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Abstract. Message Sequence Charts (MSCs) and High-level Messager®squ
Charts (HMSC) are formalisms used to describe scenariosesbage passing
protocols. We propose using Allen’s logic to study the teraporder of the mes-
sages. We introduce the conceptdcordto quantify the order discrepancies
between messages in different nodes of an HMSC and studgdtstamic prop-
erties. We show that while discord of a pair of messages tstiearompute in gen-
eral, the problem becomes polynomial-time computablesifilimber of nodes of
the HMSC or the number of processes is constant. Moreowvea, fiven HMSC,

it is always computationally easy to identify a pair of megsathat exhibits the
worst-case discord, and compute the discord of this pair.

1 Introduction

Message Sequence Charts (MSCs) and High-level Messager@sgGharts (HMSC)
are very useful tools for describing executions of commaitidn protocols. They pro-
vide an intuitive visual notation, which is widely used iraptice and has been formally
described in the MSC standard [11]. A related notation wss atlopted as part of the
UML standard. Intuitively, an MSC is described by a sepafcesseand a set ofmes-
sagesbetween these processes. The notation allows us to spheifgrtler in which
each process sends and receives messages. An HMSC is a draph modes are la-
beled with MSCs. An execution of an HMSC is a concatenatioM8{s that appear
on a path in this graph. Using HMSC notation, one can desalileenative behaviors
of systems, or even use it as a scenario-based programminglfem [10]. The reader
is referred to Section 2 for formal definitions.

Besides being used in practice, MSCs and HMSCs have beensesdly studied
from theoretical perspective over the past few years. Tssarch has pointed out sev-
eral difficulties with these formalisms. One such exampliaésproblem of detecting
race conditions in MSCs [2], i.e., the possibility that meggss arrive out of order due
to lack of synchronization. This problem has also been gdized to HMSCs [14] and



sets of MSCs [7]. Another problem is related to global ch§8], where some pro-
cesses behave according to one MSC scenario and other geede=have according to
another MSC scenario, resulting in new behaviors.

Continuing this line of research, in this paper we identifiptiher ambiguity of the
MSC notation. Namely, in the definition of an HMSC, a concatem of MSCs along
a path intuitively suggests that messages that appear iarheréMSC precede in time
any message that appears in a later MSC. In fact, in some fvarke such asive se-
quence chart$6] there is a hidden assumption of such synchronous natlowever,
according to the MSC semantics, this is is not the case: em#gnce between events
happening in different sets of processes may allow messadager MSCs to over-
lap or even sometimes appear earlier than messages in pseMiSCs. Moreover, it
is not clear how to achieve this kind of synchronization withan additional mecha-
nism or extra messages. Clearly, this discrepancy maytriesukers misinterpreting
the notation and, as a result, designing protocols that davodk as intended. This
is reminiscent of the concept of race conditions: the shtéagward visual interpreta-
tion of concatenation is different from the intended sericantHowever, unlike for race
conditions, this discrepancy has not been studied before.

In this paper, we provide a formal treatment of this issue.iif@duce the notion
of discordof a pair of messages in different nodes of an HMSC. Intuifiube discord
of two messages is the worst possible discrepancy betwearotider in an execution
and their “ideal” order, in which the message in the MSC ttdears earlier on the
path precedes the message in the MSC later on the path. Talfperthis intuition, we
need several tools that we introduce below.

We start our study of the message order in MSCs and HMSCs hyinigthe con-
cept of achain Informally, a chain is a sequence of events where any adfjgegr of
events is ordered either by being a send-receive pair, oelpnging to the same pro-
cess line. Hence, a chain represents a possible flow of isfiom Clearly, the order
between messages is determined not only by the relevanagesthemselves, but also
by chains between their endpoints. We characterize thelppessessage orders by de-
scribing the possible communication patterns between émgipoints. We then project
each such pattern on a global timeline and classify thetingidcenarios. To do so, we
use a subset dllen’s interval logic[1]. Allen’s logic is a formalism for describing the
relative order of time intervals. For example, Allen’s loormulaAd B expresses the
fact thatA happens durings, i.e., A starts afterB starts and ends befor¢ends. It has
been widely studied in the context of artificial intelligenand knowledge representa-
tion, and its expressive power and computational propeaie well understood [12].
As messages can easily be seen as time intervals, it pravic@svenient language for
describing the message order. We introduce a natural ogleri Allen’s logic prim-
itive predicates and define the discord of a pair of messagas MSC as the worst
possible Allen’s logic primitive predicate (according tos ordering) that corresponds
to the communication pattern of this pair.

We study the concept of discord from the algorithmic perspecFirst, we show
that computing the discord of a pair of messages is coNP-mmur reduction as-
sumes that both the number of nodes in the HMSC and the nunilpeocesses are
part of the input. We show that this is inevitable: if eithértlbese numbers is fixed,



the discord can be computed in polynomial time. We then facusharacterizing the
discord of an HMSC by a single parameter. To this end, we défiealiscord of an

HMSC as the worst possible discord of a pair of messagessHiSC. Surprisingly,

it turns out that this quantity can be computed in time poiyra both in the size of the
MSC graph and the number of processes. Intuitively, theoref that is that it is easy
to identify a pair of messages that exhibits the worst-catabior for a given HMSC

and compute the discord of such a pair. The study of discamldges also a generic
study of the existence of communication chains, which webelwill be interesting in

its own right in studies of layered combination of commutiaaalgorithms.

2 Preliminaries

2.1 Message Sequence Charts

Following [11], we formally define message sequence ch&&Js), MSC concatena-
tion, and high-level message sequence charts (HMSCs).

Definition 1. AMessage Sequence Ch@MiSC)is atuple’ = (P, E, P, M, <p.ep),
where

— P is afinite set oprocesses

— Fis afinite set okvents

— P : E — Pis afunction that maps every event to the process on whiattiirs;

— M is a finite set of messages. Each message M consists of a pair of events

(s, r) for sendandreceive
— For each procesp € P, <, is a total order on the events of that process.

We define a relation< as <= U,cp <p U{(s,7) | (s,7) € M} and let<* be
the transitive closure ok. We require<* to be acyclic. We assume that MSCs are
FIFO, that is, if two messages, 1) and (s2,72) are between the same processes,
i.e.,P(s1) = P(s2) and P(r1) = P(r2), thens; < sy impliesr; < 7.

