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Abstract

The absolute value equations (AVE) problem is an algebraic prob-
lem of solving Ax + |x| = b. So far, most of the research focused
on methods for solving AVEs, but we address the problem itself by
analysing properties of AVE and the corresponding solution set. In
particular, we investigate topological properties of the solution set,
such as convexity, boundedness, connectedness, or whether it consists
of finitely many solutions. Further, we address problems related to non-
negativity of solutions such as solvability or unique solvability. AVE
can be formulated by means of different optimization problems, and
in this regard we are interested in how the solutions of AVE are re-
lated with optima, Karush–Kuhn–Tucker points and feasible solutions
of these optimization problems.

We characterize the matrix classes associated with the above men-
tioned properties and inspect the computational complexity of the
recognition problem; some of the classes are polynomially recognizable,
but some others are proved to be NP-hard. For the intractable cases,
we propose various sufficient conditions. We also post new challenging
problems that raised during the investigation of the problem.

Keywords: absolute value equations, linear complementarity problem,
special matrices, Interval analysis, NP-hardness.

AMS: 65G40, 90C33, 15Bxx.

1 Introduction

The absolute value equations (AVE) problem reads

Ax+ |x| = b,
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where A ∈ Rn×n and b ∈ Rn. The demonstration of the equivalence of AVE
and the linear complementarity problem [18, 20], as well as other applica-
tions, stimulated intensive research in AVE; see [19, 25, 33, 34, 35] among
many others. The problem is still challenging since many issues related to
AVE and computationally hard, e.g., checking solvability of AVE [18], or
checking uniqueness [25].

So far, most of the research has been directed towards developing meth-
ods for solving AVEs. Our focus is different. Our aim is to inspect the
properties of AVE and the solution set. In particular, we want to find
out under which conditions the solution set is nonempty, convex, bounded,
connected, or it consists of finitely many solutions. We also address the
questions regarding nonnegativity of solutions.

All these properties are reflected in the properties of matrix A. Similarly
as for the linear complementarity problem [5, 6, 22], this naturally defines
the matrix classes associated with the particular properties of AVE. We
characterize these matrix classes and show which are easy to recognize and,
in contrast, which are intractable.

Notation Dv is the diagonal matrix with entries given by vector v, In is
the identity matrix of size n×n, and ei is the ith canonical unit vector (i.e.,
the ith column of In). The all-ones vector of appropriate length is denoted
by e, and vI stands for the subvector of v defined by the index set I. Given
a matrix A ∈ Rn×n, ρ(A) stands for its spectral radius, σmin(A) for the
minimal singular value, ‖A‖2 for the spectral norm, Ai∗ is the ith row of A,
and Ai1:i2,j1:j2 for the submatrix (aij), where i1 ≤ i ≤ i2 and j1 ≤ j ≤ j2.
The sign of a real r is sgn(r) = 1 if r > 0, sgn(r) = −1 if r < 0 and
sgn(r) = 0 if r = 0.

An interval matrix is defined as a set of matrices [A,A] = {A′ ∈ Rm×n; A ≤
A′ ≤ A}, where the inequality is understood entrywise. Often, we simply
write the interval matrix as [Ac±A∆], where Ac =

1
2(A+A) is the midpoint

matrix and A∆ = 1
2(A−A) is the radius matrix. An interval matrix is called

regular if every A ∈ [A,A] is nonsingular; otherwise it is called irregular.

2 The solution set and solvability

The solution set The solution set of AVE is naturally defined as

Σ = Σ(b) = {x ∈ Rn; Ax+ |x| = b};

we will use the notation Σ(b) if the vector b is subject to changes.
The basic properties of the solution set follow from the orthant decom-

position of the space Rn. Recall that the orthant defined by the sign vector
s ∈ {±1}n is characterized by Dsx ≥ 0. Within this orthant, we can replace
|x| by Dsx, so that the solution set is a convex polyhedron there.
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Proposition 1. The solution set Σ located in the orthant given by s ∈
{±1}n is characterized by the linear system (A+Ds)x = b, Dsx ≥ 0.

As a consequence, if finite, then Σ consists of at most 2n points. Figure 1
illustrates various shapes of the solution set Σ.

Solvability First we recall the result on unique solvability for an arbitrary
right-hand side. Notice that it is open whether AVEs with this property are
efficiently solvable [8].

Theorem 1 ([33]). The AVE has a unique solution for each b ∈ Rn if and
only if [A± In] is regular.

Checking this property is NP-hard since AVE is equivalent to the linear
complementarity problem and the unique solvability therein is equivalent to
the P-matrix property; see [7, 30].

Regularity of [A ± In] is tractable in some cases. The generally known
tractable interval matrix classes are M-matrices, strongly regular matrices
and some others; see the overview in [12]. In particular, any of the following
two conditions is sufficient to ensure regularity of [A± In]:

ρ(|A−1|) < 1, (1)

σmin(A) > 1. (2)

In both cases, the unique solution can be computed in polynomial time. For
the former see [34], and for the latter see [20].

We can show tractability for symmetric interval matrices, too. Recall
that a signature of a symmetric matrix is the triple of the numbers of its
positive, negative and zero eigenvalues. We denote by λi(B) the ith largest
eigenvalue of a symmetric matrix B.

Proposition 2. If A ∈ Rn×n is symmetric, then [A ± In] is regular if and
only if both matrices A− In and A+ In have the same signature.

Proof. By [13], each eigenvalue of B ∈ [A ± In] lies in the interval bounds
λi(B) ∈ [λi(A) − 1, λi(A) + 1]. Since every value in [λi(A) − 1, λi(A) + 1]
is obtained for a certain matrix B ∈ [A ± In] (in particular, the value in
λi(A)−α is attained for A−αIn), we have that interval [λi(A)−1, λi(A)+1]
is the exact range of ith eigenvalues of matrices in [A ± In]. Thus [A± In]
is regular if and only if no such interval contains zero.

3 Nonnegativity

Some issues concerning nonnegativity of the solutions are tractable. Never-
theless, nonnegativity also raises some new open questions.
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Proposition 3. The AVE has a unique nonnegative solution for each b ≥ 0
if and only if (A+ In)

−1 ≥ 0.

Proof. “If.” By Proposition 1, nonnegative solutions are characterized by
the system (A + In)x = b, x ≥ 0. From this equation we derive x =
(A+ In)

−1b ≥ 0, so there is a nonnegative solution and is unique.
“Only if.” If (A + In) is singular, then there cannot be a unique non-

negative solution for each b. Thus it is nonsingular and suppose to the
contrary that (A + In)

−1
ij < 0 for some i, j. Put b := ej . Then the vector

x := (A + In)
−1b satisfies xi < 0, so there is no nonnegative solution; a

contradiction.

