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Abstract

The purpose of this paper is to investigate spectral properties of the transition operator
associated to a multivariate vector refinement equation and their applications to the study
of smoothness of the corresponding refinable vector of functions.

Let ® = (¢1,...,¢,)T be an r x 1 vector of compactly supported functions in Ly (IR®)
satisfying the refinement equation ® = ) _,. a(a)®(M- — a), where M is an expan-
sive integer matrix. We assume that M is isotropic, i.e., M is similar to a diagonal
matrix diag(oq,...,0s) with |o1| = -+ = |os|. For p = (u1,...,us) € INj, define
o M=o " ..o . The smoothness of ® is measured by the critical exponent

(@) :=sup{\: ¢; € W' (R®) forall j=1,...,r},

where W3'(IR®) denotes the Sobolev space {f € Lo(IR®) : [;. 1F(E)2(1 + |€)M)? de < oo}
We assume that the mask a is finitely supported, i.e., the set suppa := {« € Z° : a(a) # 0}
is finite. Note that each a(a) is an r X r complex matrix. Let A := 3" _. a(a)/d, where
d := |det M|. We assume that spec(A) (the spectrum of A) is {n,n2....,7,}, where
m =1landn; # 1for j =2,...,r. For a € Z°, let b(a) := ) 5.5 a(B) ® a(a + B)/d,
where ® denotes the (right) Kronecker product. Suppose the highest degree of polynomials
reproduced by ® is k — 1. Let

Ey:={njo=rmo " |pul <k,jg=2,...,r}U{c™":|u| < 2k}.

The main result of this paper asserts that if ® is stable, then A\(®) = —(log, p ) s/2, where

Pr = max{ lv| : v € spec(b(Ma — B))a,ﬁeK \ By },

and K is the set Z°NY >~ | M~"(suppb). This result is obtained through an extensive use
of linear algebra and matrix theory. Three examples are provided to illustrate the general
theory. All these examples have background of practical applications.
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Spectral Analysis of the Transition Operator

and its Applications to Smoothness Analysis of Wavelets

§1. Introduction

The purpose of this paper is to investigate spectral properties of the transition operator
associated to a multivariate vector refinement equation and their applications to the study
of smoothness of the corresponding refinable vector of functions. This study is important
to applications of wavelets to image processing, computer aided geometric design, and
numerical solutions to partial differential equations.

Let IR denote the set of real numbers, and IR® the s-dimensional Euclidean space. An
element of IR® is also viewed as an r x 1 vector of real numbers. The inner product of two
vectors z and y in IR® is denoted by z - y. The norm of x is |z| := \/z - .

Let f be a (Lebesgue) measurable function from IR* to C, where C denotes the set of
complex numbers. For 1 < p < oo, let

ipe= ([ irepas)

For p = 00, let || f||s be the essential supremum of |f| on IR®. By L,(IR*) we denote the
Banach space of all measurable functions f such that || f||, < co. A function f is said to
be integrable if f lies in L;(IR®).

The Fourier transform of a function f € L;(IR") is defined by

f(&) = (x)e” ¢ de,  £€RR’,
.

where i denotes the imaginary unit. The domain of the Fourier transform can be naturally
extended to Lo(IR?).

Let IN denote the set of positive integers, and INj the set of nonnegative integers. An s-
tuple = (1, ..., 1s) € INj is called a multi-index. The length of p is |p| := p1+- - -+ s,
and the factorial of p is p! := pq!--- pg!. For p,v € INg, v < pmeans v; < pj, j=1,...,s.
If v < pand v # p, we write v < p. For v < pu, we define

()= oo

For = (p1,...,1s) € INj and = = (z1,...,2,) € R®, define
h =gttt

The function z +— z# (r € IR®) is called a monomial and its (total) degree is |u|. A
polynomial is a linear combination of monomials. The degree of a polynomial ¢ = > u Cu®h
is defined to be degq := max{|u| : ¢, # 0}. For k € INy, we use II;; to denote the linear
space of all polynomials of degree at most k.
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Let Z denote the set of integers. By ¢(Z*®) we denote the linear space of all sequences
on Z°. A sequence a on Z° is said to be finitely supported if a(a) # 0 only for finitely
many «. Let ¢o(Z®) denote the linear space of all finitely supported sequences on Z*. Let
u € U(Z?). For 1 < p < 0o, we define

lully = (32, lul@)”)

For p = oo, define ||ul/s to be the supremum of |u| on Z. For 1 < p < oo, let ¢,(Z%)
denote the Banach space of all sequences v for which |ju||, < co.

For positive integers m and n, by C"*" we denote the collection of all m x n complex
matrices. The transpose of a matrix A is denoted by A”. When n = 1, €™*! is abbreviated
as C™. The linear span of a set E of vectors is denoted by span (FE).

We use £(Z° — C™ ") to denote the linear space of all sequences of m X n matrices.
Similarly, we use £o(Z° — C™*™) to denote the linear space of all finitely supported
sequences of m x m matrices. For simplicity, £(Z° — C™*") and {o(Z° — C™*") will
be abbreviated as ¢™*"(Z°) and ¢)'*"(Z?®), respectively. When n = 1, {™*!(Z®) and
¢51(Z°) will be further abbreviated as ¢™(Z°) and ¢§'(Z°), respectively. For a subset
K C 77, {m*"(K) denotes the linear space of those elements u € ¢"*™(Z*) for which
u(a) =0 for all « € Z° \ K.

The symbol of an element v € {y(Z*), denoted 0, is the trigonometric polynomial
given by

1/p

0(&) = Z v(a)e ¢ ¢ € RS

aEeZ®

The symbol of an element in £{'*"(Z?®) is defined accordingly.
By T(IR®) we denote the set of all trigonometric polynomials on IR*. Accordingly, by
T™*™(IR®) we denote the set of all m x n matrices of trigonometric polynomials on IR°.
The spectrum of a square matrix A is denoted by spec(A) and it is understood to
be the multiset of its eigenvalues. In other words, multiplicities of eigenvalues are counted
in the spectrum. The multiset of nonzero eigenvalues of a square matrix A is denoted by
spec’(A). By p(A) we denote the spectral radius of A. Clearly, if spec’(A) is not empty,

p(A) = max{|v|: v € spec(A)} = max{|v| : v € spec’(A)}.

Let M be an s X s integer matrix. We assume that M is expansive, i.ce., all the
eigenvalues of M are greater than 1 in modulus.

An 7 x 1 vector ® = (¢1,...,¢,)T of compactly supported functions in L,(IR?) is said
to be M-refinable if ® satisfies the following vector refinement equation

o= > a(@®(M-: - a), (1.1)
a€”Zs

where a € ({*"(Z%). We call a the (refinement) mask. Taking Fourier transform of both
sides of (1.1), we obtain

b(&) = A(MT)TT)e((MT) 1), e (1.2)
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where

1 —iQ
A(8) = ot 3] aezsa(a)e : (1.3)
It follows from (1.2) that ®(0) = A(0)®(0), where
1
A(0) = — > a(a) and d:=|det M|. (1.4)
acZ®

Our goal is to determine the smoothness of ® in the Ly norm strictly in terms of the mask
a. For A > 0, we denote by W3 (IR®) the Sobolev space of all functions f € Ly(IR®) such
that

/ NFOPA+ [ dE < oc.

The smoothness of ® = (¢1,...,¢,)T is measured by the critical exponent A(®), which is
defined by
AM®) :=sup{X: ¢, € W3 (IR®) forall j=1,... T}

The smoothness of refinable functions is an important issue in all multi-resolution
analyses and has a strong impact on applications of wavelets to image processing and
geometric modelling, e.g., subdivision schemes.

The smoothness order of refinable functions has been studied extensively. For the
scalar case (r = 1), a characterization of the critical exponent of a refinable function in
terms of the corresponding mask was given in [12], [45], and [5]. In particular, it was
shown that the critical exponent of a refinable function could be calculated in terms of the
spectral radius of a transition matrix associated to the mask.

The aforementioned results rely on factorization of the symbol of the mask. In the
multivariate case s > 1, however, the symbol of the refinement mask is often irreducible.
This difficulty was overcome in [21] by considering certain invariant subspaces of the tran-
sition operator associated to the mask. Based on the characterization of smoothness of
multivariate refinable functions given in [21], a useful algorithm for calculation of the crit-
ical exponent was given in [29]. These results are valid when the matrix M is isotropic.
In the case when M is anisotropic, smoothness of multivariate refinable functions was
investigated in [7].

For the vector case (r > 1), smoothness of univariate refinable vectors of functions
was studied in [6] and [36] on the basis of a factorization technique. A different approach
was employed in [28] to give the optimal smoothness of refinable vectors of functions.
Smoothness of multivariate refinable vectors of functions were analyzed in [30] and [31].
Also, see [41] and [26] for a recent study of the Sobolev regularity of refinable functions
without the requirement of stability.

The study of smoothness of ® is related to properties of shift-invariant spaces. Suppose
® = (¢1,...,0,)T is an r x 1 vector of compactly supported functions in L,(IR*). We use
$(P) to denote the shift-invariant space generated from ®, which is the linear space of

functions of the form B,
N uila)g(- - a),

j=1 aeZs?



where uq,...,u, € {(Z%). The (multi-integer) shifts of ¢1,..., o, are said to be stable, if
there exist two positive constants C; and Cs such that the inequalities

¢ (; fuslh ) < | X witeert - a) =0 (;nujup)

j=1l acZs

are valid for all uy,...,u, € £,(IR?). If this is the case, we simply say that ® is stable. It
was proved in [27] and [19] that the shifts of ¢1,..., ¢, are stable if and only if, for every
¢ e R, R

span{®({ +2703): f € Z°} = C".

The Kronecker product of two matrices is a useful tool in our study of vector refine-
ment equations. Let us recall some basic properties of the Kronecker product. Suppose

Sttt x>

product of A and B, written A ® B, is defined to be the block matrix

allB a12B cee alnB

CL21B aggB s agnB
A® B = . .

amlB amgB cee amnB

For three matrices A, B, and C of the same type, we have
(A+B)@C=(A®C)+(B®(C) and A®(B+(C)=(A®B)+ (A®C).
If A, B,C, D are four matrices such that the products AC and BD are well defined, then
(A® B)(C® D) = (AC) ® (BD).