We will occasionally abuse notation and writee C' instead ofm € M.

Definition 2. LetCy, C; be two MSCs wher€, = (P!, E*, P}, M!, <! ), Cy =

p:pEP!
(P?, B2, P*, M?, <2 p) With P! = P? = P and E' N E* = (. Define their
concatenatioras an MSC(C1;Cs) = (P, E, P, M, <,.,cp), WhereE = E' U E?,
M = MTUM?Z, the functionP is given byP(e) = Pl(e)if e € E* andP(e) = P?(e)
if e € E?, and for eactp € P we define<,=<} U <2 U{(e1, e2)|P' (e1) = P?(e2)}.

Notice that there are no sends in one MSC that are receivdabinther. This def-
inition can be naturally extended to sequen€esCs, . . ., C,, of three or more MSCs
by setting(C1; Ca;...;Ch) = ((-.. (C1;C2);C3) . . .).

Definition 3. A High-level Message Sequence Chart (HMSC) is a téple= (G, C,
Vo, A), whereG = (V,€) is a directed graph with the vertex set= {v1,...,v,}
and the edge sef C V x V,C = {C4,...,C,} is a collection of MSCs with a
common set of processes and mutually disjoint sets of eugnts V is a set ofinitial



nodes, and\ : V — C is a bijective mapping between the nodes of the graph and the
MSCs inC. To simplify notation, we assumév;) = C;. Each vertex of is reachable
from one of the initial nodes. Aexecutionof the HMSC is a finite MSCC;; . . .; C;)
obtained by concatenating the MSCs in the nodes of a path.,v; of the HMSC
that starts with some initial node, € V. Thesize|H| of an HMSCH is defined as

|H| = |E1| + -+ |E.| + |V]| + |€], whereE; is the set of events of the MSG.

Givenapathl = (v;,...,v;)in G of length at leas?, we denote by\(L) the MSC that
is obtained by concatenating the MSCs aldnge.,(C;; . . . ; C;). The set of executions
of an HMSC is also referred to as the set of M3feseratedy that HMSC.

We can define infinite executions in a similar way. This regmidefining the con-
catenation of an infinite sequence of MSCs, which is the lofithe sequence of finite
concatenations of prefixes. As this does not add to the sdsithe paper, we only refer
the reader to, e.g., [9].

'

mi|[PL] [P2] [ P3]| w2 PY [ P4 [ P3
Connect Approve
A
Y
m3 [PL] [P2] [ P3]| wma|[PL] [P2] [ P3]
Fail
- Reqg$ervice
Report
Fig. 1.An HMSC

Figure 1 shows an example of an HMSC. The node in the upperdefier, denoted
M1, is the starting node, hence it has an incoming edge thairisected to no other
node. Initially, process P1 sends a message to P2, requestionnection (e.g., to
an internet service), according to the node M1. This canltr@seither an approval
message from P2, according to the node M2, or a failure messagording to the
node M3. In the latter case, a report message is also sentHeotm some supervisory
process P3. There are two progress choices, corresporalthg two arrows out of
the node M3. We can decide to try and connect again, by chgdisearrow from M3
to M1, or to give up and send a service request (from process Pilocess P3), by
choosing to progress according to the arrow from M3 to M4.eNwdw the HMSC
description abstracts away from internal process comiputadnd presents only the



communications. Consider the path (M1, M3, M4). Accordimgte HMSC semantics,
process P2 does not necessarily have to seriReiport message in M3 before process
P1 has progressed according to M4 to senBég_service message. However, process
P3 must receive thReport message before tHeeq_service message.

2.2 Allen’s logic

Allen’s logic [1] is a formalism that allows one to expresmgoral relationships be-
tween time intervals. It has 13 primitive relations thatrespond to possible relation-
ships between two intervals, such as preceded3” or “ A happens during3”. Each
primitive relation describes a total order between the eimp of these intervals. When
working with MSCs, we normally assume that no two events apkn at the same
time, i.e., no two intervals have a common endpoint. Theesftm represent relation-
ships between two messages = (s1,71) andmsg = (s2,72), we will only use 6 of
these primitives, namely:

p — my precedesns (i.e.,s1 < r1 < $2 < 12);

p~' — my is preceded byn, (i.e.,50 < 1o < 51 < 11);
o — my overlapamns (i.e.,s1 < s9 < 11 < 13);

o~ ! —m; is overlapped byn, (i.e.,s0 < 51 < 19 < 11);
d — my isduringms (i.e.,s2 < 51 <711 < r39);

d—! — m; containsm; (i.e.,51 < 52 < 19 < 11).

Observe that fot € {p,o,d} the predicateit B is equivalent taBt ! A.

Fig. 2. Allen’s logic relationshipsApB, AoB, andAd~'B

An Allen’s logic formula consists of concatenation of onexwre of these 6 letters,
and is interpreted as a disjunction of the correspondindipates. For example, the
formula Apod~—!' B says that eitherd precedesB, or A overlapsB, or B happens
during (is included in)A. Given the semantics of the primitive predicates, it is gasy
see that this formula says thatstarts before3, but may end beforep), during ©),
or after d~!) B. There are several operations that can be performed on'Allegic
formulas, such as composition and intersection. Howenehis paper we only use the
Allen’s logic as a means to describe the relationships batweessages. Therefore, we
will not formally define these operations.

3 Relationships between Messages

In this section, we will show how to use Allen’s logic to reasabout the relationship
between a given pair of messages.
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Fig. 3. Impossible relation between messages

Given an MSC(C, achainfromz € Etoy € FE is a sequence of evenfs =
€irs Cigs -5 €y, €5, = Yy) SUChthat;, € Eforj=1,...,k, and every adjacent pair
(ei;,ei;,,) in the chain is either a send and the corresponding receivg, @appears
before (abovey;, , in the same process line. Clearly,<* y if and only if there is a
chain of messages fromto y. Now, consider a pair of messages, 1) and(sa, r2).