Proposition 4. The AVE has a nonnegative solution for each b ≥ 0 if and
only if it has a unique nonnegative solution for each b ≥ 0.

Proof. The “If” part is obvious, so we focus on the “Only if” part. By the
assumption, for each b ≥ 0, the system

(A+ In)x = b, x ≥ 0

is feasible. By the Farkas lemma [32], there is no y such that

(A+ In)
T y ≥ 0, bT y < 0.

That is, for every b ≥ 0 and for every y such that (A + In)
T y ≥ 0 we have

bT y ≥ 0. Therefore the convex polyhedral cone described by (A+ In)
T y ≥ 0

lies in the nonnegative orthant. This cannot happen when A+In is singular
(in which case the cone contains a whole line), so it is nonsingular. We have
in particular that all edges of the cone are nonnegative. Since these edges
are the columns of (A + In)

−T , we get (A + In)
−T ≥ 0. Eventually, apply

Proposition 3.

A natural question appears here whether unique solvability of AVE for
each b ≥ 0 (or b ≤ 0) is sufficient for unique solvability of AVE for every b;
it remains open.

Proposition 3 can easily be extended to other orthants, too. In total, it
yields the following sufficient condition for solvability.

Proposition 5. The AVE has a solution for each b ≥ 0 if (ADs+In)
−1 ≥ 0

for some s ∈ {±1}n. In which case, there is a unique solution in the orthant
Dsx ≥ 0.

Proof. Suppose that (ADs + In)
−1 ≥ 0 for some s ∈ {±1}n. By Propo-

sition 1, solutions lying in the orthant Dsx ≥ 0 are characterized by the
system (A + Ds)x = b, Dsx ≥ 0. Since (ADs + In)

−1 ≥ 0 and b ≥ 0,
we have that the vector defined by xb := Ds(ADs + In)

−1b lies in the or-
thant Dsx ≥ 0. We also verify that it solves the AVE since Axb + |xb| =
(A+Ds)x

b = (A+Ds)Ds(ADs + In)
−1b = b.
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Checking the condition from Proposition 5 might not be easy; we suspect
that the problem is NP-hard. It becomes tractable in certain cases, e.g.,
when A has rank one; in this can we simply use the Sherman–Morrison
formula.

Anyway, a more efficiently computable condition is of interest. Below,
we state one such condition. It is more general than that from [20, Prop. 5],
which employs a matrix norm instead of the spectral radius.

Corollary 1. Let ρ(A) < 1 and A ≤ 0. Then the AVE has a unique
nonnegative solution for each b ≥ 0.

Proof. From the asumptions, A+In is an M-matrix, so Proposition 3 applies.

Now, we present an extension of Corollary 1 to cover all orthants. Notice
that checking the assumptions of Proposition 6 is an easy task.

Proposition 6. Let ρ(A) < 1 and ADs ≤ 0 for some s ∈ {±1}n. Then the
AVE has a solution for each b ≥ 0. In which case, there is a unique solution
in the orthant Dsx ≥ 0.

Proof. In the orthant Dsx ≥ 0, the solutions are characterized by the system
(A +Ds)x = b, Dsx ≥ 0. Substitute y ≡ Dsx to obtain (ADs + In)y = b,
y ≥ 0. Now, apply Corollary 1.

Inverse nonnegative matrices Recall that an interval matrix [A,A] is
inverse nonnegative if A−1 ≥ 0 for each A ∈ [A,A]. By the theorem of
Kuttler [16], an interval matrix [A,A] is inverse nonnegative if and only if

A−1 ≥ 0 and A
−1 ≥ 0. We will also need the following lemma.

Lemma 1. If [A,A] is regular and A
−1 ≥ 0, then [A,A] is inverse nonneg-

ative.

Proof. Since [A,A] is regular, A
−1 ≥ 0 and the derivatives of A

−1
with

respect to the matrix entries are nonpositive [24], we have that A−1 ≥ 0 for
every A ∈ [A,A].

Since inverse nonnegative interval matrices are regular, the correspond-
ing AVE has a unique solution for each b ∈ Rn. If b ≥ 0, then we have an
explicit formula for it, x = (A+ In)

−1b ≥ 0. Thus:

Proposition 7. If [A± In] is inverse nonnegative, then for each b ≥ 0 the
AVE has a unique solution and this solution is nonnegative.

In the general case, the solution is efficiently computable by linear pro-
gramming [34]. However, we can say more – the problem is strongly polyno-
mial. Our algorithm is inspired by the method for finding the interval hull
of interval systems with inverse nonnegative matrices [23].

5



Algorithm 1 Solving AVE with [A± In] inverse nonnegative

1: put x0 := (A+ In)
−1b, k := 0

2: repeat

3: sk := sgn(xk)
4: xk+1 := (A+Dsk)

−1b

5: k := k + 1
6: until xk = xk−1

7: return xk

Proposition 8. If [A±In] is inverse nonnegative, then Algorithm 1 returns
the unique solution of AVE in at most n iterations.

Proof. For any k > 0 we have

(A+Dsk)x
k = Axk + |xk| ≥ Axk +Dsk−1xk = (A+Dsk−1)xk = b.

By inverse nonnegativity, we have

xk ≥ (A+Dsk)
−1b = xk+1.

Hence the sequence of vectors x0, x1, x2, . . . forms a (componentwise) non-
increasing sequence. This proves that the number of iterations is finite. The
number of n for the maximum number of iterations follows from the fact that
the sign vector sk changes only if some xki changes its sign (from positive
value to negative), which happens at most n-times.

Proposition 7 can be generalized as follows.

Proposition 9. If [ADs ± In] is inverse nonnegative for some s ∈ {±1}n,
then for each b ≥ 0 the AVE has a unique solution and this solution lies in
the orthant Dsx ≥ 0.

Proof. Unique solvability follows from regularity of [ADs ± In]. In the or-
thant Dsx ≥ 0, the solution are characterized by the system (A+Ds)x = b,
Dsx ≥ 0. From the equation we derive Dsx = Ds(A + Ds)

−1b = (ADs +
In)

−1b ≥ 0, so the solution fits the right orthant.

