∑

k=0

φ
(
q(k),p(k), ξ(k)

)
,

the time average of the observable φ evaluated along a finite trajectory (q(k),p(k), ξ(k))1⩽k⩽K of
the discretized process which we use as a (biased, due to discretization) Monte Carlo estimate of

the expectation Eπ(φ). Let φ̂
(n)
K denote the Monte Carlo estimate obtained from the trajectory of

the n-th replica, and denote by

(4.5) φK :=
1

N

N∑

n=1

φ̂
(n)
K ,

the empirical mean of the respective estimates over the N independent replicas. We estimate the
asymptotic variance of φ under the discretized dynamics using

σ̂2
ε,γ(K) =

1

N

N−1∑

n=0

(
φ̂
(n)
K − φK

)2
.
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Figure 2 shows such computed estimates of the asymptotic variance as a function of ε (Panel A),
and as a function of γ (Panel B), respectively. We confirm the qualitative behaviour predicted
in Section 3 for the asymptotic variance: for fixed γ = 1, the asymptotic variance σ̂2

ε,γ(K) of
observables scales at most quadratically in ε as ε → ∞. Similarly, as ε → 0, the estimated
asymptotic variance σ̂2

ε,γ(K) of the observables we consider remains of order 1 (while it could
increase as ε−2 at most according to (3.3)). For fixed ε = 1, the estimated asymptotic variance
of observables scales as at most linearly in γ as γ → ∞. For the considered model system and
observables the increase of the estimated asymptotic variance σ̂2

ε,γ(K) is sub-linear in γ−1 as γ → 0.
We provide additional results for a slightly modified version of the model system considered here in
Appendix B, where the increase of the asymptotic variance of certain observables is indeed observed
to be asymptotically linear in γ−1 as γ → 0.
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Fig. 2: Estimated asymptotic variance σ̂2
ε,γ(K) for various observables with fixed γ = 1 as a function

of ε (Panel A), and with fixed ε = 1 as a function of γ (Panel B), respectively. The dashed line in
Panel A corresponds to the slope of a quadratic function in ε. The dashed line in Panel B indicates
the slope of a linear function in γ.

We use a second set of simulations to demonstrate the central limit theorem obtained in Collo-
rary 2 for estimates φ̂K obtained as Monte Carlo estimates from the discretization of the SDE (2.4).
That is, we show that for sufficiently large K ∈ N the law of the estimated rescaled residual error

(4.6)

√
K∆t

σ2
ε,γ(φ)

(φ̂K − Eπ(φ)),

is approximately Gaussian with vanishing mean and variance σ̂2
ε,γ(φ) (we treat any systematic

bias induced by the discretization as negligible). For parameter values γ = ε = 1, we simulate
N = 500, 000 independent trajectories for up to Kmax = 1000 steps using the stepsize ∆t = 10−1.
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For each trajecotry we compute an estimate of the rescaled residual errors by replacing Eπ(φ) and
σ2
ε,γ(φ) in the expression (4.6) by the Monte Carlo estimates φKmax

and σ̂2
ε,γ(Kmax), respectively.

Figure 3, Panel A and Figure 3, Panel B, show the empirical probability density function of the
rescaled residual errors of the estimated mean and the estimated variance of the position variable
q, respectively. The empirical probability density functions are plotted for different values of K.
As K increases we observe that for sufficiently large K the computed empirical probability density
functions indeed closely follow the predicted Gaussian limiting distributions.
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Fig. 3: Empirical probability distribution (EPDF) of the rescaled residual error at different times
T = K∆t. Panel A shows the EPDF of the residual error of the estimated mean of the position
variable q, i.e., φ : (q,p, ξ) 7→ q. Panel B shows the residual error of the estimated second moment
of the position variable, i.e., φ : (q,p, ξ) 7→ q2. Dotted lines show the density N (0, σ2(φ)), where
σ2(φ) corresponds to the asymptotic variance of the respective observable, which is estimated using
the complete trajectory data up to index K = 1000.