By definition, there is always a chain from to r; and froms, to 5. Moreover, for
any(a,b) € {s1,71} x {s2,r2}, we have one of the following three cases: (1) there is a
chain of messages fromto b; (2) there is a chain of messages frbto a; (3) there is no
chain in either direction. As there are four pairs of poititss corresponds t3* = 81
combinations. However, not all of them are possible, as M&Dsot admit cycles (see
Figure 3). In fact, for two messages there are exactly twpogsible combinations of
orders between their endpoints. We list them in Figure 4hése figures, the messages
correspond to the vertical arrows, and dashed arrows qameto relationships derived
by transitive closure.

The patterns in Figure 4 correspond to the following Allelogic relationships:
(@pp 'oo~'dd'; (b)p; (c)pod'; (d)po; (€)o; () d~'; (g)od™*; () poo~'dd~;
(i) od; (j) opd; (k) oo~ 'dd~!. Except for cases (a) and (k), which are symmetric, each
other case has a symmetric twin that can be obtained by sngipe left and the right
message.

To decide between these cases, it suffices to calculateathsitive closure relation
<*. While in general transitive closure algorithms run in autiine [8, 16], it has been
observed [2] that in the MSC case one can be more efficiené ®ach event has at
most two successors. Formally, we have the following pritjpms

Proposition 1. [2] Given an MSCM with messages, - - - , m;, one can decide in
time O(t?) the relation between every;, m;, 1 <i,j < t.

We will now derive a corollary that will be useful in bounditige running time of our
algorithms.

Corollary 1. Given an HMSCH = (G,C, Vo, A), |C| = n, one can compute the rela-
tion <* for all MSCs inC in time O(| H |?). Moreover, one can compute the relatian
for all concatenated MSCs of the for@;; C;), whereC;, C; € C, in timeO(n|H|?).
Finally, given the relation<* for all concatenated MSCs of the forf@’;; C;), where
C;,C; € C, one can compute the Allen’s logic relationship for all gagf messages
m,m/, wherem € C;, m’ € C;,C;,C; € C,intimeO(n|H|?).



(h)

(k)
Fig. 4. The possible orders between messages (up to symmetry)

Proof. Let E; be the set of events of the MSC;. By Proposition 1, we can compute
<* for C; in time O(| E;|?). Therefore, computing:* for all C;, i = 1,...,n, takes
time O(|E1[* + -+ |En|?) = O(|Er| + - + |Ea])?) = O(|H[?).

Similarly, computing the relatiorc* for (C;; C;;) can be done in timé((|E;| +
|E;)?). As (|Ei| + |E;|)? < 2|Ei|? + 2|E;|?, computing<* for all MSCs of the form
(Cy;Cy),4,5 =1,...,n,canbe done intim@(n(|E1|?> + - -+ |E,|?)) = O(n|H|?).
Now, fix 1 < 4, j < n. Given the relation<* for (C;; C;), the Allen’s logic relationship
for any pair(m, m’), m € C;, m’ € Cj, can be computed in constant time. As there
areO(|E;||E;|) such pairs, computing the Allen’s logic relationship fdradlthem can
be done in time)(|E;||E;|) = O((|E;| + |E;])?). Summing over alf,j = 1,...,n,
we obtain the bound aD(|H |?), as claimed. O

4 Definition of Discord

Concatenating two MSC&'; andC> does not necessarily mean tladitthe messages
of C precede in time all the messages(®f: for example, ifC; consists of a single
message from; to po, andCy consists of a single message fregito p4, the relation
< does not provide any information about the relative ordehege two messages. In
what follows, we propose an Allen logic-based formalisnt Hieows us to quantify the
ordering discrepancies that occur when concatenating M@@sstart by considering
sequences of MSCs, and then extend our analysis to HMSCs.



Consider a concatenated M$C; ; Cs). For any two messages; = (s1,71) € C4

andmg = (s2,72) € Co, we know thats; < r; andss < ro. Now, intuitively, the best
possible scenario fqiCy; C2) is when all messages iff; precede all messages(rs.
In this case, we also hawvg < so, and thus we obtair; < r; < so < r9. This
corresponds to case (b) in Figure 4. Note that this scensudmly possible whed;
has a unique maximal eventCs> has a unique minimal event, ande ande’ occur on
the same process, i.d2(e) = P(¢).

Conversely, the worst possible case is when some messageC> may be com-
pletely unordered with respect to a messagein C;. That is, for somen; andms
as above, the situation is described by case (a) in Figurelsly the Allen’s logic for-
mulam,pp_'oo~'dd~'m.. In this case, at worst, the Allen logic formula allows
to actually preceden, since the disjunction permits in particular thatp—'m.. All
remaining scenarios lie, as will be formulated below, betvihese two cases. We will
now introduce a measure of discrepancy, which we caldiseord which will allow
us to order them more precisely,

Given a concatenation of two MSQ€';; Cs), two messagesy; = (s1,71) € C4
andmg = (s2,7m2) € Co are said to beut of orderif r; does not preceds;, i.e.,
—mipms. In Figure 4, this happens in cases (a), (c), (d), (h), andN@te that in our
setting, the cases (e), (f), (9), (i), and (k) are impossiloieeach of these cases, there
are chains of messages starting from events.@fand ending in events of.;, which
cannot happen under concatenation.

We now classify all primitive Allen logic predicates accorg to how well they
order the endpoints of the projected intervals, i.e., regmethe order between the events
of the two messages:; and m.. Recall that in the ideal case, i.e., when the order
between the intervals is described by the Allen logic praip, we haves; < r; <
s2 < ro. In this case, there are zero eventq i3, 2} that precede those ifs, 71 }.
Under the worst case, i.e.,ifis fully precedesn;, we count four inversions: namely,
s < 81, 82 < 11,79 < s1 andsy < r1. We thus order the predicates according to how
many of these four relationships are inverted. In case @,au\& give preference to the
relationships that involve; to those that involve; .

Definition 4. The total order< is the transitive closure of the partial ordet, given
by —<0: {(p7 O)’ (07 d_1)7 (d_17 d)7 (d7 0_1)7 (0_1 Y p_l)}'

Remark 1.0bserve that the number of inversionsgn' is 4, as explained above, in
o litis 3,ind andd~'itis 2, inoitis 1, and inp it is 0. Therefore, our decision
thatd—! < d may appear quite arbitrary. We made this choice for two nesiseirst,
we do think that the time when the messages are sent is mogetamp than the time
when they are received, as the designer has more contraltevéarmer, and second, it
is convenient to have a total order to work with. However, wédve that many of our
ideas and results will apply for different orders, inclugisome that are not total.