It is not hard to verify the assumptions of Proposition 9. One just
calculates A−1, which provides a sign pattern. If sgn(A−1) = seT for some
s ∈ {±1}n, then the problem reduces to checking inverse nonnegativity of
[ADs ± In]; otherwise, the assumption cannot be satisfied.

It is an open question whether the converse implication in Proposition 7
is valid. We can state it under stronger assumptions on regularity of [A±In].

Proposition 10. Let [A ± In] be regular. If for each b ≥ 0 the AVE has
a unique solution and this solution is nonnegative, then [A ± In] is inverse
nonnegative.
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Proof. From Proposition 3 we get (A+ In)
−1 ≥ 0. From Lemma 1, we have

the rest.

Now, we can give a complete characterization of inverse nonnegative
interval matrices in terms of solvability of AVE.

Proposition 11. The interval matrix [A± In] is inverse nonnegative if and
only if for each b ≥ 0 the AVE has a unique nonnegative solution and for
each b ≤ 0 the AVE has a unique nonpositive solution.

Proof. “Only if.” Obvious in view of Proposition 7.
“If.” By Proposition 3, if AVE has a unique nonnegative solution for

each b ≥ 0, then (A + In)
−1 ≥ 0. Analogously we can show that if AVE

has a unique nonpositive solution for each b ≤ 0, then (A − In)
−1 ≥ 0. By

Kuttler’s theorem, [A,A] is inverse nonnegative.

4 Finite and infinite number of solutions

The infinite case We first discuss the question of how many orthants
may possess infinitely many solutions and under which assumptions it may
happen.

Proposition 12. There is no AVE such that each orthant contains infinitely
many solutions.

Proof. Suppose to the contrary that such AVE system exists. Then matrix
A+Ds is singular for every s ∈ {±1}n. By [10] this means that every matrix
in [A ± In] is singular. By [10] again we have that In is singular as well, a
contradiction.

Even though there cannot be infinitely many solutions in all orthants,
there can be in all orthants but one. Consider, for example, the system
x + |x| = 0. All orthants contain infinitely many solutions, except for the
positive orthant.

The above example works, but, as we will see in Proposition 13, it is in
some sense degenerate. Consider now the AVE system

(

0n−1 −e

0 1

)

x+ |x| =
(

2e
0

)

.

All 2n−1 orthants with the negative last coordinate contain infinitely many
solutions in their interiors. In particular, the orthant given by s ∈ {±1}n−1×
{−1} contains the interior point solution x = s.

Proposition 13. If the AVE has infinitely many solutions in 2n−1 orthants,
then b = 0, det(A) = a11 · · · ann and |aii| = 1 for every i = 1, . . . , n.

7



Proof. From the assumption, A + Ds is singular for each s ∈ {±1}n but
possibly one s∗. Let i ∈ {1, . . . , n} be arbitrary and fix si := −s∗i . Then for
every admissible sign vector s, the matrix A+Ds is singular. By [3, 4], one
of the submatrices (A+Ds)1:i,i:n or (A+Ds)i:n,1:i must be zero. This shows
that det(A) = a11 · · · ann and |aii| = 1 for every i = 1, . . . , n.

We claim that there is k such that |Ak∗| = eTk . We can see it by induction.
From the above observation with i := n, we have |An∗| = eTn or |A∗n| = en.
In the first case, we are done. In the second case, we inductively inspect the
upper-left submatrix.

In fact, the statements can be generalized: for every ℓ, there exist ℓ rows
of A such that each of them has at most ℓ nonzero elements (one of them is
on the diagonal).

Let k be such that |Ak∗| = eTk . Then bk = 0 since otherwise the k-th
equation in the AVE is unsolvable either for xk ≥ 0, or for xk ≤ 0. As a
consequence, we necessarily have xk = 0 when restricted to xk ≥ 0 or to
xk ≤ 0. Now, take k′ such that the k′ row of A has at most two nonzeros
ak′,k′ and ak′,k. From the above reasoning, we have xk = 0 in half of the
orthants, so we again deduce bk′ = 0. By induction, we proceed further until
we show b = 0.

Proposition 14. Let n = 2 and b 6= 0. Then the solution set of AVE cannot
have infinitely many solutions in the opposite quadrants.

Proof. Suppose to the contrary that there is an AVE system Ax + |x| = b

such that there are infinitely many solutions in the orthants represented by
±D, where |D| = In. Since the system (A + D)x = b has infinitely many
solutions, there is y 6= 0 such that yT (A+D) = 0T and yT b = 0. Similarly,
there is y′ 6= 0 such that y′T (A − D) = 0T and y′T b = 0. Since n = 2
and b 6= 0, both vectors y and y′ represent the same direction. Thus we
can assume without loss of generality that y′ = y. However, this implies
yT (A + D) = 0T = yT (A − D), whence yTD = 0T . Therefore y = 0; a
contradiction.

If b = 0, then the situation may occur. Figure 1b shows the counterex-
ample, and Figure 1f presents a system with infinitely many solutions in the
interiors of the opposite quadrants. If n > 2, then the situation may occur,
too. Consider the AVE system with

A =





6 −8 3
9 −13 5
12 −18 7



 , b =





1
3
6



 .

The solution set in the nonnegative orthant forms a line passing through
point x = (1, 3, 6)T , and similarly in the nonpositive orthant it forms a line
passing through point −x.
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The finite case Now, we characterize the case where the solution set Σ(b)
is finite (possibly empty) for every right-hand side vector b. The property
turns out to be hard to check, so we also present several sufficient conditions.

Proposition 15. The set Σ(b) is finite for each b ∈ Rn if and only if A+Ds

is nonsingular for each s ∈ {±1}n.

Proof. “If.” By Proposition 1, the solution set lying in the orthant given by
s ∈ {±1}n is described by (A + Ds)x = b, Dsx ≥ 0. By nonsingularity of
A+Ds, there is none or one solution located in this orthant.

“Only if.” Suppose to the contrary that A +Ds is singular for certain
s ∈ {±1}n. Define b := (A+Ds)s. In the orthant given by s, there lies the
solution x = s. Since A+Ds is singular and x = s lies in the interior of the
orthant, there are infinitely many solutions as well.

Deciding on the above property is intractable even for rank-one matrices.

Proposition 16. Checking whether A + Ds is nonsingular for each s ∈
{±1}n is co-NP-hard an a class of problems with A having rank one and
natural entries.

Proof. Consider the matrix in the form A = evT for some v ∈ Nn. Now,
A + Ds is nonsingular if and only if DSA + In = svT + In is nonsingular.
By the Sherman–Morrison formula, we equivalently have vT s 6= −1. This
is a variant of the NP-hard subset sum problem, in which natural numbers
v1, . . . , vn are given, and one asks to split them into two subsets the sums
of which differ by one.