Moreover, if A1,..., A\, are the eigenvalues of an r x r matrix A and puq,...,us are the
eigenvalues of an s X s matrix B, then the eigenvalues of the Kronecker product A ® B are
Ambbn, m=1,...,r,n=1,...,s. See [34, Chap. 12] for a proof of these results.
For a matrix A = (ai;)1<i<m,1<j<n, the vector
(alla'"7am17a127'"7am27"'7a1n7"'7amn)T
is said to be the vec-function of A and written as vecA. If A, X, and B are three matrices
such that the product AX B is well defined, then

vec(AXB) = (BT ® A)vecX. (1.5)

For two functions f, g in Lo(IR®), f ® g is defined as follows:

foglx) = - flx+y)g(y)dy, =R’



where g(y) stands for the complex conjugate of g(y). In other words, f®g is the convolution
of f with the function y — g(—y), y € IR®. It is easily seen that f ® g lies in Cp(IR?), the
space of continuous functions on IR which vanish at co. In particular, f ® g is uniformly
continuous.

Suppose ® = (¢1,...,¢,)T is an r x 1 vector of compactly supported functions in
L (IR?) satisfying the refinement equation (1.1). Let

P1OP1 1O P2 - D1 Oy

b o T - P2 O P1 P2 O P2 - P2 Oy

¢r®¢1 ¢r®¢2 ¢r®¢r
It follows from (1.1) that

——T
20" =YY" Y a@®M-—a)o " (M- - B)a(f) .
o€l BeZ®
Let F := vec(® ® ®T). With the help of (1.5) we obtain
F=)Y ba)FM- —a),
ac”Z?
where b € 662“2 (Z?) is given by
1 -
bla) = — Y aB)@ala+p), acZ (1.6)
BezZs

For a bounded subset H of R®, the set >~ | M ~™H is defined as
{ Oo_lM_”hn - hy € H for n:1,2,...}.

If H is a compact set, then > 2 | M~"H is also compact. By suppb we denote the set
{a € Z® : b(a) # 0}. Let

K = (Z:O:l M_”(suppb)> NZ°.

We assume that M is isotropic, i.e., M is similar to a diagonal matrix diag(oy,...,05)
with |o1| = -+ = |og|. For p = (u1,...,pus) € Z*, define

g
ol = o] oh=.

Suppose r = 1 and @ is stable. Let k be the largest integer such that $(®) D II;_;.
It was proved in [29] that \(®) = —(log, pr) s/2, where

Pk = max{ lv]: v € spec(b(Ma — B))a’ﬁeK \{o™": |u| <2k} }

A straightforward generalization of this result to the vector case (r > 1) does not work. See
§8 for a counterexample. In fact, in the vector case, a correct formula for A(®) must involve
the spectrum of the r xr matrix A(0) given in (1.4). Suppose spec(A(0)) = {m,n2,..., 7}
We assume that n; = 1 and n; # 1 for j = 2,...,r. The following theorem is the main
result of this paper.



Theorem 1.1. Let ® be an r x 1 vector of compactly supported functions in Lo(IR®).
Suppose ® satisfies the refinement equation (1.1) with mask a. Let k be the largest integer
such that $(®) D Ix_,. Let

Ep = {njo=rmio " |pu| <k,j=2,...,r}U{c™" |p] < 2k}
If, in addition, ® is stable, then

A(®) = _(logd Pk) 5/2,

where
Pk = max{ | : v € spec(b(Ma — ﬁ))a,ﬁeK \ Fx }

Here is an outline of the paper. Section 2 is devoted to a study of subdivision and
transition operators. The fact that the subdivision operator is the algebraic adjoint of the
transition operator will be employed to derive useful spectral properties of these linear
operators. In Section 3 we will review polynomial reproducibility of refinable vectors
of functions and introduce certain invariant subspaces of the subdivision and transition
operators, which will be needed in the smoothness analysis of refinable functions. In
Section 4 we will give a characterization of the smoothness order of a refinable vector ®
of functions in terms of the corresponding mask a. This characterization is difficult to
implement. Thus, in Section 5, we will give a formula for the critical exponent of ® in
terms of the spectral radius of the transition operator T} restricted to a certain invariant
subspace, where b is obtained from a by (1.6). In order to calculate this spectral radius,
we will carefully analyze the relevant invariant subspaces and spectra of the subdivision
operator and the transition operator in Sections 6 and 7. This analysis enables us to prove
Theorem 1.1 and other related results. Finally, in Section 8, we will provide three examples
to illustrate the general theory. These examples demonstrate usefullness of Theorem 1.1
to various applications such as multi-wavelets, numerical solutions of partial differential
equations, and computer aided geometric design.

In relation with their study of v/3-subdivision schemes (see [38]), Jiang and Oswald
[32] developed Matlab software to calculate A(®) in Theorem 1.1. It can be downloaded at
http://cm.bell-labs.com/who/poswald or at http://www.math.wvu.edu/~jiang. The
reader is referred to [32] for explanations of the Matlab routines.

§2. Subdivision and Transition Operators

To each a € £3*"(Z*) we associate two linear operators: the subdivision operator
S, and the transition operator T,. The subdivision operator S, is the linear operator on
017 (Z?) defined by

Seu(a) == Z u(B)a(a— MB), «a€Z®, uct™*"(Z°).
BezZs

The transition operator Ty, is the linear operator on ¢{(Z*) defined by

Tov(a) = Z a(Ma — pB)v(B), ae€Z’ vely(Z).
Bez®



This section is devoted to a study of the subdivision and transition operators. See [3] and
[10] for some earlier work on these operators.
We introduce a bilinear form on a pair of the linear spaces £5(Z°) and ¢**7(Z*) as
follows:
(,0) ==Y u(—aj(a), wel(Z%),vel(Z°).

a€Zs

Then (%7 (Z?) is the algebraic dual of ¢5(Z°) with respect to this bilinear form. For
u € (1*7(Z°) and v € £3(Z°), we have

(Sau,v) = > (Sau)(a = > Y u(Bala — MB)v(-a)

aeZ® a€Z® BeZ®
=3 Y w-BaMB —ayla) = Y u(~B)(Tww)(8) = (u, Tuv).
BEZS aeZ® BeZ®

Consequently, S, is the algebraic adjoint of Tj,.
The annihilator of a linear subspace U of £1*7(Z*) is defined by

Li={vel(Z°: (u,v) =0VucU}.
Similarly, the annihilator of a linear subspace V' of £j(Z?*) is defined by
L= {u e "7(Z%) : (u,v) =0 Vv eV}

Clearly, U C (U+)*. If U is a finite dimensional subspace of /1*"(Z?), then (U+)+ = U.
This comes from the Theorem on Linear Dependence (see [33, p. 7]), which states that a
linear functional f is a linear combination of a finite set {fi,..., f,} of linear functionals
if and only if the null space of f contains the intersection of the null spaces of f1,..., fn.
Indeed, an element u € ¢1*"(Z*) can be viewed as a linear functional on ¢5(Z%). Suppose
{u1,...,u,} is a basis for U. Then u € (U+)* means the null space of u contains the
intersection of the null spaces of uq, ..., u,. Hence, by the Theorem on Linear Dependence,
u lies in U.

Moreover, if V is a linear subspace of £5(Z*), then (V1)1 = V. In this case, V is not
required to be finite dimensional. Clearly, V C (V+)+. The inclusion relation (V4)t C V
can be proved by a version of Hahn-Banach theorem. Suppose w € ({(Z°)\ V. Let W
be the linear span of V and w. Then we can find a linear functional f on W such that f
vanishes on V' and f(w) = 1. This linear functional can be extended to a linear functional
on ¢5(Z?%). Since (1*7(Z?) is the algebraic dual of £;(Z?), this means that there exists
some element u in 1*"(Z®) such that « € V+ and (u,w) = 1. Hence, w ¢ (V). This
shows (VH)L C V.

Lemma 2.1. Let U be a finite dimensional linear subspace of {**"(Z*), and let V := U+,
Then U is invariant under the subdivision operator S, if and only if V' is invariant under
the transition operator Ty, .

Proof. Suppose U is invariant under S,. For v € V we have

(u, Tyv) = (Squ,v) =0 VueU.
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Hence, T,v € U+ = V. This shows that V is invariant under 7},.
Suppose V' is invariant under T,. For u € U we have

(Squ,v) = (u, T,uy =0 YoveV.
Hence, S,u € V+ = U. This shows that U is invariant under S,. ]

It was proved in [15] that T, has only finitely many nonzero eigenvalues. The following
is an outline of the proof. By suppa we denote the set {a € Z* : a(a) # 0}. Similarly, for
v € ({(Z?), suppv stands for the set {a € Z° : v(a)) # 0}. By the definition of T;, we see
that T,v(«) # 0 if and only if

Mo — (8 € suppa for some [ € suppw.

Hence,
supp (T,v) € M~ 'suppa + M~ 'suppw.

Applying the above argument repeatedly, we obtain

n
supp (T7'v) C Z M suppa + M ~"suppuv. (2.1)
j=1

Let

K = Zsﬂ(g:l M_"(Suppa)). (2.2)

The preceding discussion tells us that suppv C K implies supp (T,v) C K. Therefore,
¢"(K) is invariant under T,. Suppose v is an arbitrary element in £j(Z*). Comparing (2.1)
with (2.2), we see that there exists a positive integer N such that, for n > N and each
« € supp (T2v), the distance from the point « to the set K is less than 1/2. But o € Z*
and K C Z°, so « lies in K. This shows that T'v € ¢"(K) for sufficiently large n.

Now suppose 6 is a nonzero eigenvalue of T;, and T,v = Ov for some v € {;(Z*). For
sufficiently large n we have 0"v = T7'v € {7 (K). It follows that v € ¢"(K). Since ¢"(K) is
finite dimensional, T, has only finitely many nonzero eigenvalues.

The following lemma extends the above results.

Lemma 2.2. Let V and W be two invariant subspaces of the transition operator Tj.
Suppose W is finite dimensional and V N¢"(K) C W C V, where K is the set given in
(2.2). Then

spec’ (Talw) = spec’ (Talvner(x))-

Proof. Let T, denote the quotient linear operator induced by T, on the quotient space
W/ (VN (K)). Clearly,

spec (Tu|w) = spec (T) U spec (Tolvaer (x))-
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Thus, it suffices to show that all the eigenvalues of T, are zero. Let 6 be an eigenvalue of
T.,. Then there exists some v € W\ (V N{"(K)) such that

T.(v+VNI(K)=0w+Vn(K)).

It follows that
Tov—0veVnNI(K).