Definition 5. Consider a sequence of MSE3, .. ., C}) and a pair of messages; €

C1, my = Cy, such thatin the MSC' = (Ci;. . .; Ci) we haven; Rms, whereR is a
(possibly non-primitive) Allen’s logic predicate. THiscordof m; andms with respect
to C' is theworstpossible primitive predicate (largest according+) that appears in



R, i.e.,discordc(my,ma) = t, wheret € {p,p~!,0,071,d,d"'}, t appears inR,
and for all t’ that appear inR we havet’ < t.

Let us now apply this definition to the six cases that can ofmua pair of mes-
sages in a concatenated MSC, as illustrated in Figure 4 sk @ the messages are in
relationshippp~'oo~!'dd—!. The worst elementary predicate in this formulgis',
so we conclude that the discord between the messages is-or case (b), there is only
one relationp. Similarly, for case (c) the discord &', for case (d) it iso, for (h) it
iso~ !, and for (j) it isd. We conclude that the value dfscordc (m1,mo) can beany
elementary Allen’s logic predicate.

We now extend the definition of a discord to messages in HMSCs.

Definition 6. Given an HMSCH = (G, S, Vy, A) and a pair of messages; € A(v),
my € A(v'), letdiscord g (m1, ma) = max™{discordy()(mi,m2) | L = (v,...,v")},
wheremax= 4 is the maximum element of the setvith respect to<.

Consider now the HMSC in Figure 1. For the path (M1, M2), treedid isp, since
the maximum event of M1, which is a receive, precedes themini event of M2,
which is the send of messag@prove. On the other hand, for the path (M1, M3, M1),
we have that th&eport message of M3 corresponds to ennect message of M1
as in case (h) of Figure 4, which means a discordof. The discord of (M3, M4) isl
due to the relative ordering betweBeport in M3 andReqService in M4,

We will now state a simple observation that allows us to comgiscord g (14, m2).

Claim 1 Consider an HMSQT = (G,C, Vo, A). For anyu,v’ € V, v # ¢/, and any
my € AN(v), mz € A(v'), we haveliscordg (m1, mg) = max~{discordz)(m1, m2) |

L = (v,...,v") is asimple path. Also, for two messagesi;, ms € A(v), we have
discordg (m1, mz) = max~{discordyr)(m1,m2) | L = (v,...,v) is a simple cycl¢.

Intuitively, this is true because removing a loop from a pfatim v to +' can only
increase the discord between andms. Hence, the path that exhibits the worst-case
discord is loop-free.

5 Computing the Discord of a Pair of Messages

For a simple patll = (v = v;,,...,v;, = v'), computingdiscordyz)(m1,mz) for
m1 € A(v), ma € A\(v') is easy. Namely, first we run the transitive closure algarith
to determine the causal relationships between the endpoint; andm.. We then
identify the corresponding scenario of Figure 4 and apptydhse analysis presented
after Definition 5. The running time of this algorithm is quaitic in the total number
of messages in(L).

For HMSCs, Definition 6 and Claim 1 suggest a straightforvedgdrithm for com-
puting the discord: given two messages € A(v), ms € A(v'), we can consider each
simple path from to v’ (or each simple cycle, if = v’), compute the discord along this
path, and output the maximum discord obtained in this wais mhive algorithm runs
in exponential time in the input size. In the next subsec¢toa show that this is per-
haps inevitable: we prove that in general the problem of aging Discord g (m1, ma)



is coNP-hard. However, we will now provide an alternativeywé verifying whether
Discordg (m1,m2) = t, wheret € {p,p~!,0,071,d,d"!}. As we will see later, it
can be used to construct an efficient algorithm for compuiiisgord i (m1, m2) in the
important special case when the number of processes isatinst

We will first define a related problem that will be useful foatitg our results.

PATH WITH NO CHAIN: Given an HMSCH = (G = (V,€),C,V, A), a pair of
nodesv,v’ € V, and a pair of evenise A(v),e’ € A(v'), is there a patiL fromv to v’
in G such that in the MSQ.(L) there is no chain of events froato ¢’? We will write
PNCy (e, €’) = 1 if such path exists anBNCy (e, ¢’) = 0 otherwise.

Proposition 2. Givenan HMSCH = (G = (V,£),C, Vo, A), apair of nodes, v’ € V,
and a pair of messages, = (s1,7r1) € A(v), ma = (s2,7r2) € A(¢v'), we have

— discordg (mq,ms) = p ifand only if PNCg (71, s2) = 0.
— discordg (my,me) = o if and only if PNCg(r1,s2) = 1, PNCg(s1,82) = 0,
andPNCH(rl,rg)
)

=0.
— discordg (my,ma) = d~tifand only if PNCy (r1,72) = 1 andPNCg (s, 52) =

0.

— discordy (m1,me) = d if and only if PNCpy(s1,s2) = 1 and for any path, =
(v,...,v")in G, the MSCA(L) contains a chain from; to s, or a chain fromr
torsy.

— discordy (m1,me) = o~ ! if and only if there exists a path = (v,...,v’)iIn G
such that the MSQ\(L) contains no chain from; to s, and no chain from to
T2, andPNCH(Sl,TQ) = 0.

— discordg (my,mg) = p~tifand only if PNCy (s1,72) = 1.

Proof. The analysis fop, o, andp~! is straightforward.