Obviously, unique solvability of AVE for each b ∈ Rn, i.e., regularity of
[A±In], implies a finite number of solutions. When matrix A is small enough,
[A± In] is often not regular and we cannot use this condition. However, for
small matrices we have the following criterion. We use the relation A ≻ B

to denote that A−B is positive definite.

Corollary 2. Σ(b) is finite for each b ∈ Rn if and only if ATA+In+DsA+
ATDs ≻ 0 for each s ∈ {±1}n.

Proof. Matrix A +Ds is nonsingular if and only if matrix (A +Ds)
T (A +

Ds) = ATA+ In +DsA+ATDs is positive definite.

There are two practical conditions as a result.

Corollary 3. Σ(b) is finite for each b ∈ Rn if ρ(|A|+|A|T ) < 1+λmin(A
TA).

Proof. We have ρ(−DsA − ATDs) ≤ ρ(|A| + |A|T ) < 1 + λmin(A
TA) for

each s ∈ {±1}n. Consequently, −DsA − ATDs ≺ In + λmin(A
TA)In �

In +ATA.

9



Corollary 4. Σ(b) is finite for each b ∈ Rn if ‖A‖2 < 1
2 .

Proof. If ‖A‖2 < 1
2 , then

ρ(DsA+ATDs) ≤ ‖DsA+ATDs‖2 ≤ ‖DsA‖2 + ‖ATDs‖2 = 2‖A‖2 < 1.

Thus ATA+ In +DsA+ATDs � In +DsA+ATDs ≻ 0.

We present one more sufficient condition, which is incomparable with
the above ones.

Proposition 17. The set Σ(b) is finite for each b ∈ Rn if ρ(|A|) < 1.

Proof. In view of Proposition 15, suppose to the contrary that x 6= 0 solves
Ax+Dsx = 0 for some s ∈ {±1}n. Then |x| = | −Dsx| = |Ax| ≤ |A| · |x|.
Define B := |A| + εeeT > 0 for ε > 0 sufficiently small. Then |x| ≤ B|x|,
whence y ≤ By for y := B · |x| > 0. By the Perron–Frobenius theory [14, 21]
we have ρ(B) ≥ 1. Therefore ρ(A) ≥ 1 as well; a contradiction.

We now extend the condition such that C = In reduces the above case.

Proposition 18. The Σ(b) is finite for each b ∈ Rn if ρ(|CA|+|In−C|) < 1
for certain C ∈ Rn×n.

Proof. Suppose to the contrary that x 6= 0 solves Ax + Dsx = 0 for some
s ∈ {±1}n. Then it solves CAx + CDsx = 0, from which Dsx = −CAx+
(In − C)Dsx. We derive |x| = |Dsx| ≤ (|CA|+ |In − C|)|x|, and the rest is
analogous to the proof of Proposition 17.

Surprisingly, it turns out that Proposition 18 is not more general than
Proposition 17; both conditions hold simultaneously. The proof is inspired
by the technique from [26], but we cannot use it directly since matrix A can
be singular.

Proposition 19. If ρ(|CA| + |In − C|) < 1 for certain C ∈ Rn×n, then
ρ(|A|) ≤ ρ(|CA|+ |In −C|).

Proof. First we show that C must be nonsingular, which follows from

ρ(In − C) ≤ ρ(|In − C|) ≤ ρ(|CA|+ |In −C|) < 1. (3)

Now, define

G := |CA|+ |In − C|+ εeeT , α := ρ(G) < 1,

where ε > 0 is small enough. Since G > 0, by the Perron–Frobenius theorem
there is x > 0 such that Gx = αx. Using also α < 1 we derive

|CA|x+ α|In −C|x ≤ (|CA|+ |In − C|)x < αx,
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and from this

|CA|x < α(In − |In − C|)x. (4)

By the Neumann series theorem and (3), we get (In−|In−C|)−1 =
∑∞

k=0 |In−
C|k ≥ 0. Hence premultiplying inequality (4) by (In−|In−C|)−1 we obtain

(In − |In − C|)−1|CA|x < αx.

Now, from

A = C−1CA = (In − (In − C))−1CA =
∞
∑

k=0

(In − C)kCA

we derive

|A| ≤
∞
∑

k=0

|In −C|k|CA| = (In − |In − C|)−1|CA|.

Putting all together, we obtain

|A|x ≤ (In − |In − C|)−1|CA|x < αx,

Therefore ρ(|A|) < α, from which the statement follows due to continuity of
the spectral radius [14, 21].

Isolated solutions We say that a solution x∗ ∈ Σ is isolated if N(x∗) ∩
Σ = {x∗} for some neighborhood N(x∗) of x∗.

Proposition 20. Let x∗ ∈ Σ and denote s∗ := sgn(x∗). Then x∗ is an
isolated solution if and only if A + Ds is nonsingular for each s ∈ {±1}n
such that Dss

∗ = s∗.

Proof. The condition says that we inspect all orthants, where x∗ lies (even
on their borders). The nonsingularity assumption then implies that x∗ is
a unique solution lying in the interior of a union of certain orthants. Con-
versely, if x∗ is isolated, then it is a unique solution of each processed or-
thant. Thus A+Ds is nonsingular since otherwise there are infinitely many
solutions in the orthant given by s.

By the proposition, one has to process 2k orthants, where k is the car-
dinality of {i; x∗i = 0}. As we will see later in Proposition 22, checking if
x∗ := 0 is an isolated solution is a co-NP-hard problem on a class of AVEs
with b = 0 and A having rank one.
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5 Boundedness

Obviously, regularity of [A±In] implies boundedness of the solution set Σ(b)
for an arbitrary right-hand side vector b ∈ Rn. The converse implication is
not true in general; simply consider A = 0. Below, we present a complete
characterization of boundedness. By convention, the empty set is bounded.

Proposition 21. The set Σ(b) is bounded for each b ∈ Rn if and only if
Ax+ |x| = 0 has only the trivial solution x = 0.

Proof. By Proposition 1, Σ(b) is bounded if and only if the set described by

(A+Ds)x = b, Dsx ≥ 0

is bounded for each s ∈ {±1}n. This set is bounded if and only if the
recession cone characterized by

(A+Ds)x = 0, Dsx ≥ 0

has only the trivial solution (cf. [32]), from which the statement follows.

Deciding on boundedness is intractable even for rank-one matrices.