Since V N ¢"(K) is invariant under T, for n € IN we have
Ty — 0" = (TP '+ -+ 0" ) (Tv — Ov) € VN IT(K).

For sufficiently large n, T7'v € {"(K). Hence, "v € V N{"(K) for sufficiently large n. But
v & VNI (K). Therefore, § = 0. The proof is complete. ]

Lemma 2.2 tells us
p(Talw) = p(Talvae(x))-

This motivates us to define the spectral radius of T, |y as p(Ta|Vr~|g'r(K)).

Lemma 2.3. Let U be a finite dimensional invariant subspace of the subdivision operator
S., and let V := U~+. Then

p(Tolv) = max{|v| : v € spec((a(Ma — 8))a,pex) \ spec(Salv)}, (2.3)

where K = Z°NY .~ M~ "(suppa).

Proof. Suppose {uq,...,un} is a basis for U. Then there exist vy,...,vn € £5(Z*) such
that
(uj,vm) =05 for jym=1,... N, (2.4)

where 0 stands for the Kronecker sign. Let G be a bounded subset of IR® such that
G 2 {0} Usuppa U (UY_ysupp (Muvy,)),

and let J := Z° N (377, M™"G). Then K C J and vy,...,vxy € £7(J). Moreover,
¢"(J) NV is an invariant subspace of T,.

Consider the quotient space ¢"(J)/(¢"(J) N V). For v € £"(J), let © denote the coset
v+L7(J)NV. We claim that {01,...,0y} forms a basis for £"(J)/(¢"(J)NV). Indeed, for
v € l"(J) we have

N
Zuj, yv; €L°(J)NV.
j=1

Consequently, o lies in the span of {71,...,0y5}. Furthermore, suppose Z 1 CmUm = 0.
Then SN _ ¢nvpm € £7(J) N V. Tt follows that, for j =1,..., N,

E " 0
c; = (u; Cm? >: .
] <]7 m=1 m¥m



Hence, v1, ...,y are linearly independent. This justifies our claim.

Let T, denote the linear quotient operator induced by 7, on the quotient space
r(J) /(7 (J)NV), that is, T, is defined by T,0 := T,v. Suppose

N N
San = Z bjmum and Ta'f)j = Z ij6m7 ] — 17 . 7N‘
m=1 m=1

By (2.4) we have
bim = (Satj, Vm) = (Uj, TyUm) = ¢my, Jj,m=1,...,N.
Therefore,
spec(fa) = spec (Sa|U).

Consequently, we have

spec (Tuler (7)) = spec(T) Uspec(Tuler(rynv) = spec(Sa|u) Uspec (Taler(ynv)-
It follows that
spec’ (Taler(py) = spec’ (Sa|u) Uspec (Tuler (v )-

By Lemma 2.2,

spec’(Tuer () = spec’ (Taler(x))  and  spec’(Taler(s)nv) = spec’ (Tuler(r)nv)-
Hence,
spec’ (Tyler(ky) = spec’ (Salu) U spec (Taler (rynv)- (2.5)

Note that
p(Talv) = p(Tuler(xynv) = max{|v| : v € spec’ (Taler(x)nv ) }-

In light of (2.5) we have
p(T,lv) = max{|v| : v € spec’ (Tu|er(k)) \ spec’ (Salv)}-

Finally,
p(Talv) = max{|v| : v € spec(Taer(k)) \ spec(Salv)}-

But spec (T, ¢ (k) = spec ((a(Ma — 8))a,ger ). Taking this into account, we obtain the
desired formula (2.3). [
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§3. Polynomial Reproducibility

Let ® be an 7 x 1 vector (¢1,...,¢,)", where ¢1,...,¢, are compactly supported
integrable functions on IR®. If there exists a (finite) linear combination ¢ of shifts of
é1, ..., ¢, such that

> q@)v(-—a)=q Vqell, (3.1)

aEeZ®

then we say that ® reproduces all polynomials of degree at most £ — 1. In this section
we review results on polynomial reproducibility relevant to our study of smoothness of
refinable vectors of functions.

For j =1,...,s, let e; denote the jth column of the s x s identity matrix. We may
view eq,. .., es as the coordinate unit vectors in IR*. By D; we denote the partial derivative
with respect to the jth coordinate. For a multi-index p = (p1, ..., us), D* stands for the
differential operator D" - .- D=,

The conditions in (3.1) are equivalent to the following conditions:

DMp(21B) = Soudos Y |u| < k and § € Z°.

If this is the case, then we say that & satisfies the Strang-Fix conditions of order k (see
[44]). In [8] Dahmen and Micchelli investigated approximation order on the basis of the
Strang-Fix conditions.

It is easily seen that & satisfies the Strang-Fix conditions of order k if and only if
there exists a 1 x r vector y of trigonometric polynomials such that

D*(y®)(2nB3) = dopdop Y |u| < k and B € Z°. (3.2)
If y satisfies the conditions in (3.2), then we have

H

— =Y w()®(x—a), R’ |y <k, (3.3)
pe ac”Z?
where (iDP=y(0)
—1 “Yy(0) ¥ s
u, (o) == —, a€elZ’. 3.4

See the recent survey paper [24] for a proof of this result.

Now suppose P satisfies the refinement equation (1.1). Naturally, we wish to find the
optimal order of the Strang-Fix conditions satisfied by ® in terms of the mask. There has
been a lot of research on this problem. See [17] and [39] for the univariate case (s = 1),
and [1], [2] and [31] for the multivariate case (s > 1). The results in these papers can
be summarized as follows (see [24]). Suppose ® = (¢1,...,¢,)T satisfies the refinement
equation (1.1) with a being its mask. Let A(§) (£ € IR®) be the r x r matrix given in (1.3).
Let y be a 1 x 7 vector of trigonometric polynomials, and let g(&) := y(MT¢)A(€), € € R®.
Then (3.2) is valid, provided the following three conditions are satisfied:

(P1) y(0)®(0) = 1;

11



(P2) Drg(2n(MT)™1w) =0 for all |u| < k and w € Z°\ (MTZ?);

(P3) D*g(0) = D*y(0) for all |u| < k.
Conversely, if ® is stable and (3.2) is valid, then the above conditions (P1), (P2), and (P3)
are satisfied.

For the special case k = 1, it is known (see, e.g., [24]) that conditions (P2) and (P3)
together are equivalent to

yo Y ala—MB)=yy VaeZ’, (3.5)
Bez®
where yo := y(0) € C'*". If this is the case, we say that a satisfies the basis sum rule

with respect to yo. For the general case k > 1, conditions (P2) and (P3) can also be
expressed as sum rules involving a. Thus, we say that a satisfies the sum rules of order &
with respect to y if y and g : € — y(MTE)A(E) (€ € R?) satisfy conditions (P2) and (P3).
If the meaning of y is clear from the context, then the reference to y may be omitted. We
always assume that y(0) # 0.

Let © be a complete set of representatives of the distinct cosets of Z°/MTZ°. We
assume 0 € €. Clearly, #Q (the number of elements in 2) is equal to d := |det M]|.
Note that condition (P2) can be restated as D*g(2m(M7T)~1w) = 0 for all |u| < k and
w e Q\ {0}. For v € {j(Z*) and « € Z® we have

Z ﬁ((MT)_1(§+27TW)) = Z Z U(a)e_ia'((MT)_l(§+27rw))

wel weQ aeZs
_iM 1. _ ar—1
:E:'U<Oé)6 M a§§:627mM aw
aEe”Z® weN

With the help of the following identity (see, e.g., 20, Lemma 3.2])

Z e_QﬂiMfla.w . d ifae MZS,
. ~ 0 ifag¢ MZ®,

we obtain

Z (M) ¢+ 2mw)) =d Z v(Ma)e ¢, ¢ € RS,

we acZ?®
The convolution of u € £™*™(Z*®) and v € {{(Z*) is the element in ¢ (Z") given by

uxv(a) == Z u(la = pv(B), «e€Z’.

pezs
Suppose v € £5(Z?). By the definition of the transition operator T, we have
(T,v)(a) = (axv)(Ma), «€Z®.

Hence

(Tav) (€) = D (axv)(Ma)e "¢ = % D (axv) (MT)7H(€ + 2nw)), €€ RS

acZ? weN
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It follows that

(Tav) (§) = D> A(MT) M€+ 2mw)) 0(MT) (€ +2mw)), £€R®. (3.6)

weN

Lemma 3.1. Let a € £;*"(Z*). Suppose a satisfies the sum rules of order k with respect
toy € TY"(IR®). Then the linear space H; (0 < j < k) given by

Hj = {v € (Z°) : D"(y0)(0) = 0V |u| =j }

is invariant under the transition operator T,.

Proof. By (3.6) we have

(Tav) (MTE) =" A(¢+2r(MT)'w)o(¢ +2r(MT) w), £ eTR”.

It follows that

y(MTE)(Too) (MTE) =) y(MTOA(E +2r(MT)'w)i (¢ + 2n(MT)'w), € €RS.
wes

For w € Q\ {0}, we have by (P2)
D" (y(MTE)A(E +2m(MT)™'w))|e=o = D"g(2m(M") " 'w) =0 V|u| < k.
For w = 0, we have D*g(0) = D*y(0) for all |u| < k. Hence,
D" (y(MT€)A(£)8(€))le=0 = D" (9(£)8(€)) le=o = D*(y)(0).
But v € H; implies D¥(y9)(0) = 0 for all || = j. Therefore,
D (y(MT&)(Tow) (MT€))[e=o =0 V|p| = j.