If discordy(myi,ms) = d~!, then there is a patlhi = (v,...,v) that satis-
fies discordy(y(m1, m2) = d~!. Clearly, \(L) contains no chain from; to r,, so
PNCpg(r1,72) = 1. Also, forany pathl’ fromv to o', we haveliscordy .y (m1, m2) €
{p,0,d"'}, so L’ contains a chain from; to s,. Hence,PNCg(s1, s2) = 0. Con-
versely, if PNCy(r1,72) = 1, then there is a patll from v to v with no chain
from r; to ro, so it cannot be the case thdicordy ) (m1,m2) € {p,o}. Hence,
discordy(ry(m1,ma) = d~!. On the other handPNCx (s1,s2) = 0 means that any
pathZ’ fromw to v’ contains a chain from, to s», SO we haveliscord, 1y (m1,ma) &
{d,o~!,p~'}. Other cases can be analyzed similarly. 0

Note that to check ifliscord g (m1,m2) = t fort € {p,p~!,d !, o}, it suffices
to make a small number of calls RNCy. However, to check itliscord i (m1, ms) =
t for t € {d,o !}, calling PNCpy is not enough. Indeed, to verify, e.g., whether
discordy (m1, m2) = d, we have to check that any path between the corresponding
nodes containsitherone of two chains: a chain from to sy or a chain fromr; to rs,
and this check cannot be simulated by call# Cy .

5.1 Computational hardness

We will now show that for HMSCs the problem of upper-boundiixgord ; (m1, ms2)
is coNP-complete. Formally, we consider the following peoi:
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DISCORD(H, t, m1,ms): Given an HMSCH, a predicat¢ € {p,p~',0,07},d,
d~!}, and two messages;, m» in H, is it the case thatiscord g (my,m2) < t

Theorem 1. The problenDISCORD(H, t, m1,m2) is cONP-complete.

Proof. To see that DsCORD(H, t, m1,m2) is in CONP, observe that the complementary
problem of checking whethetiscordy (m1,m2) > t is in NP: a certificate can be
provided by a patt, such thatdiscordy(z(m1,m2) >~ t. In particular, fort = p a
certificate is a path with no chain from to s,, for t = o itis a path with no chain from
ry torg, fort = d~! itis a path with no chain froma; to s, fort = d it is a path with
no chain froms; to s, and no chain fromr; to r», and fort = o' itis a path with no
chain froms; to rs.

The coNP-hardness proof is by reduction from 3SAT. Suppleaewe are given

a 3CNF formula with a set of variables, ..., z, and a set of clauses,...,cpy.
Let ljl,lf,l3 be the literals that appear in tbth clause, i.e.¢; = I; VI3V lf, lf

{x1,...,2n,T1,...,Ty}. We construct an HMSCI as follows. SetP? = {pl,pg,p3,
D4y Dy s Py« -« s Pans Pans Deys - - - 5 Dey,, - ThE HMSCH has the following structure. Its
underlying graphg has a sourceq, a sinkvy, n variable gadgety, ..., X,, andm
clause gadgets|, . .., Y,,. The variable gadge¥; consists of four vertices!, u}, u?,
u? and four edgeéu?, u}), (u?, u?), (ul,u?), (u?, u? ) The clause gadgét consists of
five verticesw?, w}, w?, w3, w} and six edge&w?, w}), (w, w?), (w?, w?), (w},w}),
(w?, w}), (w3, w; ) The source the vertex gadgets the clause gadgets, asiditrere
all connected in series as depicted in Figure 5. More prigcigere is an edge fromy,
to the vertexu}, foralli = 1,...,n — 1 there is an edge from? to v}, ,, there is an
edge fromu? to w?, foralli = 1,...,m — 1 there is an edge from; to v}, ,, and
finally there is an edge from?, to v;.

M b= X )N T v S VI I -
1 2 Xn m,

P1 Py vq Vq P3 Py

Fig. 5. The high-level structure of the HMS@& used in the proof of Theorem 1.

It remains to define the MSCs that are placed in the verticgs dhe MSC invg
consists of a single messagq, rl) from p; to p>. The MSCs in the vertices!, v}
wj,w areemptyforali =1,...,n,j=1,...,m.Fori = 1,...,n, the MSC inu}
consists of a message fropa to p,,, and the MSC inu? consists of a message from
patopz,. Forj=1,....,m, k= 1,2,3,the MSC inw;-C contains a message frqmjc
to p;, wherel}C is thekth literal of ¢;. Finally, the MSC inv; hasm + 1 messages: a
message from eagh,, j = 1,...,m, to p3, and a message, = (s2,72) from ps to
p4 thatis sent after all messages fromal| are received.
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\
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Fig. 6. (a) The gadgeX;; (b) The gadget;

We claim that the original 3CNF formula is satisfiable if analyoif the tuple
(H,p,m1,my) constitutes a “no”-instance of IBCORD(H, p, m1,m2), i.e., there is
a pathL from v, to v; such that the MSQ(L) contains no chain from; to ss.

Indeed, suppose that our formula is satisfiable, and’let (¢1,...,t,), t; €
{T, F'} be a satisfying assignment for it. Consider a patthat satisfies the follow-
ing conditions:

— L starts atyy and ends at;
- LNnX;={uul,ud}ift; = FandL N X; = {uf, u?, ud} if t; = T;

1 7
- LNY; = {w),wk,w}} for somek € {1,2,3} such that’ is true underT, i.e.,
I* =z andt, = T orl} = z, andt, = F. Note that sucli is guaranteed to
exist sinceZ has to satisfy:;.

First, note that in the corresponding MSCL) there is no chain from; to any event
of any of the processes, j = 1,...,m. Indeed, the only message receivedipyin
A(L) is from somep; such that} is true undef7". Sincel} is true underT, in A(L)

the proces;: receives no messages whatsoeverpAsnly receives messages from
J

Pe;rj = 1,...,m, we conclude that in\(L) there is no chain from; to s.
Conversely, suppose that there is a patuch that in the corresponding MSCL)
there is no chain from to so. Consider a satisfying assignmeht= (¢4, ...,t,)

such thatt; = Fif LN X; = {uf,u},u3} andt; = Tif LN X; = {uf,u?, u3}.