Proposition 22. Checking whether Ax+ |x| = 0 has a non-trivial solution
is NP-hard on a class of problems with A having natural entries and rank
one.

Proof. Consider the matrix in the form A = evT for some v ∈ Nn. The AVE
Ax+ |x| = 0 takes the form of (vTx)e+ |x| = 0. It has a non-trivial solution
if and only if there is a solution such that |x| = e, that is, x = s for some
s ∈ {±1}n. Equivalently, vTx = vT s = −1. Eventually, we again utilize
the variant of the NP-hard subset sum problem, in which natural numbers
v1, . . . , vn are given, and one asks to split them into two subsets the sums
of which differ by one.

Naturally, finiteness of Σ(b) implies boundedness of Σ(b). The converse
implication does not hold in general. This is illustrated in Figure 1a, where
Σ(b) is bounded but infinite; it can be observed that Σ(b) is bounded for
every b ∈ R2 there.

Thus, for checking boundedness of Σ(b), we can apply the conditions for
finiteness. So far, there is no sufficient condition known that would imply
boundedness but not necessarily finiteness.

6 Convexity and connectedness

Convexity When [A ± In] is regular, the solution set Σ(b) is a singleton
and hence convex for every b ∈ Rn. The converse implication is not valid:
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for A = ( 1 2
2 1 ), the interval matrix [A± In] is not regular, but Σ(b) is convex

for every b ∈ Rn.
Below, we provide a complete characterization of convexity. Again, by

convention, the empty set is considered as convex.

Proposition 23. The set Σ is convex if and only if it is located in one
orthant only, i.e., there is s ∈ {±1}n such that Dsx ≥ 0 for each x ∈ Σ.

Proof. “If.” Obvious in view of Proposition 1.
“Only if.” Let x1, x2 ∈ Σ, λ1, λ2 > 0, λ1 + λ2 = 1. By definition and

convexity of Σ we have

Ax1 + |x1| = b,

Ax2 + |x2| = b,

A(λ1x1 + λ2x2) + |λ1x1 + λ2x2| = b,

from which

λ1|x1|+ λ2|x2| = |λ1x1 + λ2x2|.

Hence for every i = 1, . . . , n we have

λ1|x1i |+ λ2|x2i | = |λ1x1i + λ2x2i |.

However, this is possible if and only if x1ix
2
i ≥ 0.

In the expression (5) below, the condition Dx1x2 ≥ 0 equivalently reads
x1ix

2
i ≥ 0 for every i = 1, . . . , n.

Proposition 24. The set Σ(b) is convex for each b ∈ Rn if and only if every
x1, x2 ∈ Rn satisfy

A(x1 − x2) = |x2| − |x1| ⇒ Dx1x2 ≥ 0. (5)

Proof. “If.” Let b ∈ Rn and x1, x2 ∈ Σ(b). Then

Ax1 + |x1| = b,

Ax2 + |x2| = b,

whence A(x1−x2) = |x2|− |x1|. By (5) we have Dx1x2 ≥ 0. So all solutions
lie in one orthant and Σ(b) is convex by Proposition 23.

“Only if.” Suppose to the contrary that A(x1−x2) = |x2|−|x1| for some
x1, x2 ∈ Rn and x1ix

2
i < 0 for some i ∈ {1, . . . , n}. Define b∗ := Ax1 + |x1| =

Ax2 + |x2|. So we have x1, x2 ∈ Σ(b∗). Since x1, x2 lie in different orthants,
Σ(b∗) is not convex; a contradiction.

13



Notice that condition (5) can be checked by a decomposition of space
R2n into orthants since then the condition becomes linear. There is little
hope for a simpler condition as the convexity is hard to verify.

Proposition 25. Checking convexity of Σ is co-NP-hard an a class of prob-
lems with b = 0 and A having rank one and natural entries.

Proof. In the proof of Proposition 22, we proved NP-hardness of checking
whether the AVE Ax + |x| = 0 has a non-trivial solution, where A = evT

has size n× n. Consider now the AVE in n+ 1 variables

(evT )x+ |x| = 0, vTx+ |y| = 0. (6)

If the AVE Ax+ |x| = 0 has only the trivial solution, then (6) has only the
trivial solution, too. If the AVE Ax+ |x| = 0 has a non-trivial solution x∗,
then by the proof of Proposition 22 we can assume that vTx∗ = −1. Now,
the equation vTx + |y| = 0 reads |y| = 1. Therefore, (6) has the solutions
(x∗, 1) and (x∗,−1), but none of their strict convex combinations.

Connectedness The solution set of AVE is connected if there exists a
unique solution. Another simple condition is given below. It seems to be a
hard problem to characterize connectedness in general.

Proposition 26. If b = 0, then the solution set of AVE is connected.

Proof. In each orthant, the corresponding solution set is connected and con-
tains the origin, via which is the overall solution set connected.

7 Optimization reformulations

AVE can be formulated as an optimization problem [20, 17, 18, 19, 34]. Each
of the problems below has the optimal value 0 if and only if AVE is solvable.
Moreover, the solution of AVE then can be easily deduced then.

min eT (b−Ax− |x|) subject to (A+ In)x ≤ b, (A− In)x ≤ b, (7)

min (b−Ax− |x|)T (b−Ax− |x|) subject to (A+ In)x ≤ b, (A− In)x ≤ b,

(8)

min (b−Ax− x)T (b−Ax+ x) subject to (A+ In)x ≤ b, (A− In)x ≤ b,

(9)

min xT y subject to (A+ In)x− (A− In)y = b, x, y ≥ 0. (10)

Problem (7) is a concave optimization problem with a piecewise linear ob-
jective function. The objective function of problem (8) is piecewise convex
quadratic, but it is not convex on the whole space in general (consider,
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e.g., the example A = 0 and b = 1). Problems (9) and (10) are quadratic
problems. The objective function of (9) reads

(b−Ax− x)T (b−Ax+ x) = xT (ATA− In)x− 2bTAx+ bT b,

so it is convex if and only if ATA− In is positive semidefinite. That is the
reason why condition (2) implies an efficiently solvable AVE.

In formulations (7) to (9), the feasibility system

(A+ In)x ≤ b, (A− In)x ≤ b (11)

appears. It plays an important role in the analysis and development of
properties of AVE. Notice that it equivalently draws

Ax+ |x| ≤ b.

Proposition 27. For any formulation (7) to (9) we have that the optimiza-
tion problem is feasible for each b ∈ Rn of and only if the system Ax+|x| < 0
is solvable.