Let f(£) = y(&)(T,v) (), £ € R®. We use foMT to denote the composition of f and
M?™. The above equation tells us that, for all |u| = j, D*(foM7*)(0) = 0. Clearly,
f = (foMT)o(MT)~1. By the chain rule, D*f is a linear combination of D*(foM?),
lv| = j. Therefore, D" (y(T,v))(0) = D f(0) = 0 for all |u| = j, i.e., T,v € H,. This
shows that H; is invariant under 7. L]

By the Leibniz rule for differentiation we have

Dy 0)0) = X (4) -ip) - uo)-in)o(0)

But ‘
(—iD)* (&) = Y v(a)(—a) e ¢, e R’

acZs
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It follows that

(—ZD)M(y@)(O) . Z Z —ZD - V ) ( V!)V 'U(Od) _ Z Uu(_a)v(a> = <UH,'U>7

a€Zsv<pu aEe”Z®

where u,, is the element in ¢1*"(Z*) as defined in (3.4). Consequently, v lies in H; if and
only if (u,,v) =0 for all |u| = j. In other words, H; = G5, where

Gy = span{u, : lul = j}.
Let Uy := span{u, : |p| < k} and
Vi i= {v € (5(Z") : DH(y0)(0) = 0¥ || < k. (3.7)
Then Vi, = U ,j Moreover,
U, =Go+G1+---+Gp_1y and Vi, =HoNH{N---NHp_1.
We may write u,, as >, -, Yu—vqy, wWhere y,_, := (—iD)*""y(0)/(p — v)! and ¢, is
the sequence given by ¢, (a) = o’ /v, a € Z°. If yy # 0, then the set {u, : |u| < k} is

linearly independent. To justify our claim, let ¢, (|u| < k) be complex numbers such that
Z\uKkz cpuy, = 0. It follows that

Y cwodt Y. ha =0,

|u|=k—1 lv|<k—1

where h, (Jv| < k — 1) are some elements in C'*". Since g, (|u| < k) are linearly
independent, we have c,yo = 0 for all |u| = k — 1. But yo # 0. Hence, ¢, = 0 for
all |u| = k — 1. By using this argument repeatedly, we see that ¢, = 0 for all |u| = j,
Jj=k—1,k=2,...,0. This shows that {u, : |u| < k} is linearly independent. Consequently,
{u, : |p| = j} is a basis for G (j < k).

For v € Z*, the difference operator V., on the space ¢™*"(Z") is defined by

Vou=u—u(-—7), uel™"™(Z).

Let us consider V,u,. For a € Z® we have

O ECEEIED DE 1 CERGTES i Dt o [

v<p v<p0<r<v

14



It follows that

Vouula)= Y —(_T’T)T 3 %y(“_ﬂ_@_ﬂ: D 5 @), 39)

! v Tl
0<r<p T<v<p 0<r<p

Consequently, V. u, € span{u, : v < p}.

For 1 € IN, recall that ¢, is the sequence given by g, (a) = o /u!, o € Z°. When
p € Z°\INg, we agree that g, = 0. With this convention, we may interpret D;gq, as Qu—e; -
For v = (y1,...,7s) € Z°, let D :=v1Dy + -+ + 7sD,. Then it follows from (3.8) that

Vyu, — Dyuy, € span{u, : |v| < || —2}.

Let T' be a finite multiset of elements in Z°. If #I" > |u|, then the above relation yields

(H vw) u, = (H D7>uu. (3.9)

yel yel
Moreover, both sides of the above equation vanish when #I' > |ul.
For j = 1,...,s, the difference operator V., is abbreviated as V;. For a multi-

index 7 = (71,...,7s) € INj, the difference operator V7 is defined as Vi'---VIs. As a
consequence of (3.9) we have

VTu, = D"u, = d-puy  for |7] > |p|. (3.10)

Furthermore, it follows from (3.9) that

Ve, ---V]T\j,esuu = D}, ---ng[esuu for |7| > |ul. (3.11)
Suppose Me,, = mpie1 + - - - + mpses with suitable coefficients m,,;, n,j =1,...,s. Then

for |7| = j we have
S

DX/}el H'DXZeS = H(mnlDl + - +mn5Ds)Tn =: Z le,DV,

n=1 vl=i

Since spec (M) = {071, ...,05}, the spectrum of the matrix (br,)|r|—j |v|=; is {o" : |u| = j}
(see [2, Lemma 4.2]). In light of (3.10), (3.11) yields

V}\}el c. Vﬁesu“ = Z bTVDVuu = bT“’UJO for |T| > ‘ILL‘, (312)

lv|=j
where b.,, is understood to be 0 if |7]| > |ul.
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Lemma 3.2. Under the conditions in Lemma 3.1, the linear space G (j < k) is invariant
under the subdivision operator S,. If, in addition, y(0) # 0, then

spec(Salg;) = {o™" : |u| = 7}

Proof. Note that yo = y(0) and ug = yoqo, where gp(a) = 1 for all « € Z®. Since a
satisfies the basic sum rule with respect to yp, (3.5) is valid. Hence, for o € Z® we have

Sauo(a) = Y ug(Bala — MB) =yo Y ala— MpB) = yo = ug(a).

pez* pez*

This shows S,ug = ug.
Since GjL = H; and Hj is invariant under T,, the linear space G is invariant under
Sa, by Lemma 2.1. Thus, there exist complex numbers ¢, such that

Sau,u, = Z CupvUy, |/‘L| :J
lv|=j

Let C denote the matrix (¢ )|u|=j,|v|=;- Then spec(Sa|g,) = spec(C).
For v € Z?, it can be easily verified that

Sa(Vyup) = Vary(Saup).

Consequently, for 7 = (1q,...,7s) € IN;; we have

Sa(vTuM> = v}-\}q T v}\-Zes (Sauﬂ) = Z CW’ (v}-\}lﬁ T v}-\jfes)u’/'

lv|=3

In light of (3.9) and (3.12), it follows that

57’#”0 = § Cuubﬂ/UO-

lv=3i

Hence, C = (BT)~!, where B denotes the matrix (brv)|7|=j,jv|=;- But the spectrum of B
is {o* : |u| = j}. Therefore, spec(C) = {o™# : |u| = j}. This completes the proof. [

Recall that Uy is the direct sum of Gg,...,Gr_1 and Vj, = U,CL. Hence, we have the
following result.

Lemma 3.3. Under the conditions in Lemma 3.1, Vj, is invariant under the transition
operator T, and Uy, is invariant under the subdivision operator S,. If, in addition, y(0) # 0,
then

spec(Salu,) = {0 ¢ |ul < k}.
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§4. Characterization of Smoothness

In this section we give a characterization for the smoothness of a refinable vector of
functions in terms of the corresponding mask.

Sobolev spaces are related to Lipschitz spaces, which are defined on the basis of the
modulus of smoothness. The modulus of continuity of a function f in L,(IR”) is defined
by

w(f,h)p = supHthHp, h >0,
[t|<h
where Vi f := f— f(- —t). Let k be a positive integer. The kth modulus of smoothness
of f € L,(IR®) is defined by

wr(f, h)p = supHfoHp, h > 0.
[t|I<h
For 1 < p < oo and 0 < A < 1, the Lipschitz space Lip(A, L,(IR*)) consists of all
functions f € L,(IR*) for which
w(f,h)p <Ch*  Yh>0,

where C' is a positive constant independent of h. For A > 0 we write A = m+mn, where m is
an integer and 0 < n < 1. The Lipschitz space Lip(\, L,(IR*)) consists of those functions
[ € L,(IR?) for which D*f € Lip(n, L,(IR")) for all multi-indices p with || = m. For
A > 0, let k£ be an integer greater than A\. The generalized Lipschitz space Lip* (X, L,(IR?))
consists of those functions f € L,(IR*) for which

wr(f,h)y <ChY  Yh>0,
where C' is a positive constant independent of h. If A > 0 is not an integer, then
Lip(\, Ly(R%)) = Lip" (A Ly(R%)), 1 <p< oo

See [11, Chap. 2] for a discussion about Lipschitz spaces.
It is well known that, for A > ¢ > 0, the inclusion relations

Lip(\, Lo(IR®)) C Lip* (A, Lo(IR®)) C Lip(A — €, Lo (IR?))

and
W3 (IR®) C Lip(A, Ly(IR*)) € W5 ~°(IR*)

hold true. See [43, Chap. V] for these facts. Therefore, we have
A(f) =sup{)\: f € Lip(\, La(IR?))} = sup{\ : f € Lip"(\, L2(IR?))}.
The inner product of two functions f, g € Lo(IR?) is defined as

(f,9) = f(z)g(x)dx.
Re
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This definition still makes sense if f is a compactly supported function in Lo(IR®) and g is
a polynomial on IR®.

By (L,(IR?))" we denote the linear space of all 7 x 1 vectors F' = (fi,..., f)T such
that f1,..., fr € L,(IR"). This space is equipped with the norm given by

r 1/p
11, = (Z ||fj||£) CF = (furee ST € (LR
j=1

=J eyt =hv >

nuup:=<2 > > Iujk<a>}p>1/p, 1<p<oo.

acZ® 1<j<m 1<k<n

Let ® be an r x 1 vector of compactly supported functions in Lo (IR*). Suppose @
satisfies the refinement equation (1.1). We claim that

=Y an(@)®(M" - a), (4.1)

ae”Z®

where the sequences a,, are given by a; = a and, for n = 2,3, ...,

an(a) = Y an1(Bala— MB), acZ’. (4.2)

This can be proved by induction on n. Indeed, (4.1) is valid for n = 1. Suppose (4.1) holds
true for n — 1. Then we have

O=> a1 (BOM" =B =" an1(f) Y ala)®(M™ — M —a).

BeZ® BEZ® aEe”Z®

It follows that

- 3 (X aa@ata - ) a0~ = 3 an(@er e

ae”Z®

This completes the induction procedure.

Let ® = (¢1,...,¢,)T be an r x 1 vector of compactly supported functions in Ly (IR®)
satisfying the refinement equation (1.1) with a being the mask. Recall that d = | det M|.
Suppose a satisfies the sum rules of order k with respect to y € T*"(IR®) satisfying (3.2).
Let

Vie :={v € (Z°) : D" (y0)(0) =0V |u| < k }.

Theorem 4.1. If for every v € Vj there exists a positive constant C, independent of n
such that
|ansv|ly < Cpd/27A/m  ¥p e N, (4.3)
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then ® € (Lip* (X, L2(IR*)))". Conversely, if ® € (Lip(X\, L2(IR*)))", and if ® is stable, then
(4.3) is valid for v € V}, and k > .