Note that for anyj = 1,...,m, if LNY; = {w, w}, w}} for somek = 1,2,3, it

must be the case thaf. receives no message fragmin A(L), because otherwise there
J

would be a chain of messages framto s,. Hence, the IiteraA;-c is true undefT, i.e.,

12



¢, is satisfied. As this holds for any= 1,...,m, we have successfully constructed a
satisfying assignment for our instance of 3CNF.
m|

Remark 2.Clearly, the proof of Theorem 1 implies thaam™ wiTH NO CHAIN is NP-
hard. Moreover, we can consider a weaker version fdORD, in which the Allen
logic predicate is not part of the input. Namely, foe {p,p~!,0,071,d,d "'}, let
DiscoRD(H, m1,my) be the problem of checking whethéiscord g (mq, m2) =< t.
Obviously, fort = p~! this problem is trivially in P: the answer is always “yes”.
Our proof shows that fot = p this problem is coNP-hard. To show that it is hard
for t = o, we can modify the reduction by changing the directiomqf (i.e., setting
P(s1) = pa2, P(r1) = p1) and adding to the MSC iny a messagey; = (s},r}) from

p1 to ps With 71 <, s}. Thenin any path i there is a chain from,; to r,, and there
is a path with no chain from; to s, if and only if the 3CNF formula has a satisfying
assignment. Similarly, to show that®z ORDy-1 (H, m1, m2) is cONP-hard, we change
the direction ofm,, to show that DsCORD4 (H, m1, m2) is cONP-hard, we change the
direction ofms, and to show that BBCORD,-1 (H, m1,m2) is CONP-hard, we change
the direction of bothn; andms. We conclude that all five non-trivial versions of the
problem are coNP-hard.

5.2 Polynomial-time algorithms for bounded number of processes

In our hardness result, both the size of the gr@mnd the number of processPsare
unbounded. It turns out that this is necessary: if eithehe$é parameters is constant,
there is an algorithm whose running time is polynomial indkieer parameter.

This is easy to see if the size of the graph is constant. Incodat, the naive al-
gorithm described in the beginning of this section will rumpolynomial time: in a
graph with a constant number of vertices, there is a constamber of simple paths
and cycles, and one can compute the discord along a pathyingrolal time.

The case when the number of processes is constant is caatsliglenore compli-
cated. Our algorithm for this setting is based on Dijksts&srtest path algorithm com-
bined with dynamic programming approach. The underlyirgit that given a pair of
eventse € A\(v), ¢/ € A(v') and a subset of processgswe can check if there is a path
L from v to v’ such that the set of processes reachable ffram\(L) is exactlyS. A
straightforward generalization of this idea allows us tmpate the discord of any pair
of messages in an HMSC in polynomial time for any fixed valugRif Formally, we
prove the following result.

Theorem 2. It is possible to computéiscord (m1,ms) in timeO(n?24%1| H|?).

We start by describing an algorithm foa™ wiTH NO CHAIN. Next, we show
how to generalize it to compuidiscordy (m1, m2). Note that just like in Dijkstra’s
algorithm, we simultaneously check whether there is a péthmo chain from a given
evente € C' = \(v) to all other events. Therefore, this algorithm can be easigpted
to compute the discords for all pairs of message im time O (n3247!|H|3).

Let K be a strict upper bound on the number of events on any processlany
MSC in H. Re-number all events so thﬁij, k=1,...,K —1,isthekth event on the
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process ling; in the MSCC;. For the purposes of the algorithm, we will introduce two
dummy eventamln ande;"** on each process line of every MSCih The evenfs”lln

precedes all eventgC and the event’»* follows all eventse} ;. It is |mp0rtant to
note that these are not send or receive events so they haffenbon the information
flow in H. However, we will occasionally talk about chains to and friirese events,
where a chain is defined in the same way as for regular evertsaythat a procegs
is reachablefrom e along a pathy = (v, ..., v;) if in the MSC (C;. . .;C;) thereis a
chain frome to e;"#*.

The outline of the algorithm is presented in Figure 7. Fiigt,each MSCC; and
alll = 1,...,|P|, the procedure&Conput eX(); checks whether there is a chain

from ef‘}“ to all other events in this MSC. More precisely, for= 1,..., K — 1,

Comput eX(); setsX(i,j,k,l) = 1ifin C; there is a chain fronamln to ek and
X(i,j, k. 1) = 0 otherwise. Also, it set (i, j, K, 1) = 1ifin C; there is acham from
;“l‘“ to e, and X (i, j, K,1) = 0 otherwise. Note that fo§ # I there can be no
chain fromegf;n to egllm. By Corollary 1, we can implemer@onput eX() ; intime

O(|H[?)

PNCpg (e, ei-“_’j);
1. ConputeX();
2. ConputeY();

’

3. forall ¢ such that (vy,v;)€é&

4 forall SCP

5. if Y[S,iq] =0 break;

6. forall ppeP\S

7 if X(i,7,k 1) =1 break;
8 return ‘‘yes’'’;

Fig. 7. The algorithm forPNCH(e,eﬁj). The implementation o€onput eY() ; is given in
Figure 8.

Now, for anyS C P let Y (S, ) be a variable that indicates whether there is a path
L in G fromv to v; such that ilf\(L) none of the processesdhis reachable from. We
setY'(S,4) = 1if such a path exists and (S, i) = 0 otherwise. The values &f (§, 7)
are computed by the proced@enput eY() ; given in Figure 8. We will discuss how
to implemeniConput eY() ; later on.

Now, assume that we have compufgds,i), X (4,5, k,1), forall S C P, i =
1,...,n,4,5=1,...,|P|,k =1,..., K. Then there is a path with no chain franto
eﬁj if and only if the conditions in the lines 3 — 7 hold, i.e., thas a pathL of the
form (v, ..., vy, v;) and aseS C P such that for any procegs that is reachable from
ealongl’ = (v,...,v;) (i.e., a process if? \ S), there is no chain from‘;j“ to eﬁj.
For a fixed event” ; this condition can be verified in time2!”!|P|.

It remains to argue that the proced@renputeY(); in Figure 8 correctly computes
the values oft (S,4). The procedure starts by initializing the variabids, i] (lines
1—6). Fori # 1, it setsY[S,i] = 0 forall S C P. Fori = 1, it computesY (S, 1)
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(recall thatY'(S, 1) = 1 if and only if there is no chain from to ey*s* for anyp; € S)
and set¥[S, i = Y'(S, 7). The algorithm then repeats a Dijkstra-like “relaxatiotés
n times. During each step, the value of e&¢8, i] may be changed from 0 to 1.