Proof. “If.” Let b ∈ Rn be arbitrary and let x ∈ Rn be such that Ax+ |x| <
0. Define xα := αx, where α > 0 is sufficiently large; one can take any
α ≥ maxi

bi
(Ax+|x|)i

. Then Axα + |xα| ≤ b.

“Only if.” Take b := −e and let x be a feasible solution to (A+In)x ≤ b,
(A− In)x ≤ b. Then Ax+ |x| ≤ b = −e < 0.

Notice that solvability of the system Ax+ |x| < 0 can be easily checked
by linear programming since it is equivalent to solvability of (A+In)x ≤ −e,
(A− In)x ≤ −e.

Recall that z ∈ M is the greatest element of a set M ⊂ Rn if z ≥ y for
every y ∈ M. Further recall that A is a Z-matrix if aij ≤ 0 for any i 6= j.

Proposition 28. Let A be a Z-matrix and suppose that the feasible set
to (11) is nonempty and bounded above. Then (11) possesses the greatest
element, which solves the AVE and it is the unique solution of the linear
program

max pTx subject to (A+ In)x ≤ b, (A− In)x ≤ b

for any p > 0.

Proof. First we show that if both x, y solve (11), then z := max(x, y) solves
(11). Let i ∈ {1, . . . , n} be arbitrary and suppose without loss of generality
that zi = xi. Then

(Az)i + |zi| = aiixi +
∑

j 6=i

aijzj + |xi| ≤ aiixi +
∑

j 6=i

aijxj + |xi| = (Ax)i + |xi| ≤ bi.
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According to the properties of Z-matrices and the greatest/least element
theory [6] we get that there exists the greatest element z∗ of (11) and it
uniquely solves the corresponding linear program.

It remains to show that z∗ solves the AVE. Suppose to the contrary that
there is i such that (Az∗)i + |z∗i | < bi. Define z0 := z∗ + εei, where ε > 0 is
sufficiently small. Then z0 also satisfies (11), which is in contradiction with
the fact that z∗ is the greatest element of (11).

We now show that the assumptions of Proposition 28 are satisfied only
when A+ In is an M-matrix.

Proposition 29. The following statements are equivalent:

(1) A+ In is an M-matrix.

(2) A is a Z-matrix and the feasible set to (11) is nonempty and bounded
above for every b ≥ 0.

(3) A is a Z-matrix and the feasible set to (11) is nonempty and bounded
above for at least one b ∈ Rn.

Proof. “(1) ⇒ (2)” First, notice that A is a Z-matrix. Second, for each
b ≥ 0, the point xb := (A+In)

−1b ≥ 0 fulfills (11). Third, we show that (11)
is bounded above. If it is not the case, then there is a nontrivial point x∗ ≥ 0
lying in the recession cone (A+ In)x ≤ 0, (A− In)x ≤ 0. However, the first
inequality implies x∗ ≤ (A+ In)

−10 = 0, whence x∗ = 0; a contradiction.
“(2) ⇒ (3)” Obvious.
“(3) ⇒ (1)” By the assumption, the system

(A+ In)x ≤ b, (A− In)x ≤ b, eTx ≥ α

is infeasible for α large enough. By the Farkas lemma [32], the dual system

(A+ In)
Tu+ (A− In)

T v = ew, bTu+ bT v < αw, u, v, w ≥ 0

has a solution u∗, v∗, w∗. Since (11) is feasible, w∗ 6= 0. Thus we can assume
that w∗ = 1, which reduces u∗, v∗ to be a solution to

(A+ In)
Tu+ (A− In)

T v = e, u, v ≥ 0. (12)

Suppose that u∗, v∗ is a basic solution to (12). A basic solution exists since
the equations are linearly independent. To see it, suppose that multiplying
the system by a vector r ∈ Rn yields an equation 0 = 0. Then we deduce
(A+ In)r = (A− In)r = 0, from which r = 0.

If (u∗)T v∗ = 0, then the equation in (12) reads (A +Ds)
T y = e, where

y = u∗ + v∗ ≥ 0 and s = sgn(u∗ − v∗). This means that A + Ds is an
M-matrix and hence A+ In is an M-matrix as well.
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If (u∗)T v∗ 6= 0, then there is k such that u∗k > 0 and v∗k > 0. Since u∗, v∗

is a basic solution, at least n elements vanish in total. Thus, there is also
some i such that u∗i = v∗i = 0. The ith equation in (12) reads

∑

j 6=i

aiju
∗
j +

∑

j 6=i

aijv
∗
j = 1.

However, the left-hand side is nonpositive; a contradiction.

In the following, we use the vector relation a 	 b defined as a ≥ b, a 6= b.
We also employ the Karush–Kuhn–Tucker (KKT) optimality conditions [2].

Proposition 30. Let A ∈ Rn×n. In problem (10) for any b ∈ Rn each KKT
point yields a solution to AVE if and only if

|u| 	 |ATu| (13)

is infeasible.

Proof. The KKT conditions for problem (10) and a feasible point (x∗, y∗)
read

y∗ + (A+ In)
Tu = v ≥ 0, x∗ − (A− In)

Tu = w ≥ 0, vTx∗ = wT y∗ = 0.
(14)

The point (x∗, y∗) yields a solution of AVE (in particular, it is the point
x∗ − y∗) if and only if for each i we have x∗i = 0 or y∗i = 0.

Let b ∈ Rn be given and let (u, v, w) satisfy the KKT conditions. For
each i we have vi = 0 or x∗i = 0. The former implies−((A+In)

Tu)i = y∗i ≥ 0,
and the latter implies −((A − In)

Tu)i = wi ≥ 0. Thus −ui ≥ (ATu)i or
ui ≥ (ATu)i for each i, whence |u| ≥ ATu. Similarly from wT y∗ = 0 we
derive |u| ≥ −ATu, implying |u| ≥ |ATu|.

If (x∗, y∗) does not produce a solution of AVE, then there is i such that
x∗i > 0 and y∗i > 0. Thus vi = wi = 0 and from ((A− In)

Tu)i = x∗i > 0 and
−((A+ In)

Tu)i = y∗i > 0 we derive |u|i > |ATu|i.
Conversely, suppose that there is u solving (13). Then we easily re-

construct x∗, y∗, v and w such that they satisfy the KKT conditions (14).
We simply put y∗ := max(0,−(A + In)

Tu), v := y∗ + (A + In)
Tu ≥ 0,

x∗ := max(0, (A − In)
Tu), w := x∗ − (A − In)

Tu ≥ 0. Further, we take
b := (A+In)x

∗−(A−In)y
∗ in order that (x∗, y∗) is feasible. The complemen-

tarity conditions will be satisfied, too. Suppose to the contrary there is i such
that vix

∗
i > 0. Then y∗i = wi = 0, (A + In)

Tu)i > 0 and (A − In)
Tu)i > 0.