Proof. Recall that eq,...,es are the coordinate unit vectors in IR®. If there exists a
constant C' such that
[V e, @[, <CdTM" ¥nelN and j=1,...,s, (4.4)

then [21, Theorem 2.1] tells us that @ lies in (Lip* (A, L2(IR?)))".
It follows from (4.1) that

Vare, @ = 3 (@M~ 0) =~ ] = I Vyan @) a).
aE”Z? aEZs

Applying the difference operator Vp;-n., to (4.1) repeatedly, we obtain

Virne,®= Y Via,(@)®(M" - a).
YA

Since ® is compactly supported, it follows that
[V3sne, @[], < Cd™2(|Vian]|,,

where C'is a constant independent of n. For m = 1,...,r, let v,, be the element in ¢;(Z*)
such that v,,(a) = 0 for all « € Z*\ {0} and v,,(0) is the mth column of the r x r identity
matrix. We have

r r
IV5anlly < 3 _1(V5an)somlly = D lan=(Vivm)]),.
m=1 m=1

We observe that (V?vm)A(f) = (1 — e %)kp,, (&) for & = (&1,...,&) € R®. Hence, for
| <k, D*(y(V5vm)")(0) = 0 with y as in (3.2). In other words, V¥v,, € Vi, m=1,...,7.
If (4.3) is valid, then

“an*(V§vm)“2 < G d/2=Am vy e N,

where C,, is a constant independent of n. Combining the above estimates together, we
obtain the desired estimate (4.4). Therefore, ® € (Lip*(\, L2 (IR®)))".

Now suppose ® = (¢1,...,6,)T € (Lip(\, L2(IR*)))" and @ is stable. We wish to
show that (4.3) is true. For this purpose, we shall use approximation schemes induced by
quasi-projection operators (see [35] and [23]).

For v € INj, let ¢, be the monomial given by ¢, (z) := z¥/v!, x € IR®. Recall that
Yy, = (—iD)"y(0)/v!. Each y, is a 1 x r vector (yu1,...,Yur). There exist real-valued
compactly supported functions g1, ..., g, in La(IR%) such that

(qvs95) = Yuj Viv|<kand j=1,...,r
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For |u| < k and o € Z® we have
i) =t )g) = X [ (M)t do
v<p <
xu v a
=Y 0 | e = S
v<p v<p
Let Pg be the quasi-projection operator given by
Pofi= ) > (frg;( —a)¢;( —a), f€Ly(RY).

a€Zs j=1

For |u| < k we have
P@qM—ZZqM,gJ - =3 > yuy (- —a) =g
a€e”Zs j=1 a€eZs vy

where (3.3) has been used to derive the last equality. Thus, Ps reproduces all polynomials
of degree at most k—1, i.e., Ppq = q for all ¢ € II;_;. Consequently, for f € Lip(\, Ly(IR?))
(0 < XA < k) we have

Hf S Sl (™~ e (M — )

aczZ® j=1

< O™V ¥neN, (4.5)
2

where C' is a constant independent of n (see [23]).
Let v be an element in Vj, and let

H(z):= Z v(a)h(z —a), ze€lR®,

ae”Z®

where h is a compactly supported continuous function on IR’ such that the shifts of h are
stable, and D*h(273) = 0 for all |u| < k and 5 € Z° \ {0}. By our choice of H, we have

D*(yH)(2n3) = D*(yoh)(2rB) =0 V|u| < k and 3 € Z°.
Let W := & + H. Taking (3.2) into account, we obtain
D*(yW)(2r3) = D*(yd)(278) = dopdop  ¥|u| < k and 3 € Z°.

Suppose ¥ = (11, ...,%,)T. Let Py be the quasi-projection operator given by

Pyfi= Y > (fig;(- —a)e;(- —a), fE€ Ly(R).

a€Z® =1
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Then Py also reproduces all polynomials of degree at most k£ — 1.
Forn=1,2,..., let ¢, be the sequence of r X r matrices given by

en(a) = (@5, d"gm(M™ = a))),_. ., «a€Z’.

Suppose ® € (Lip(A, L2(IR*)))" and 0 < A < k. Since Ppq = Pyq = ¢ for all ¢ € TI;_1,
the estimate in (4.5) tells us that there exists a positive constant C; such that

‘Q) - Z cn(@)®(M™- — )| <Ci(d V)™ ¥YnelN (4.6)
ac”Z? 2
and
' o — Z cn(@)T(M™- —a)|| <C(d™Y5H* V¥nelN. (4.7)
2

It follows from (4.1) and (4.6) that

< Ci(d V)M ¥nelN,
2

> (an = cn)(@)@(M"- — a)

aEeZ®

Since @ is stable, we deduce from the above estimate that
lan — cnll2 < Cod /27 Yn e N,

where C5 is a constant independent of n. This in connection with (4.7) gives

< Cs(d=Y$)M  ¥n e N,
2

Hcp =) an(a)U(M™- — o)

aEeZ®

where Cj is a constant independent of n. But ¥ = &+ H. So the above inequality together
with (4.1) yields

> an(@HM" —a)|| <C3(d/*)* VnelN.

a€Z? 2
But
Z an(@)H(M" - —a) = Z Z an()v(B)h(M"™-—a—p) = Z (an*xv)(y)R(M™-—~).
acZ? a€Z® Bez* ~ezs
Consequently,

< C3(d™V/*)*» ¥neIN,
2

> (anxv)(VA(M™ =)

yez®

Since the shifts of h are stable, there exists a constant C, such that (4.3) holds true. [
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85. Spectral Radius

In order to apply the results in the previous section to smoothness analysis of refinable
vectors of functions we need to evaluate the limit
lim_ llan*v|s™.
n—
In this section we shall show that this limit can be evaluated as the spectral radius of a
certain (finite) matrix. Some ideas in [13], [22], and [25] will be employed in our discussion.
For u,v € £5(Z*), we define u ® vT as follows:

u® vl (a) = Z ula+ BB, oz

BezZ?

Let u, := an,*u and v, := a,*v, where a,, (n = 1,2,...) are the sequences given in (4.2).
Moreover, let w := vec(u ® v1) and w,, := vec(u,, ® vl). For a € Z°, we have

un @07 (@) = 3 wnla+ BB = 3 33 anla+B—u()o0) an(B—1) -

BeZ?® BEZ® yeZ?® neZ?

It follows by (1.5) that

wnfe) = 5 (X ale et =) (X vee(utr+ i) ).

YEZ® “BeZ? nez®
Let b, (n=1,2,...) be the sequences given by
= Zan )@ an(a+ ), acZ’. (5.1)
peZ®
Consequently,
vec ((an*u) © (anxv)") = d"byx(vec(u @ v7)). (5.2)

Clearly, b; is the same as the sequence b given in (1.6). Furthermore, for n > 1, it
follows from (5.1) and (4.2) that

d"b,( Z Z Z (an—1(n)a(B —Mn)) ® (an—1(y)ala+  — M~))

BEZs neZs yeZ*

= (Z an—1(n) ®an-1(n+7))<z m(}“(‘wfﬁ_ﬂh))'

’YGZS nGZS BEZ‘S

It follows that
= bpa(Mbla—My), acZ’. (5.3)
VEZ®
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Theorem 5.1. Let a € {y*"(Z*), and let a,, (n = 1,2,...) be given as in (4.2). Then for

v e ly(Z7),
Jimflansols™ = /dp(Tolw).

where b is the sequence given in (1.6) and W is the minimal invariant subspace of the
transition operator T}, generated by w := vec(v ® ’UT).

Proof. We first establish the following identity for w € £ (Z°):

Tiw(e) = Y bp(M"a— Blw(B), acZ°. (5.4)
pezs

This will be proved by induction on n. By the definition of the transition operator Ty,
(5.4) is true for n = 1. Suppose n > 1 and (5.4) is valid for n — 1. For a € Z* we have

Ty w(a) = Z b1 (M" o = B)(Tyw)(8)

pezs

=3 > b (M ra = B)B(MB — y)w(y)

BEZ® ~yeZs

— Z {Z bn_1(B)b(M"a — v — MB3) |w(7)

YEZ® -BEZ?

= Z bn(M™ o — y)w(v),

YEZ®
where (5.3) has been used to derive the last equality. This completes the induction proce-
dure.
Let v be an element in £5(Z°) and let w := vec(v ® vT). For n € IN, let v, := a,*v
and w, := vec(v, ®vl). Then w, = d"b,*w, by (5.2). This together with (5.4) yields
d"Tyw(a) = d"bpxw(M"a) = w,(M"a), «€ Z°.
Since w,, = vec (v, ® v} ), we have

d" | Ty wllos < llwnllos < fluall3.

On the other hand,

AT w(0) = 1w, (0) = vec ( 3 vn(ﬁ)vn(mT> .

pezs

Consequently,
vl < rd*|Tiwllee < 7llunll3.

23



Therefore,

lim [|a, 03" = lim [lo,|3/" = d lim |TPw]|" = dp(Thlw),
n—oo n—oo n—oo

where W is the minimal invariant subspace of T}, generated by w. ]

Now suppose a satisfies the sum rules of order k with respect to y € T**"(IR®). Let
Wy, := span{vec (u ® v1) : u,v € Vi.},

where Vj, is the linear space given in (3.7). By Lemma 3.3, V) is invariant under the
transition operator 7,. We claim that W} is invariant under the transition operator Tj.
Suppose w = vec (u ® v1), where u,v € Vj. By (5.2) we have

Tyw(a) = bxw(Ma) = %Vec ((axu) © (axv)")(Ma), «a€ Z°.

Let E be a complete set of representatives of the distinct cosets of Z°/MZ*®. Then we

have
T

((axu) © (ax0)") (Ma) = > (axu)(Ma + B)(axv)(5)

Bezs

=57 3 (axu)(Ma + My + n){awv) (M~ + 1
nek veZs

)T

But

(axu)(Ma+ My +n) =T, (u(-+n))(a+7v), acZ’
We observe that Vj is shift-invariant, i.e., u € Vj, implies u(-+n) € Vj, for n € Z*. Since Vj,
is invariant under T, we see that u, := T, (u(-+n)) lies in Vj,. Similarly, v, := T,(v(-+n))
lies in Vj. Consequently,

((axu) ® (axv)")(Ma) = Z Z up(a+7y) WT, acZ’.

nek veZs
Therefore,
1
Tyw = ~ Z vec(u, ©v)) € W
nek
This shows that W), is invariant under T}.

Let us consider the special case k = 1. Suppose a satisfies the basic sum rule with
respect to yg # 0. In this case, it is easily seen that

ni={vef@)ipy,  ve)=0}
and

Wi ={we ' @): oy,  wa)=0}

It was shown in [25] and [4] that the cascade algorithm associated with mask a con-
verges in the Lo norm if lim, . [|ay*v|s = 0 for each v € V;. Conversely, suppose
¢ € (L2(IR%))" is a compactly supported solution to the refinement equation (1.1) and ®
is stable. Then the proof of Theorem 4.1 tells us that lim,,_, » ||a,*v|2 = 0 for each v € V.
Thus, we have the following result.

aEe”Z®
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Theorem 5.2. Let b € 662 (Z?) be defined as in (1.6). If a satisfies the basic sum rule,
and if p(Ty|w,) < 1, then there exists a compactly supported solution ® € (L2(IR%))" to
the refinement equation (1.1) with a being the mask. Conversely, if ® € (Lo(IR%))" is a
compactly supported solution to the refinement equation (1.1) with a being the mask, and
if ® is stable, then a satisfies the basic sum rule and p(Ty|w,) < 1.