Conput eY();

1. forall i=2,...,n

2. forall SCP

3. set Y[S,i] =0;

4. Set So={p;| there is no chain frome to e}
5. forall SCP

6. if SCSy then set Y[S,1]=1 el se set Y[S,1]=0;
7. Repeat n tines

8. forall i=1,...,n

9. forall SCP

10. if Y[S,i=1 break;

11. forall ¢ such that (vy,v;) €&

12. forall & such that SCS" and Y[S',i{]=1
13. forall p;esS

14. forall p, cP\S

15. if X(i, j, K 1)=1 break;
16. Set Y[S,i]=1;

17. return;

Fig. 8. The implementation o€onput eY() ;

The correctness of the algorithm follows from two simplérois.

Claim 2 If Y(S,4i) = 0, that at any point in the execution bmputeY(); we have
Y[S,i] = 0.

Proof. The proof is by induction on the execution of the algorithrheTclaim is
clearly true after the initialization step. Now, supposat tt some point we change the
value of Y[S, 4] from 0 to 1 for someS, i. This means that we have discovered some
i’, 8" such that(v;/,v;) € &, Y[S',i'] = 1. By inductive assumption, this means that
there exists a path from v to v;; such that in the MSQC;. .. ; C;/) there is no chain
from e to any of the processes &1I. Moreover, we also hav& (i, j, K,1) = 0 for any
p € P\ S andanyp; € S, i.e,, inthe MSC(C;...; C;; C;) there is no chain from
e?’jn to e;"#*. Now, suppose that iGC; ... ; Cir; C;) there is a chain fromna to some
p; € S. As there are no events that are sent from one MSC and areeddeianother
MSC, this chain would have to go through soag, et [ =1,...,|P|.If p, € &,
this means that there is a chain(i@;...; Cy) from e to p;, a contradiction. On the
other hand, ifp, € P\ &', there is a chain frona?fllin toe;’’™, a contradiction again. We
conclude that’(S,i) = 1. m|
Claim 3 If for someS, i, there exists a patfw, ..., v/, v;) of lengthl such that in the
MSC(C;...;Cy; C;) there is no chain frona to any of the processes & then afterl
stepsConmput eY( ) ; setsy[S,i] = 1.

15



Proof. The proof is by induction oh The claim is obviously true far= 1. LetS’ be
the set of all processes that are not reachable frabong(C1, . . ., C;/). By inductive
assumption, after— 1 steps we have[S, '] = 1. Also, by construction, ifC; . ..; Cy)
there is a chain from to ¢ for anyl € P\ §'. Hence, we haveX (4, j, K, l) =0
foranyp, € P\ S, p; € S Therefore, during théth step, our algorithm will set
Y[S, i = 1. m|

It is not hard to verify that the running time 6bmputeY() is O(n|E[22IPI|P]?).
Indeed, the running time of this procedure is dominated leydycle in lines 8-16,
which is repeated times. During each such cycle, we consider each edgesx@ctly
once (in lines 8 and 11), for each such edge we consider tweetsibfP, and for each
choice of these subsets we consider a pair of processes am@dastant-time check
for this pair.

The overall running time of our algorithm can then be expedssO (n|£]22/P1| P2+
[H|?) = O(n*2*PI| H?).

Now, suppose that we are given a pair of messages= (s1,71) € A(v), mg =
(s2,72) € A(v"). By Proposition 2, we can check whethBgcordy (mq,m2) = t for
t € {p,0,d~*, p~!} by making at most three calls ®NCy();. However, to decide
betweendiscordy (m1, m2) = d anddiscordy (my,ms) = o~ !, we need additional
tools. Fortunately, it turns out that one can modifyi C (); to solve this problem.

To verify whetherdiscord g (mq,ms) = d, we first comput@®NCp (s1, s2). If we
havePNCy (s1,s2) = 0, thendiscordy (my, ma) < d, so the answer is negative.
Otherwisediscord g (1, ms) # d if and only if G contains a patil fromv to v’ such
that in A\(L) there is no chain from; to s, and no chain from to .. To find such a
path, we first computé (i, j, k, 1) usingConput eX() ; . We then defind” (S, S’, )
as follows: for anyS,S” € P and anyi = 1,...,n, setY’(S,8',i) = 1 if there is
a pathL from v to v; such that in\(L) none of the processes &is reachable from
s1 and none of the processesShis reachable from. It is straightforward to modify
Comput eY(); so that it compute¥™”(S,S’, ) instead ofY (S, ¢). The running time
of the modified version i®)(n|£|24/71|P|?), as we have to consider all possilplairs
of subsets of° in adjacent nodes.

Now, suppose that we have compuﬁédS S'i)foral S,8 CP,i=1,.
Assume that’ = v;- andss = ek 7“2 = ef* , We havedlscordH(ml,mg) - d If

1*,97

and only if there exists a tripl§, S’, 4’ such that

(1) (vir,vis) €E;

(2) Y'(s8,8,i") =1

(3) foranyp; € P\ S we haveX (i*, j, k,1) = 0;
(4) foranyp, € P\ 8" we haveX (i*, 5/, k',1) = 0.

These conditions can be verified in tif@én22/7!|P|). Hence, the overall running time
of our algorithm isO(n?24%1| H|?), which proves Theorem 2.

6 From Pairs of Messages to HMSCs

In some situations, it is convenient to characterize theaddsof an HMSC with a single
parameter rather than list the discords for all pairs of mgss in this HMSC. To this
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end, we extend the definition of discord from pairs of message=ntire HMSCs by
defining the discord of an HMS@ to be the worst discord over all pairs of messages
in H. Formally, we seDiscord(H) = max~{discordg (mi,ms2) | m; € A\(v),mq €
A, (v,v") € £}, whereE* is the transitive closure of the edge getandmax~.A

is the maximal element of the sdtwith respect to<.

According to this definition, one can compuigscord(H) by computing the dis-
cords for all pairs of messagesih However, in general, computirlgscord g (m, ms)
is coNP-hard, so this approach is not efficient. Quite saipgiy, it turns out that there
exists a different approach that allows us to com@iteord(H ) in polynomial time.
Itis based on the fact that while it may be hard to check whdtteze exists a chain be-
tween two events, it is easy to prove that there is no chaimd®at twoextremalevents,
for a suitable definition of extremality.