4.3. Application to Bayesian logistic regression. For the purpose of demonstrating the
CLT in a Bayesian posterior sampling application we consider a Bayesian logistic regression trained
on a subset of the MNIST benchmark data set [20] of handwritten digits for binary classification
of the digits 7 and 9. We preprocess the data by means of a principal component analysis. After
centering the mean of each pixel, we retain the first 100 principal components and whiten the
obtained data by normalizing the variance of the corresponding loadings. The corresponding data
points are denoted by xj . Pictures corresponding to the number 7 are associated with yj = 0, while
yj = 1 corresponds to pictures of 9. Training is run on a subset of 12,251 data points and testing on
a separate subset of 2000 data points. Assuming a weakly informative Gaussian prior distribution
on the parameters q ∈ R100 to sample, with density p0(q) ∝ exp(−qTq/(2σ2)) where σ2 = 100,
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and a likelihood

p(yj , xj | q) =
exp

(
yj(xj)Tq

)

1 + exp ((xj)Tq)
,

where Ñ = 12251, yj ∈ {0, 1}, xj ∈ R100, the corresponding posterior distribution is of the form

π(q) dq ∝ p0(q)

Ñ∏

j=1

p(yj , xj | q) dq =: exp(−U(q)) dq.(4.7)

We use the ODABADO scheme described in Appendix C in order to numerically discretize (1.2)

in combination with an unbiased estimator −∇̂U(q) of the gradient force which we obtain by
subsampling data points as specified in (1.6) using minibatches of size m = 100. Besides the
introduced gradient noise we do not apply additional random forces, i.e., σA = 0.

Fig. 4: Examples of images from the MNIST data set. The upper row shows the original images as
obtained from the repository [20]. The lower row shows the projection of the same images onto the
first 100 principal components which were used for inference in the numerical experiments presented
in this article.

In a first set of simulations we generate N = 10, 000 independent trajectories for a total number
of K = 10, 000 steps using a stepsize of ∆t = 10−2 with coupling parameter ν = 1. We initialize
the position variable of all replicas at the same location which is a point close to the mode of the
target distribution, set the initial value ξ(0) of the friction variable to 0, and for each trajectory
we independently sample the initial momenta from the stationary measure, i.e., p(0) ∼ N (0, In).
Following the same steps as described above in the demonstration of the CLT in the previous
example we compute the appropriately rescaled residual errors of the estimated mean and the
estimated variance at various time points of the single coordinate variable qi whose index i = 65
we randomly selected. Figure 5 shows the histograms of the empirical distribution of the residual
error of these estimates after an increasing number of time steps. Again, as in the example of the
previous section we observe that for a sufficiently large number of time steps, the distribution of
the residual error follows closely the anticipated Gaussian distribution. We confirm that we observe
that also for other choices of the coordinate index i the empirical law of the residual error converges
to a centered Gaussian distribution.

In a second set of simulations we investigate the effect of different values of the thermal mass ν
on the convergence speed of the estimates of expectations of certain observables obtained from
single trajectories. We consider the same setup as described above but generate single trajectories
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Fig. 5: Empirical probability distribution (EPDF) of the rescaled residual error at different times
T = K∆t in the case of the Bayesian logistic regression posterior sampling problem. Panel A shows
the EPDF of the rescaled residual error of the estimated mean of the 65-th regression variable.
Panel B shows the residual error of the estimated variance of the same regression variable

for different values of the coupling parameter, i.e., ν = ε2 ∈ {1, 10, 100}. As observables we consider
again the projection onto a single coordinate variable, and the average likelihood over the test set
–a quantity commonly used for benchmarking purposes in machine learning applications, i.e.,

φ(q,p, ξ) =
1

N̂

N̂∑

i=1

p(yj , xj | q) = 1

N̂

N̂∑

i=1

exp
(
yj(xj)Tq

)

1 + exp ((xj)Tq)
,

where N̂ = 2000, and (xi, yi), i = 1, . . . , N̂ are the data points of the test data set.
Figure 6 shows the time evolution of the corresponding Monte Carlo estimates of the mean of

the 65-th component (Panel A), and the average likelihood over the test set (Panel B). As one may
have anticipated based on the asymptotic scaling of the spectral gap as O(ν−1) as ν → ∞, the
convergence of the respective cumulative averages (in time) of the observables under consideration
becomes slower with increasing values of ν. We mention that estimates appear to converge to
different values in the limit T = ∆tK → ∞. This observation can be explained by the fact that
the invariant measure of the discretized dynamics can be expected to depend on the value of the
coupling parameter ν. We refer to [23] for a detailed analysis of this dependency in the case of
the similar BADODAB splitting scheme. A reduction of this discrepancy can be achieved by a
reduction of the stepsize ∆t.
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Fig. 6: Number of time steps K vs. value of the Monte Carlo estimate of the mean of the 65-
th regression variable (Panel A), and the value of the estimated average likelihood over the test
(Panel B).
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[28] S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, The Journal of