Thus (ATu)i > |ui|, which contradicts (13).
By the assumption there is i such that |u|i > |ATu|i. By a suitable

scaling of u we can assume that −ui > |ATu|i. Then vi = wi = 0, x∗i > 0
and y∗i > 0. Therefore, (x∗)T y∗ 6= 0, and (x∗, y∗) yields no solution of
AVE.
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Now, we show that checking (13) is intractable.

Proposition 31. It is NP-hard to check solvability of (13) on a set of
rational matrices.

Proof. We use a reduction from irregularity of an interval matrix [A ± In].
Notice that its irregularity is equivalent to irregularity of [A ± (1 + ε)In],
where ε > 0 is sufficiently small but the size of ε is polynomial (the set of
nonsingular matrices is open). By [29], [A ± (1 + ε)In] is irregular if and
only if there is u 6= 0 such that

|u| ≥ 1

1 + ε
|ATu|. (15)

Now, if (15) holds with at least one strict inequality, then [A±In] is irregular.
Conversely, let [A± In] be irregular. Then there is u 6= 0 such that

|u| ≥ |ATu| ≥ 1

1 + ε
|ATu|.

In view of u 6= 0, there is at least one strict inequality.

The proof of the above observation shows that condition (13) is closely
related to regularity of the interval matrix [A ± In]. However, it is not
exactly the same. Regularity of [A ± In] implies infeasibility of (13), but
not conversely (as a counterexample take A = In). As a consequence, any
efficiently recognizable subclass of regular interval matrices (as discussed at
the beginning of Section 2) serves as a sufficient condition to (13).

8 Other auxiliary optimization problems

There are other optimization problems used to solve AVE. An auxiliary
linear program has often the form of [34]

min eT (b− (A+D)x) subject to (A+ In)x ≤ b, (A− In)x ≤ b (16)

for certain D : |D| = In.
Below, we formulate the results for the domain D ∈ [−In, In], but anal-

ogously the results hold for the set of D such that |D| = In. We use ¬i to
denote the index set {1, . . . , n} \ {i}.
Proposition 32. The following two statements are equivalent:

(1) For every D ∈ [−In, In] and b ∈ Rn, feasibility of (16) implies that the
optimum of (16) solves AVE.

(2) For every D ∈ [−In, In] and i ∈ {1, . . . , n} there is a solution to the
system

(Ax+ |x|)¬i ≤ 0, eT (A+D)x > 0. (17)
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Proof. “(1) ⇒ (2)” Suppose that (17) is infeasible for some D ∈ [−In, In]
and i ∈ {1, . . . , n}. Define b := ei. Then x∗ := 0 is obviously a feasible
solution to (16). In view of infeasibility of (17), x∗ is an optimum to (16)
since there is no improving direction. However, x∗ does not solve AVE since
Ax∗ + |x∗| = 0 6= b.

“(2) ⇒ (1)” From the assumption and by the Farkas lemma [32], the
system

((A+ In)¬i,1:n)
T ũ+ ((A − In)¬i,1:n)

T ṽ = (A+D)T e, ũ, ṽ ≥ 0

is infeasible for each D ∈ [−In, In] and i ∈ {1, . . . , n}. That is why for the
dual problem to (16),

max −bT (u+ v) subject to (A+ In)
Tu+ (A− In)

T v = (A+D)T e, u, v ≥ 0,

we can claim that each feasible solution u, v satisfies u + v > 0 (that is,
ui+vi > 0 for each i). The primal problem (16) has an optimal solution since
it is feasible and the objective function is linear and bounded below. For a
primal optimum x∗ and a dual optimum (u∗, v∗) the optimality conditions
are true,

((A + In)x
∗ − b)Tu∗ = ((A− In)x

∗ − b)T v∗ = 0.

Since u∗+v∗ > 0, we have for each i that ((A+In)x
∗)i = bi or ((A−In)x

∗)i =
bi, giving raise to (Ax∗ + |x∗|)i = bi. Therefore Ax∗ + |x∗| = b.

Despite the fact that condition (17) can be checked by linear program-
ming, it is desirable to have some matrix classes that satisfy it automatically.

Let A and A be symmetric. We say that an interval matrix [A,A] is
positive definite if every symmetric A ∈ [A,A] is positive definite. Checking
positive definiteness of an interval matrix is co-NP-hard [27], but there are
known various sufficient conditions [11, 12, 28].

Proposition 33. Let A ∈ Rn×n be symmetric. Condition (17) holds true
provided [A± eeT ] is positive definite.

Proof. Let D ∈ [−In, In] and suppose without loss of generality that i = n.
For every D′ ∈ [−In, In], we find a solution to the system

((A+D′)x)¬n ≤ 0, eT (A+D)x > 0;

by [9, 31], it is equivalent to having a solution to (17).
Let the matrices have the structure

A =

(

Ã a

aT c

)

, D′ =

(

D̃′ 0
0T γ

)

, D =

(

D̃ 0
0T −1

)

.

Notice that above we can assume that Dnn = −1 since we will construct
a solution x such that xn = 1. Indeed, we seek for a solution in the form
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x = (x̃T , 1)T . To satisfy the inequalities ((A + D′)x)¬n ≤ 0 as equations,
we put x̃ := −(Ã + D̃′)−1a. Thus it remains to show that x satisfies the
remaining inequality eT (A+D)x > 0. Substituting for x, we get

eT (A+D)x = (eT , 1)

(

(Ã+ D̃′) + (D̃ − D̃′) a

aT c− 1

)(

−(Ã+ D̃′)−1a

1

)

= −eT (D̃ − D̃′)(Ã+ D̃′)−1a− aT (Ã+ D̃′)−1a+ c− 1

Denote d := 1
2 (D̃ − D̃′)e. Then the above expression reads

eT (A+D)x = −(a+ d)T (Ã+ D̃′)−1(a+ d) + dT (Ã+ D̃′)−1d+ c− 1

≥ −(a+ d)T (Ã+ D̃′)−1(a+ d) + c− 1

> 0.