We conclude this section with the following characterization of the critical exponent
of ® in terms of the mask.

Theorem 5.3. Let ® be a 1 x r vector of compactly supported functions in Lo(IR?)
satisfying the refinement equation (1.1). Suppose the mask a satisfies the sum rules of
order k and the matrix M is isotropic. Then

AN@) > —(logg p(Tolw,.)) s/2-

The equality holds true in the above relation if, in addition, ® is stable and k is the largest
integer such that $(®) D Mx_1.

Proof. Let v € Vi. Then w := vec(v ® vT) lies in W},. By Theorem 5.1 we have
. 2/n
Jim lapxlls" < dp(Th|wy)-

Write py for p(Tp|w, ). For € > 0, there exists a positive constant C' such that
lan*v|s < Cd™?(pp +€)™? VneN.

Let
Ae := —(log,(px +€))s/2.

Then the above inequality can be rewritten as
|an*v|le < CdI/2A/5m vy e N,
By Theorem 4.1, ® lies in (Lip(\c, L2(IR%)))". Hence,
A(®) = Ao = —(logg(pr +£))s/2.
But € > 0 could be arbitrarily small. Therefore, we obtain
A(®) > —(log, pr)s/2.

Now suppose @ is stable and k is the largest integer such that $(®) D IIx_;. We must
have A\(®) < k, for otherwise A(®) > k would imply $(®) D IIj (see [40] and [4]). Since
® is stable and $(®) D IIx_q, the corresponding mask a satisfies the sum rules of order
k with respect to some y € T""(IR®). Let A, := A(®) — ¢, where 0 < ¢ < A\(®). Then
® lies in (Lip(Ae, L2(IR%)))" and k& > A.. Note that p(Tp|w,) = p(Tblwkméﬂ(K)% where K
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is the set Z° Ny 2 M~"(suppb). Since Wj N " (K) is finite dimensional, we can find
uj,v; € Vi, 3 =1,..., N, such that

Wi 067’2([() C span{vec(u; @vJT) :j=1,...,N}.

Let w; := vec(u; ©vj):j=1,...,N. We have

— i 1L/
Pk = P(Tbywkmgﬂ(}()) < 12}515\]{7}1_{%0 HTbanHoon}-

By (5.2) we have
d*[[bpxw;lloo < llan*ujlla llanvs 2.

Thus, from the proof of Theorem 5.1 we obtain
lim |77 w; |2/ < d—1< lim Han*ujug/”) ( lim ||an*vj|yl/“).
Since ® € (Lip(\e, L2(IR®)))"” with A. < k, and since ® is stable, by Theorem 4.1 we have

lim ||an*uj||§/n < d"?7*</s and lim ||an>kvj||§/n < qH2Aels,
o>

n—oo n—

Therefore,
pp < d VY EA 52 A s — g2,

It follows that
AMP) —e =X < —(log, pr)s/2.

But € > 0 could be arbitrarily small. We conclude that A(®) < —(log, pr)s/2. This
completes the proof. ]

§6. Invariant Subspaces

In the previous section, we reduced calculation of the critical exponent of a refinable
vector of functions to the spectral radius of the transition operator Tj restricted to Wi.
The purpose of this section is to find a basis for W;-. In this way, we will be able to apply
Lemma 2.3 to calculate p(Ty|w,,)-

Let y € T'"(IR?). Recall that

Vi = {v € G(Z°) : D"(y8)(0) = 0V |u| < k}

and
Wy, = span{vec(u ®vT) : u € V,v € V3, }. (6.1)

For £ € IR®, we have
(U O] UTY(&) = Z (u ® ol Z Z ulor + ﬁ T —i(a+5).§eiﬁ.§

a€Zs a€Z® ez’
= 3 (X o+ me—““”)'é)v(ﬁ)e—w-f = a(©)5()
Bezs Naczs
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Let us first consider the special case »r = 1 and y = 1. In this case, we claim that
Wi ={w € ly(Z*) : D"w(0) =0 Y |u| < 2k}.

Indeed, if u,v € V4, then DY4(0) = D¥%(0) = 0 for all |v| < k. Hence, D*(40)(0) = 0
for all |u| < 2k. Conversely, suppose w € £y(Z*) and h := w satisfies D*h(0) = 0 for all
|| < 2k. The following lemma tells us w € Wy.

Lemma 6.1. Let h be a trigonometric polynomial on IR® such that D*h(0) = 0 for all
|| < 2k. Then

h € span{g19z : 91,92 € T(IR*), D"g1(0) = D"g2(0) =0V |v| < k}.

Proof. For 8 € Z® we use dg to denote the sequence on Z° given by dz(ar) = 0 for
aeZ’\{B} and 0g(8) = 1. Let

V :=span{V*ég : |u| = 2k,0 € Z°},

and let U := V+. Suppose u is a polynomial sequence of degree at most 2k — 1. For
|| = 2k we have

(u, V'og) = Y u(@)V'os(—a) = Y VFu(a)ds(—a) = 0.

a€Zs a€Zs

Hence, u lies in U. Conversely, if u € U, then (u, V#é3) = 0 for all |u| = 2k and § € Z°.
It follows that (V*u,d3) = 0 for all § € Z°. Therefore, V#u = 0 for all |u| = 2k. This
shows that u is a polynomial sequence of degree at most 2k — 1.

Suppose h(§) = cz- v(a)e "¢, where v € £o(Z°). If D*h(0) = 0 for all |u| < 2k,
then

Z (—ia)!v(a) =0 V|u| < 2k.

y/Al

Consequently, (u,v) = 0 for every polynomial sequence u of degree at most 2k — 1. This
shows v € UL = (V1)L = V. Thus, h = 9 lies in span{(V*d3)" : |u| = 2k, 3 € Z°}. The
symbol of V#dg is

(1 - e—i&)m T (1 T e—iﬁs)use—iﬁf’ 5 = (517 s ;gs) € R”.

For |u| = 2k, this expression can be written as g1 (£)g2(£), where g; and g, are trigonometric
polynomials satisfying D" ¢, (0) = D" g2(0) = 0 for all |v| < k. []

The following lemma extends Lemma 6.1 to the general case.

Lemma 6.2. Suppose y = (y1,...,¥yr) € TlXT(IRS) and y(0) # 0. Let
G:={geT'(IR°): D"(yg)(0) =0 V|| <k},
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and let H be the set of those r X r matrices h of trigonometrical polynomials for which
D¥(yh)(0) = D*(hyT)(0) = 0 for all |v| < k and D*(yhy?)(0) = 0 for all k < |u| < 2k.
Then

H =span{g192" : 91,92 € G}.
Proof. We observe that both G and H are linear spaces. If g1, g2 € G, then h := ¢1G3"

satisfies
D¥(yh)(0) = D" (yg1ga" )(0) =0 VY|v| <k

and
DY (hg")(0) = D"(192" 5" )(0) = D" (yg2g1 " )(0) =0 V|v| < k.

Moreover,

D*(yhy")(0) = D*(yg1g2" 5" )(0) = D*((y91)(7g2)" ) (0) =0 V|u| < 2k.

Hence, h = ¢1g2° € H for all g1, 92 € G.
Conversely, suppose b = (hymn)i1<mn<r € H. Then DY (yh)(0) = D¥(hy*)(0) = 0 for
all |v| < k. Consequently, DY (y (him,- - - hem)T)(0) = DY ((hmi, -+, hmr) 51 )(0) = 0 for

T
each m =1,...,r and all |v| < k. Hence, (him,...,hrm)? € G and (Apm1,...,hmr) € G.
Without loss of any generality, we may assume that y;(0) # 0. Thus, for m =2,...,7 we
can find u,, € T(IR*) such that

D" (y1um + ym)(0) =0 V|v| <k.

For m = 2,...,r, consider the vector (u,,,0,...,0,1,0,...,0)T, where 1 is in the mth
position. In light of our choice of u,,, we have (u,,,0,...,0,1,0,...,0)7 € G. Let

Woi=h=> (um,0,...,0,1,0,...,0)" (A1, .., hunr).
m=2

Recall that (A1, ... ,hmr)T € G. Therefore, b’ lies in H. Moreover, for m = 2,...,r, the
mth row of b’ vanishes. Suppose the first row of A" is (h)y, hls, ..., h},). Since b’ € H, we
have (hy,.,0,...,00T € G form=1,...,r. Let

1m>»

r

W=h =Y (W0, 0)T (U, 0,...,0,1,0,...,0).

1m>
m=2

Then b € H. All the entries except the (1, 1)-entry of the matrix h” are zero. Let hY; be
the (1, 1)-entry of h”. Since h” € H, we have D" (y1h{;)(0) = 0 for all |v| < k. Moreover,
D*(|y1?hY1)(0) = D*(y1hY191)(0) = 0 for k < |u| < 2k. But y;(0) # 0. Hence, it follows
that D*(hY,)(0) = 0 for all |u| < 2k. By Lemma 6.1,

Ry, € span{fifa: f1, fo € T(IR®), D" f1(0) = D" f2(0) =0 ¥ |v| < k}.
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If f1, fo € T(IR®) satisfy D f1(0) = D f5(0) = 0 for all |v| < k, then gy := (f1,0,...,0)T
and g3 := (f2,0,...,0)T belong to G. This shows that

h' € span{g17z" : 91,92 € G}.
Therefore, h itself lies in span{gi1 gz’ : g1, 92 € G . ]
. e =T
Since (v ®v" )" =40 , we have
—T
span{(u ®v")" :u € Vi, v € Vi} = span{at :u € Vi,v € Vi }.

By Lemma 6.2, w € Wy if and only if @ = vec(h) for some h satisfying the following
conditions:

D*(yh)(0) = D*(hg")(0) =0V |u| <k and D*(yhg”)(0) =0Vk < |u| < 2k.
Let {t1,...,t,} be a basis for C'*". It is easily seen that
D*(yh)(0) =0 <= D*(yhtl) =0 VYm=1,...,r

Similarly,
D*(hg")(0) = 0 <= D*(t,,hg' ) =0 Vm=1,...,r.