Chemical Physics, 81 (1984), pp. 511–519.
[29] G. A. Pavliotis, Stochastic Processes and Applications, Springer, 2016.
[30] G. A. Pavliotis and A. Vogiannou, Diffusive transport in periodic potentials: underdamped dynamics, Fluc-

tuation and Noise Letters, 08 (2008), pp. L155–L173.
[31] L. Rey-Bellet, Ergodic properties of Markov processes, in Open Quantum Systems II, S. Attal, A. Joye, and

C.-A. Pillet, eds., vol. 1881 of Lecture Notes in Mathematics, Springer, 2006, pp. 1–39.
[32] J. Roussel and G. Stoltz, Spectral methods for Langevin dynamics and associated error estimates, ESAIM

Math. Model. Numer. Anal., 52 (2018), pp. 1051–1083.
[33] M. Sachs, B. Leimkuhler, and V. Danos, Langevin dynamics with variable coefficients and nonconservative

forces: From stationary states to numerical methods, Entropy, 19 (2017).

http://yann.lecun.com/exdb/mnist/


28 B. LEIMKUHLER, M. SACHS, AND G. STOLTZ

[34] X. Shang, Z. Zhu, B. Leimkuhler, and A. J. Storkey, Covariance-controlled adaptive Langevin thermostat
for large-scale Bayesian sampling, in Advances in Neural Information Processing Systems, 2015, pp. 37–45.

[35] D. Talay, Stochastic Hamiltonian systems: exponential convergence to the invariant measure, and discretiza-
tion by the implicit Euler scheme, Markov Processes and Related Fields, 8 (2002), pp. 163–198.
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Appendix. This appendix contains additional details on the numerical experiments presented
in Section 4 of the main text. In Section A we present details on the derivation of the stiffness matrix
of the generator of adaptive Langevin dynamics in the considered Galerkin subspace. Section B
contains complementary numerical experiments which demonstrate the predicted asymptotic scaling
of the asymptotic variance of some observables as 1/γ in the underdamped limit. Section C details
the numerical integrators used to obtain the results presented in Sections 4.2 and 4.3 of the main
text.

Appendix A. Derivation of the stiffness matrix in the Hermite Galerkin projection.
In this section we outline the derivation of the stiffness matrix A = γAOU+ ε−1ANH+AH, where
AOU, ANH, and AH denote the stiffness matrices associated with the generators LO, LNH, and LH,
respectively. Let hl denote the l-th Hermite Polynomial, i.e.,

(A.1) hl(x) =
1√
l!
H̃l

(√
βx
)
, H̃l(x) = (−1)lex

2/2 dl

dxl

(
e−x2/2

)
.

Simple computations show

(A.2) ∂xhl(x) =
√
βlhl−1(x), ∂∗xhl(x) =

√
β(l + 1)hl+1(x),

where ∂∗x denotes the adjoint of ∂x in L2(e−(β/2)x2

dx). Rewriting the generators LO,LNH and LH

in terms of the operators ∂p, ∂
∗
p , ∂ξ, ∂

∗
ξ , ∂q and ∂∗q (see (2.1) and (2.6)), and using (A.2) we find

LOψk,l,m = −kψk,l,m,(A.3)

LNHψk,l,m = β−1/2
(
k
√
lψk,l−1,m +

√
(k + 1)(k + 2)lψk+2,l−1,m

− k
√
l + 1ψk,l+1,m −

√
k(k − 1)(l + 1)ψk−2,l+1,m

)
,

(A.4)

LHψk,l,m =
√
m(k + 1)ψk+1,l,m−1 −

√
(m+ 1)kψk−1,l,m+1,(A.5)

with ψk,l,m as defined in (4.1). For i, j ∈ N, let Ei,j ∈ RL3×L3

denote the matrix with entries

(A.6) Ei,j :=

{
[δi,i′δj,j′ ]1⩽i′,j′⩽L3 , if 1 ⩽ i, j ⩽ L3

0, otherwise.