The last inequality follows from positive definiteness of [A ± eeT ] since the
value −(a+ d)T (Ã+ D̃′)−1(a+ d)+ c− 1 is in fact the Schur complement of

(

Ã+ D̃′ a+ d

(a+ d)T c− 1

)

∈ [A± eeT ].

Notice that positive definiteness of [A± eeT ] already implies its regular-
ity and thus unique solvability, however, the solution need not be easy to
compute in general. In our case, the linear program (16) does the job.

It is also worth mentioning that the class of matrices satisfying (17) is
closed under multiplication of any column by −1; one just uses the substi-
tution xi ≡ −xi. As a consequence, with any A the class also contains −A.
Thus (17) holds true when [A± eeT ] is negative definite, too.

An interval matrix [A,A] is an M-matrix if every A ∈ [A,A] is an M-
matrix, that is, the off-diagonal entries are nonpositive and A−1 ≥ 0. Check-
ing M-matrix property is easy since [A,A] is an M-matrix if and only if A
is an M-matrix and Aij ≤ 0 for i 6= j; see [1].

Proposition 34. Let A ∈ Rn×n be symmetric. Condition (17) holds true
provided [A± (2eeT − In)] is an M-matrix.

Proof. We proceed similarly as in the proof of Proposition 33 and we use
the same notation. However, matrix A is now structured as

A =

(

Ã a

gT c

)

and the expression eT (A+D)x is estimated from below as follows

eT (A+D)x = −(g + 2d)T (Ã+ D̃′)−1a+ c− 1 > 0.
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The last inequality follows from the M-matrix property since the value −(g+
2d)T (Ã+ D̃′)−1a+ c− 1 is the Schur complement of

(

Ã+ D̃′ a

(g + 2d)T c− 1

)

∈ [A± (2eeT − In)],

so it is also an M-matrix [15].

9 Conclusion

As Cottle [5] writes, “there are more than 50 matrix classes discussed in
the literature of the Linear Complementarity Problem”. In contrast, the
matrix classes associated with the absolute value equations have not been
thoroughly investigated so far. The purpose of this paper was to change it
and to address this issue. We introduced (without explicitly mentioning it)
the matrix classes corresponding to convexity, boundedness, connectedness,
finiteness, nonnegativity and other properties of the solution set. Other
matrix classes are related to optimality conditions of optimization reformu-
lations.

We were able to characterize some of the matrix classes and decide on the
computational complexity of the corresponding recognition problem. There
are, however, several questions left as open problems.
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165–185. Birkhäuser, Basel, 1989.

[5] R. W. Cottle. A field guide to the matrix classes found in the literature
of the linear complementarity problem. J. Glob. Optim., 46(4):571–580,
2010.

21



[6] R. W. Cottle, J.-S. Pang, and R. E. Stone. The Linear Complementarity
Problem. SIAM, 2009.

[7] G. E. Coxson. The P-matrix problem is co-NP-complete. Math. Pro-
gram., 64(1):173–178, 1994.

[8] I. Ben Gharbia and J. C. Gilbert. Nonconvergence of the plain Newton-
min algorithm for linear complementarity problems with a P-matrix.
Math. Program., 134(2):349–364, 2012.

[9] M. Hlad́ık. Weak and strong solvability of interval linear systems of
equations and inequalities. Linear Algebra Appl., 438(11):4156–4165,
2013.

[10] M. Hlad́ık. AE regularity of interval matrices. Electron. J. Linear
Algebra, 33:137–146, 2018.

[11] M. Hlad́ık. Positive semidefiniteness and positive definiteness of a linear
parametric interval matrix. In M. Ceberio and V. Kreinovich, editors,
Constraint Programming and Decision Making: Theory and Applica-
tions, volume 100 of Studies in Systems, Decision and Control, pages
77–88. Springer, Cham, 2018.

[12] M. Hlad́ık. An overview of polynomially computable characteristics of
special interval matrices. In O. Kosheleva et al., editor, Beyond Tra-
ditional Probabilistic Data Processing Techniques: Interval, Fuzzy etc.
Methods and Their Applications, volume 835 of Studies in Computa-
tional Intelligence, pages 295–310. Springer, Cham, 2020.

[13] M. Hlad́ık, D. Daney, and E. Tsigaridas. Bounds on real eigenvalues
and singular values of interval matrices. SIAM J. Matrix Anal. Appl.,
31(4):2116–2129, 2010.

[14] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University
Press, Cambridge, 1985.

[15] R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge
University Press, 1991.

[16] J. R. Kuttler. A fourth-order finite-difference approximation for the
fixed membrane eigenproblem. Math. Comput., 25(114):237–256, 1971.

[17] O. L. Mangasarian. Absolute value equation solution via concave min-
imization. Optim. Lett., 1(1):3–8, 2007.

[18] O. L. Mangasarian. Absolute value programming. Comput. Optim.
Appl., 36(1):43–53, 2007.

22



[19] O. L. Mangasarian. A hybrid algorithm for solving the absolute value
equation. Optim. Lett., 9(7):1469–1474, 2015.

[20] O. L. Mangasarian and R. R. Meyer. Absolute value equations. Linear
Algebra Appl., 419(2):359–367, 2006.

[21] C. D. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM,
Philadelphia, 2000.

[22] K. G. Murty and F.-T. Yu. Linear Complementarity, Linear and Non-
linear Programming. Internet edition, 1997.

[23] A. Neumaier. Interval Methods for Systems of Equations. Cambridge
University Press, Cambridge, 1990.

[24] K. B. Petersen and M. S. Pedersen. The Matrix Cookbook. Technical
University of Denmark, 2012. Version 20121115.

[25] O. A. Prokopyev. On equivalent reformulations for absolute value equa-
tions. Comput. Optim. Appl., 44(3):363–372, 2009.

[26] G. Rex and J. Rohn. A note on checking regularity of interval matrices.
Linear Multilinear Algebra, 39(3):259–262, 1995.

[27] J. Rohn. Checking positive definiteness or stability of symmetric inter-
val matrices is NP-hard. Commentat. Math. Univ. Carol., 35(4):795–
797, 1994.

[28] J. Rohn. Positive definiteness and stability of interval matrices. SIAM
J. Matrix Anal. Appl., 15(1):175–184, 1994.

[29] J. Rohn. Forty necessary and sufficient conditions for regularity of
interval matrices: A survey. Electron. J. Linear Algebra, 18:500–512,
2009.

[30] J. Rohn. On Rump’s characterization of P-matrices. Optim. Lett.,
6(5):1017–1020, 2012.
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Figure 1: Six examples of various shapes of the solution set of AVE.
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