We observe that
vec(yhtl) = (tm®@y)vec(h), vec(tmhy’) = (F@tm)vec(h), and vec(yhy’) = (FRy)vec(h).
Therefore, u € Wy, if and only if

D ((tn © )i) (0) = D*((F® b)) (0) =0Vl < k

and
D' ((gey)w)(0) =0 Yk < |u| <2k

By Leibniz rule for differentiation we have

(=iD)* ((tm ® y)1)(0) _ $ (=iD)* ¥ (tm © y)(0) (=iD)"w(0)

| — )l |
! = (n—v)! V!

But (—iD)"w(0) = > czs (—a)"w(a). Hence,




where u,, (|p| < k) is given by

—iD)*Vy(0
Z( )"y (0)

(k=)

Uy = qv,

v<p
and q,(a) = o’ /V!, a € Z°. Thus,
D ((tm @ y)0)(0) = 0 <= (ty @ uy, w) = 0.

Similarly,
D' (g @ tm)w)(0) = 0 <= (u), ® ty, w) =0,

where w, is given by u), (@) = u,(—«), a € Z°. Finally, for |u| < 2k, let

e 3 DT OHO)

= - (6.2)

Then
D*((g @ y)w)(0) = 0 <> (a,, w) = 0.
The above discussions are summarized in the following lemma.

Lemma 6.3. Suppose y is a 1 x r vector of trigonometric polynomials on IR® such that
y(0) # 0. Let {t1,...,t.} be a basis for C'*". If W}, is the linear space defined in (6.1),
then Wy, = UkL, where
Uy, := span{ty, @ U, u, @ty : |u| <kand m =1,... 7} +span{i, : k < |u| < 2k}.
Since Wp is invariant under the transition operator Ty, Uy is invariant under the
subdivision operator Sy, by Lemma 2.1.

In the above lemma, {ti,...,t.} could be any basis for C'*". But a particular choice
of bases will facilitate our study. Recall that A(0) = " .z a(a)/d. Suppose

spec(A(0)) = {m,n2,---,0r},

where n; = 1 and n; # 1 for j = 2,...,r. We choose a basis {t1,s,...,t,.} for C'*" such
that 1 A(0) = t; and

tmA(0) € span{ty,...,t.}, m=2,...,r
Suppose
'
tmA(0) = Z Dmntn, m=1,... 7
n=1
Then 11 =1 and N1 = N =0form=2,...,r.
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§7. Spectral Analysis

In this section we will establish Theorem 1.1 and other related results. For this purpose
we shall first find the spectrum of the subdivision operator Sy restricted to Uy.

Let y be a 1 x r vector of trigonometric polynomials on IR* such that y(0) # 0 and
y(0)A(0) = y(0). We choose a basis {t1,ta,...,t,} for €'*" such that ¢; = y(0) and
tmA(0) € span{ta,...,t,}, m =2,...,7. Recall that ¢,(a) = o /v, o € Z*, and

Uy = Z Yu—vqu, |,U/’ < k?

v<p

where y,,—, = (—iD)*"y(0)/(1 — v)!. In particular, yo = y(0) = t;. Moreover,

uit - Z yﬂ—l/(_l)‘yl(]w

v<p
For j =1,... k, let
Uj := span{ty, @ uy,u), @ty : |pu] <jand m=1,...,7}.
Lemma 7.1. The set
{tm @uy : |pl <k,m=1,...,r}U{u, @ty : [p] <k,m=2,...,7} (7.1)

forms a basis for Uj..

Proof. For |u| =0, we have

uh @ Yo = Yogo ® Yo = Yo @ Yogo = Yo @ Uo.

For || > 0 we have

U; R Yo — (—1)'”'%@ uy,
=Y (O ewe — DY Toa © yu-

v<p v<p
=S O @ yoas — (DS Toas © gy
v<u v<p
Note that
Yooy = — Y Yv—+q¢ and (=1)"g5g, = ul, =Y m(—D"g,.
TV )
Hence,

u, @yo — (D)@ u, =Y ()M eu, = > (D), @y, + J,
v<pu v<p
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where

J = Z Z [_(_1>|V|m®yl/—7 + (_1)|M V—H—'y v—1 & Yu— V:|q

v<p TV

It follows that

I=3 3 [ @y, (-1l

T U TV

Tééyufu]QT

Replacing v by p — v + 7 in the first part of the above inner sum, we obtain

> ~WmT ey .= ) ()RS oy,

TV TV

This shows J = 0. Therefore,

u; ® Yo — (—1)|“|%® Uy = Z [( 1)"’|yp, o Qu, — (— 1)'“_”|u,’, ® yp,,,,]. (7.2)

v<p

In light of (7.2) we see that the set in (7.1) spans U,. Actually this set is linearly
independent. To justify our claim, we first make the following observation. Suppose

t1,...,t, are linearly independent 1 X r vectors and wq,...,w, are 1 X r vectors. Then
w Rt +- - +w,Rt, =0=—=w; =0,...,w, =0. (7.3)
Indeed, there exist r x 1 vectors v, (n =1,...,7) such that
tmUn = Omn, m,n=1,...,r,
since t1,...,t, are linearly independent. Let I be the r x r identity matrix. Then

(w1 @t1+ -+ w, ) (I Rv,) =0.

But (w,, @tp) (I @vy,) = (W) @ (tnvn) = Wiyndmy. Hence, w,, =0 forn=1,...,r. This
verifies (7.3).
Suppose ¢;, (|u| < k, j = 1,...,r) and ¢}, (|u| < k, j = 2,...,7) are complex

numbers such that
) [Zcﬂﬂt ®“u+2%%®t ] 0.
lpl<k j=1

We wish to show that all ¢j, = 0 and c;- , = 0. In terms of the expressions of v, and uL
we have

SN Gt @yt + Y YD (1) Uy @ g, = 0.

<k j=1v<p lul<k =2 v<p
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As sequences on Z°, q, (Jv| < k) are linearly independent. In the above sums, consider
those terms involving ¢, with |v| = k — 1. Then we have

S [icmt ®yo+zw )y0®t]

lpl=k—1"j=1 J=2

.O

It follows that

(Zcﬂ‘ )®t1—|—ch Yo ®t; = 0.

Since t1,ta,...,t, are linearly independent, by (7.3) we have

chut_j:0 and ¢, (-1)'70=0, j=2,...,7.
j=1

Consequently, ¢j, = 0 for all |yl =k—1and j=1,...,7, and ¢, =0 for all |u| =k —

i
and j = 2,...,r. By using this argument repeatedly, we see that all ¢;, = 0 and c =0
Therefore, the set in (7.1) is linearly independent, so it forms a basis for Uj. [

Recall that spec(M) = {o1,...,0s} and o# = o'* -+ - ot for u= (p1,...,us) € Z°.

Lemma 7.2. The spectrum of the subdivision operator Sy restricted to Uj, is
{Mmo™ -m=1,...,r |u| <k}U{nmo=*:m=2,...,r |ul <k}

Proof. Suppose |u| =75 <k. Form=1,...,r and « € Z°, we have

Sp(fm @ w)(@) = Y (En © w,)(7)b(ew — M)

VGZS
_— Z > (tn @ uu()) (a(B) ® ala — My + 3))
WEZS BeZs
d Z ma (S UH)<Q+B))
BeZ®

By Lemma 3.2, there are complex numbers c,,, such that

Sauu = Z CuvUy, ‘:LL‘ :J

lv|=3

Moreover, the spectrum of the matrix (c.u)|uj=j,|v|=; 18 {7 : |u| = j}. For |v| = j, (3.8)
tells us that



where h,, € £(Z%). Thus, for o, € Z® we have
(Sauu)(a +ﬁ) = Z Cuuuu(a +ﬁ) = Z C/U/ul/ Z Z Cuu 1/7' (a)
lvl=j lvl=j lvl=j IT|<j

Hence, there exists some element w,,, € U; such that

50 & w) = 3 ()& (X ) +

BeZs lv|=3
But

— D (tma(B)) = tm A(0) = Z_jl Tt

Therefore, for m € {1,...,7} and |u| = j we have

S m ® u,u Z Z T]mncuu t ® 'U/V) + wmu (74)

n=l1|v|=j
Let A, denote the index set {(m,p) :m =1,..., 7, |u| = j}. With an appropriate ordering,
the matrix
(nmn C/“’) (m,pn)EA;,(n,v)EA;

can be viewed as the Kronecker product of the matrices (Tmn )1<m.n<r and (¢, )
Hence, its spectrum is

lul=3,|v=3"

{Mmo ™ -m=1,....r, |u| =3}

An analogous argument shows that, for |u| = j and m € {2,...,r},
Sy, @ tm ZZ N ) (Uy, @ ) + Wy s (7.5)
n=2|v|=j
where wiw € UJ’-. Note that the spectrum of the matrix (mn)2<m.n<r 18 {N2,..., 70}

For j =1,...,k, let Slgj ) denote the quotient linear operator induced by S; on the
quotient space U;/U;_;. Then (7.4) and (7.5) tell us that

Spec(géj)) = {Tmo " m=1,...,rpu=j -1 U{nmor:m=2,...,1|ul =j—1}.
Since
spec (Spluy) = Ulespec(géj)),
the proof of the lemma is complete. ]

By Lemma 6.3, we have U, = U], + span{1u, : k < |p| < 2k}, where @, (|u| < 2k) are
given by (6.2). As was done in §3, it can be easily proved that Uy is the direct sum of U},
and span{a, : k < |u| < 2k}. Also, the set {a, : k£ < |u| < 2k} is linearly independent.
For j =k, k+1,...,2k, let

U := Uy +span{ay, : k < |u| < j},
In particular, U = U}, and U}, = Uy,.
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Lemma 7.3. The spectrum of the subdivision operator Sy restricted to Uy is
{Tmo ¥ nmo=:m=2,....r,|p| <k}U{c™":|u| <2k}. (7.6)

Proof. Suppose |u| = j € {k,...,2k — 1}. Since Uy is invariant under Sj, there exist
complex numbers ¢, (k < |v| < 2k) and an element w,, € U, such that

Sytiy, = E Crp Uy + Wy
k<|v|<2k

Since Sy(V40,) = Vi (Sety,) for v € Z°, it follows that

Sb(vTaN) = Z CHV(V}_\}el T v?&es)alf + (v};}[el Y vﬁes)wlﬂ S NS
k<|v|<2k

We claim that ¢, = 0 for |v| > j. If this is not the case, then N := max{|v| : ¢, # 0} > j.
For [7| = N, we have V"1, = 0 and (Vy;, -V}, Jw, = 0. Moreover, by (3.12) we have

(V;}E1 ---Vﬁes)ﬂy =br, g for |7| =|v| =N,

where the matrix (bry)|-|=n,|vj=n has {o" : |u| = N} as its spectrum. Consequently,

> b, =0 Vi|r[=N. (7.7)
|lv|=N

Since the matrix (bry)|-|=n,vj=n is invertible, we obtain ¢,, = 0 for all |v| = N. This
contradiction justifies our claim. Therefore,

Sy, = Z CpvThy + W), (7.8)

lvl=j
where w;, € UJ'. For |7| = j, we deduce from (7.8) that
Surtio = Sp(V7i) = Y cun(Vie, -+ Vize )i = Y cuubryiio.
lv|=j lv|=j

Hence, the spectrum of the matrix (¢, )= jv|=; is {07 : |u| = j}.