Then, recalling the definition of the hash function I given in Section 4.1 and defining Ĩ : (k, l,m) 7→
I(k, l,m)1{0,1,...,L−1}(k)1{0,1,...,L−1}(l)1{0,1,...,L−1}(m), the stiffness matrices associated with the
operators LO,LNH, and LH follow from (A.3)–(A.5) as

AOU =

L−1∑

k=0

L−1∑

l=0

L−1∑

m=0

−kEĨ(k,l,m),Ĩ(k,l,m),

ANH = β−1/2
L−1∑

k=0

L−1∑

l=0

L−1∑

m=0

(
− k

√
lEĨ(k,l−1,m),Ĩ(k,l,m) −

√
(k + 1)(k + 2)lEĨ(k+2,l−1,m),Ĩ(k,l,m)

− k
√
l + 1EĨ(k,l+1,m),Ĩ(k,l,m) +

√
k(k − 1)(l + 1)EĨ(k−2,l+1,m),Ĩ(k,l,m)

)
,

AH =

L−1∑

k=0

L−1∑

l=0

L−1∑

m=0

(√
m(k + 1)EĨ(k+1,l,m−1),Ĩ(k,l,m) −

√
(m+ 1)kEĨ(k−1,l,m+1),Ĩ(k,l,m)

)
,
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respectively.

Appendix B. Additional numerical experiment. In order to demonstrate the predicted
behaviour of the asymptotic variance as γ → 0, we consider the setup described in Section 4.2
with the modified parametrization a = 1, b = 4, c = 1/2 of the potential function U(q) =
b
a

(
q2 − a

)2
+ cq. This change of parameterization results in an increased barrier height between

the two local minima of the potential function. Using a stepsize of ∆t = 10−1, we obtain estimates
of the asymptotic variance for certain observables by following the same procedure and using the
same number of replicas and iterations as in the numerical experiment described in Section 4.2.
Fig 7 shows the estimated asymptotic variance as a function of the friction coefficient γ. The
value of the coupling parameter, ε, was set to 1 in all runs. As predicted, we find that for certain
observables the asymptotic variance increases linearly in γ−1 as γ → 0.
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Fig. 7: Estimated asymptotic variance σ̂2
ε,γ(K) for various observables with fixed ε = 1 as a function

of γ. The dashed line corresponds to the slope of a linear function in γ−1.

Appendix C. Numerical integrators. In this section we briefly describe the construction
of the numerical integrators for the SDEs (2.4) and (1.2), respectively, which we use in the numerical
experiments described in Section 4. We construct these integrators as Strang splittings based the
decomposition of the generator into elementary pieces.

C.1. Numerical integrator for (2.4). Denote by

LA = p · ∇q, LB = −∇U(q) · ∇p, LD =
1

ε

(
|p|2 − n

β

)
∂ξ

the Liouville operators associated with the differential equations

(C.1) q̇ = p, ṗ = −∇U(q), ξ̇ =
1

ε

(
|p|2 − n

β

)
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respectively. Moreover, denote by L̃O = −
(
γ + ξ

ε

)
p ·∇p + γ

β∆p the generator associated with the

differential equation

(C.2) ṗ = −
(
γ +

ξ

ε

)
p+

√
2γ

β
Ẇ.

Define coefficients

(C.3) α(ζ,∆t) := e−∆tζ , G(σ, ζ,∆t) :=

{
σ
√

(1− e−2∆tζ)/(2ζ), if ζ ̸= 0,

σ
√
∆t, ifζ = 0,

so that the stochastic update

(C.4) pk+1 = α(ζ,∆t)pk +G(σ, ζ,∆t)Rk, Rk ∼ N (0, In),

is equivalent to evolving the SDE ṗ = −ζp+ σẆ, ζ, σ ∈ R for time ∆t ⩾ 0.