For j =k+1,...,2k, let S'éj ) denote the quotient linear operator induced by S on
the quotient space U}’ /U ;. Then (7.8) tells us that

spec(S)) = {0 : Il = j — 1}.

Since
spec(Sylu,) = spec(Shluy, ) = spec(Shluy) U (U2, spee(Si7)),
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we conclude that the set in (7.6) is indeed the spectrum of Sj restricted to Uy. ]

By Lemma 7.3 and Lemma 2.3 we have the following formula:

p(Tylw,) = max{ lv| : v € spec (b(Ma — ﬁ))a,BeK \ Ef }

where
Ek = {nja-_'ll?n_jo-i'u : |ILL| < k:] - 27 cee ,’I“} U {0-7“ : |,u| < 2k}

This together with Theorem 5.3 verifies Theorem 1.1.

Let B be the matrix (b(Mao — 6))@ serc We say that B satisfies condition E, if 1 is
a simple eigenvalue of B and other eigeﬁvalues of B are less than 1 in modulus. Suppose
a satisfies the basic sum rule. Then W7 is invariant under T} and

p(Tylw,) = max{ |v] : v € spec(B) \ {1z, ..o 7, .77} |-

Thus, if B satisfies condition E, then p(Tp|w,) < 1, and hence the refinement equation
(1.1) has a compactly supported solution ® € (Ly(IR*))", by Theorem 5.2. Conversely, if
® € (Ly(IR?))" is a compactly supported solution to the refinement equation (1.1), and if
® is stable, then W is invariant under 73 and p(T3|w,) < 1. But, in this case, |n;| <1
for j =2,...,r (see [9] and [4]). Therefore, the matrix B satisfies condition E. When the
matrix M is 2 times the s X s identity matrix, this result was established in [42].

68. Examples

In this section we give three examples to illustrate the general theory. Our first
example, taken from [14], is concerned with orthogonal multi-wavelets.

Example 8.1. Let r =2, s =1, and M = (2). Suppose a € (3(Z) is supported on
{0,1,2,3}. Moreover,

1 8v/2 16 0
a(O)—Tg[% il o) =5 5 o]
1 0 0 1 0 O
=) 5 ) ew=g5 ]2 o)
We have LT V3
A(0) = [a(0) +a(1) +a(2) +a@))/2 = 1 | , 5 422}.

The eigenvalues of A(0) are 71 = 1 and 7, = —1/5. It can be easily verified that a satisfies
the sum rules of order 2, but a does not satisfy the sum rules of order 3. Let b be the
element in £3(Z) given by

b(a) = Z a(B) ®ala+8)/2, a€Z.

BeZ
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Then b is supported on Z* N [—3,3]. Let B be the 28 x 28 matrix (b(2a — ())_3<a.5<3-
The nonzero eigenvalues of B are

1 1 1 1 1 1 1 1 1 1 1 1

11
1, -, =, = = e e e e e —.
"4°8°8 5 5 107 100 207 207 207 20" 25’ 50" 50

Y

DN | —

Thus, there exists a unique compactly supported solution ® = (¢1,¢2)T € (L2(IR))? to
the refinement equation

3
o = Z a(a)®(2- — a)
a=0

subject to the condition [v/2,1]®(0) = 1. The shifts of ¢; and ¢, are orthogonal (see [14]).
Consequently, @ is stable. Hence, we may apply Theorem 1.1 to obtain

A(®) = —(logy p2),/2
where py = max{|v|: v € spec(B) \ Fz} and
By ={1,1/2,1/4,1/8,—1/5,~1/5,—1/10, —1/10}.
Therefore, po = 1/8 and A(®) = —(log, p2)/2 = 3/2. Note that
max{|v| : v € spec(B) \ {(1/2)* : p < 4}} = 1/5.
But we have A\(®) =3/2 > —(log, 1/5)/2. ]

Our second example is motivated by the study given in [37] on norm bounds for
iterated transfer operators related to numerical solutions to partial differential equations.

Example 8.2. Let r = 2, s = 2, and M = 215, where I; denotes the 2 x 2 identity
matrix. Suppose a € £3(Z?) is supported on (Z*N[0,5]2)\{(4,0), (5,0), (4, 1), (5,1), (0,5)}.
Moreover, a(0,0),a(1,0),a(2,0) are given by

1[0 o] 1fo o] 1[0 o0

§|—-1 0" 8|1 0] 8|—-1 0O’
a(0,1),a(1,1),a(2,1) are given by

170 0] 1o o] 1[0 o0

81 O 8|5 1| 8|1 1|’

a(0,2),a(1,2),a(2,2),a(3,2),a(4,2) are given by

1o 0] 1f1r -1] 1f8 1] 1[1 1
8|1 0]” 8|5 8] 8|1 8" 8|0 0f’
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a(0,3),a(1,3),a(2,3),a(3,3),a(4,3) are given by

170 o] 11 1] 1[8 5
8|-1 0> 8|1 1" ®B|-1 1]

and a(1,4),a(2,4),a(3,4),a(4,4) are given by
1fo —17 1fo 1] 1fo 1] 1[0 -1
80 0] 810 0]" 8[0 O 8|0 O |°

0= w33 3]

acZ?

We have

The eigenvalues of A(0) are n; = 1 and 72 = 1/4. Moreover, [1,1]A(0) = [1,1]. It can be
verified that the optimal order of sum rules satisfied by a is £ = 2. Let b be the element
in £3(Z?) given by

bla) =Y a(B)®@ala+p)/4, acZ’

pez?

Then b is supported in [—5,5]?. Let B be the 484 x 484 matrix (b(2c —f))a,pe[-5,52- The
leading eigenvalues of B are

1,1/2,1/2,1/4, 1/4, 1/4, 1/4, 1/4,0.13129521, 0.13060779, . . ..

Thus, there exists a unique compactly supported solution ® € (Lo (IR?))? to the refinement
equation

o = Z a(a)®(2- — a)

A

subject to the condition [1,1]®(0) = 1. By using the method in [18] we can show that ®
is stable. Hence, we may apply Theorem 1.1 to obtain

A(@) = - 10g4 P2;
where po = max{|v|: v € spec(B) \ Ez} and

111111 111111111
E=ipreess/ VLo rrressss

Therefore, ps ~ 0.13129521 and A(®) = —log, p2 ~ 1.46436842. ]

Our third example is a refinable vector of functions with Hermite interpolation prop-
erties (see [16]). Such refinable functions are useful in computer aided geometric design.
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Example 8.3. Let r=3, s=2, and

Clearly, the eigenvalues of M are 01 = 1+ and 092 = 1 — ¢, where ¢ denotes the imaginary
unit. Suppose a € £3(Z?) is supported on {(0,0), (1,0), (0,1),(—1,0), (0, —1)}. Moreover,
a(0,0), a(1,0), and a(0,1) are given by

1 0 0 /4 —3/4 0 1/4 0 —3/4
0 1/2 1/2|, | 1/16 -1/8 0|, |1/16 0 —1/8],
0 —1/2 1/2 ~1/16 1/8 0 1/16 0 —1/8

and a(—1,0), a(0,—1) are given by

/4  3/4 0 [ 1/4 0 3/4
—-1/16 —1/8 0|, |-1/16 0 -1/8
1/16  1/8 0 | -1/16 0 —1/8
We have ~
) 1 0 0
A(O):§Za(a): 0 1/8 1/8
aezZ? 0 —1/8 1/8

The eigenvalues of A(0) are ;3 = 1, 7o = (1 +14)/8, and n3 = (1 —i)/8. Moreover,
[1,0,0]A(0) = [1,0,0]. It can be verified that the optimal order of sum rules satisfied by a
is k = 4 (see [16]). Let b be the element in £3(Z?) given by

ba) =Y a(B)®@ala+p)/2, acZ’

pez?
Then b is supported on the set
{(a1,2) € Z?:—2<a;1—-a3<2, —2<a;+ay< 2}.
We observe that
K:=7Z’n (Z:;l M_”(Suppb)>
= {(a1,a2) € Z% : |a1| < 6, |ag| <6, |a1 — asz| < 8, a1 + as| < 8}.

The set K has exactly 129 points. Let B be the 1161 x 1161 matrix (b(2cc — 3))a.gek-
The first 27 eigenvalues of B (in terms of their absolute values) are

1, (1+1)/2, (1—14)/2,1/2, /2, —i/2, (1+4)/4, (1 —i)/4,—(1+14)/4, (—1 +1)/4,
1/4, —1/4, —1/4, i/4, —i/4, (1+14)/8, (1 +i)/8, (1+14)/8, (1 —i)/8, (1 —14)/8, (1 —i)/8,
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—(1+1)/8, —(1+4)/8, (=1 41)/8, (=1 +1)/8, 0.149024, 0.148796.

Thus, there exists a unique compactly supported solution ® € (Ly(IR?))? to the refinement
equation

o = Z a()®(M - — «)
acZ?

A

subject to the condition [1,0,0]®(0) = 1. It is known that ® is stable (see [16]). Hence,
we may apply Theorem 1.1 to obtain

)\(é) - = 10g2 P45

where py = max{|v|: v € spec(B) \ F4} and

Ey = {neo+, o " nso~r o+ [u| <4t U{o™" : |u| <8}

We see that

Therefore, A\(®) = —log, ps =~ 2.746387.

ps = max{|v|: v € spec(B) \ E4} ~ 0.149024.
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