Consider the numerical method

pk+1/2 = pk − ∆t

2
∇U(qk),

qk+1/2 = qk +
∆t

2
pk+1/2,

ξk+1/2 = ξk +
∆t

2ε

(
|pk+1/2|2 −

n

β

)
,

p̂k+1/2 = α
(
ε−1ξk+1/2 + γ,∆t

)
pk+1/2 +G

(√
2γ

β
, ε−1ξk+1/2 + γ,∆t

)
Rk, Rk ∼ N (0, In),

ξk+1 = ξk+1/2 +
∆t

2ε

(
|p̂k+1/2|2 −

n

β

)
,

qk+1 = qk+1/2 +
∆t

2
p̂k+1/2,

pk+1 = p̂k+1/2 −
∆t

2
∇U(qk+1).

This corresponding to a symmetric splitting the propagator of the SDE (2.4):

(C.5) e∆tLAdL = e
∆t
2 LBe

∆t
2 LAe

∆t
2 LDe∆tL̃Oe

∆t
2 LDe

∆t
2 LAe

∆t
2 LB +O(∆t3),

in accordance with the naming in [23]. We refer to this as the BADODAB scheme.

C.2. Numerical integrator for (1.2). While the above BADODAB integration scheme can
be adapted to the setup of (1.2), the resulting numerical scheme does not correspond to a splitting
of propagator of the respective SDE in the presence of a gradient noise. In particular the weak
convergence order of that integrator can only be expected to be of order 1 (this is in comparison
to a weak convergence of order 2 in the absence of a gradient noise). In what follows we briefly
describe an integrator for the SDE (1.2) which in the presence of a gradient noise still corresponds
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to a symmetric splitting of the associated propagator, which means that the weak error as well as
the error in ergodic averages decay at least quadratically as ∆t→ 0.

Let the operator LA be as defined above. Denote by

(C.6) L̃D =
1

ν

(
|p|2 − n

β

)
∂ζ

the Liouville operator associated with the differential equation

(C.7) dζ =
1

ν

(
|p|2 − n

β

)
dt,

and denote by

(C.8) L̃O = −ζp · ∇p +
σ2
A

2
∆p,

the generator of the SDE

(C.9) dp = −ζpdt+ σA dWA.

If the exact gradient force is replaced by an unbiased estimator −∇̂U(qk), then, under the

assumption that the residual error RG,k = ∇U(qk) − ∇̂U(qk) is Gaussian, and independent of

the value of qk, i.e., RG,k ∼ N (0, σ̃2
G), where σ̃

2
G = var(∇̂U(q)), an Euler update of the form

pk+1 = pk −∆t∇̂U(qk) can be viewed as an exact solution of the SDE

(C.10) dp = −∇U(q)dt+
√
∆t σ̃G dWG,

with associated generator

(C.11) L̃B = −∇U(q) · ∇p +∆t
σ2
G

2
∆p.

Let

pk+1/2 = α (ζk,∆t/2)pk +G (σA, ζk,∆t/2)Rk, Rk ∼ N (0, In),

ζk+1/2 = ζk +
∆t

2ν

(
|pk+1/2|2 −

n

β

)
,

qk+1/2 = qk +
∆t

2
M−1pk+1/2,

p̂k+1/2 = pk+1/2 −∆t∇̂U(qk+1/2),

qk+1 = qk+1/2 +
∆t

2
M−1p̂k+1/2,

ζk+1 = ζk+1/2 +
∆t

2ν

(
|p̂k+1/2|2 −

n

β

)
,

pk+1 = α (ζk+1,∆t/2)pk +G (σA, ζk+1,∆t/2)Rk+1/2, Rk+1/2 ∼ N (0, In),
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with coefficients α,G as defined in (C.3). This corresponds to the following decomposition of the
propagator of the SDE (1.2):

(C.12) e∆tLAdL = e
∆t
2 L̃Oe

∆t
2 L̃De

∆t
2 LAe

∆t
2 L̃Be

∆t
2 LAe

∆t
2 L̃De

∆t
2 L̃O +O(∆t3).

We refer to this as the ODABADO scheme.

Acknowledgments. The above discussed ODABADO splitting scheme was previously pro-
posed in 2016 as a second order scheme for noisy gradient systems by Xiaocheng Shang.
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