In the rest of the section, we describe polynomial-time atgms for checking that
Discord(H) =t fort € {p,p~*,0,07!,d"'}. To check whethebiscord(H) = d,
we can simply run all these algorithms and return “yes” ifadlithem return “no”. We
analyze the efficiency of these algorithms in termsiof |V|, |P| and |H|; observe
that we can assume= O(|H|), |P| = O(|H]).

For the cases € {p,o,d~'}, we will make use of a sef* C V x V, con-
structed as follows(v,v’) € £* if and only if (v,v") € & or there exists a path
(v = Vi, Viy, ... 04,0, = v') such that forj = 2,...,k — 1 the MSC\(v;;)
has an empty message set. Note #vats a subset of the transitive closure&fi.e.,
(v,0") € £* implies that inG there is a path from to v'.

To construct™, we can run the depth-first search from each nodg bhcktracking
as soon as we discovered a node whose MSC has a non-emptgmsssalearly, this
algorithm finds a path from to ¢’ if and only if (v,v’) € £*. Moreover, as depth-first
search runs in timé&(|V| + |£|) = O(|H]), the total running time of this algorithm is
O(n|H]).

Discord(H) = p. We will show thaDiscord(H) = pif and only if for any(v, v') €
E*,and anym; € )\(’U), mo € /\(1}/) we haV&liSCOI‘d()\(U);Mv/))(ml, mg) =p.

Indeed, if for some suchm; , m2 we haveliscord y(y): (1)) (M1, m2) # P, then ob-
viously Discord(H) # p. Conversely, consider any pair of messagas= (s1,71) €
A(w), ma = (s2,72) € A(v') and any pathl = (v = v;y,...,v, = V). We
show by induction ork that if our condition holds thediscordyz(m1,m2) = p.
The proof is based on the fact that for any three time intsrvhlB, C, we have
ApB AN BpC = ApC. Fork = 2, the statement is obvious. Now, suppésg 2.

If for eachj = 2,...,k — 1, the MSCA\(v;,) has an empty message set, then we
haveA(L) = (A(v); A(v")), sodiscordy(ry(m1, m2) = p. Now suppose that for some

Jj €1{2,...,k — 1} the MSC\(v;;) has non-empty message set and consider some
m = (s,7) € AMuvy, ). Setl’ = (vy,,...,v;), L" = (v, ...,v; ). By induction hy-
pothesisdiscordy ) (m1, m) = p, discordyz(m, m2) = p, S0 INA(L') there is a
chain fromr; to s, and inA(L") there is a chain from to s,. We conclude that in(L)

there is a chain from; to s, i.e.,discord () (m1,m2) = p.

This algorithm can be implemented in tirién| H|?) as follows: we first construct
&* (as shown above, this can be done in tithe:| H |)), and then for eactw,v’) € £*
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we compute the relatior* for the concatenated MSQ\(v); A(v')) (this can be done
intime O(n|H |?) for all (v,v’) € £* by Corollary 1) and use it to check the discord of
all pairsm; € A(v), ma € A(v') (again, by Corollary 1 this takes tint@(n|H|?)).

Discord(H) = o. The algorithm and the analysis are similar to the previoseca
Namely,Discord(H) = o if and only if Discord(H) # p (which can be verified in
polynomial time, as described above) and for &my’) € £* and anym, = (s1,71) €
A(v), ma = (s2,72) € A(v') we havediscord y);x(w))(m1,m2) € {p,o}. The
running time of this algorithm i®©(n|H|?).

The proof is based on the fact that for any path= (v = v;,,...,v;,, = v'), any
(L',L") such thatl’ = (vy,,...,v;,), L" = (vi;,...,v;) and anym = (s,r) €
A(vy, ), if discordy(zy(mi,m) € {p,o} anddiscordy.)(m,m2) € {p,o} then
discordy(y(m1,m2) € {p,o}. To see this, note thaliscordy . (m1,m) € {p,0}
implies that\(L’) has chains from; to s and fromr; tor, anddiscord yz,+y(m, ma) €
{p, o} implies that\(L") has chains from to s, and fromr to 5. Hence, in\(L) there
are chains froms; to s, and fromry to 7y, i.e.,discordy () (m1,m2) € {p, o}.

Discord(H) = d—!. The algorithm and the analysis are similar to the previous
two cases. Namelypiscord(H) = d~! if and only if Discord(H) # p, o (which can

be verified in polynomial time, as described above) and fgr(@nv’) € £* and any

my = (s1,71) € Mv), ma = (s2,72) € A(v") we havediscord ),z )) (M1, ma) €
{p,0,d~1}. The running time of this algorithm i9(n|H|?).

The proof uses the fact that for any pdth= (v = v;,,...,v;,, = '), any(L/, L")
such thatl’ = (v;,,...,v;;), L"” = (vi;,...,v;,) and anym = (s,r) € A(v;),
if discordy(y(m1,m) € {p,0,d” '} anddiscordy(r)(m,mz) € {p,0,d"'} then
discordy () (m1,m2) € {p,0,d"'}. Indeeddiscord, ) (m1,m) € {p,0,d" '} im-
plies that\(L’) contains a chain from to s, anddiscord(»)(m, mz) € {p,0,d '}
implies that\(L") contains a chain from to s,. Hence, in\(L) there is a chain from
5110 59, i.e.,discord () (1, m2) € {p,0,d"'}.

Discord(H) = p~'. If Discord(H) = p~!, there exists a pair of nodesv’ € V,
a pair of messagesi; = (s1,71) € A(v), ma = (s2,7r2) € A(v') and a pathl =
(v = vi,...,v;, = v') such thatliscordyzy(m1,ma) = p~', i.e., in\(L) there is
no chain froms; to r2. LetC = A(v), C" = A(v'), andC = A(viy, ..., Vi, )-

Let s be a maximal send event {i’; C') such there is a chain from to s, and let
r be the corresponding receive. $et= P(s), ¢ = P(r). It is easy to see that if
there is no chain frons to 7, or, equivalently(s, r)p~!ms. Therefore, without loss
of generality we can assume, = (s,7), i.e.,s; is a maximal send event i{C; C).
This implies that inC; C) there are no send events pthat happen aftes;, and there
are no send events grthat happen after; (for any such event, there would be a chain
from s; to this event). Moreover, i there is no chain from any eventpbr g to rs.

This suggests the following algorithm. For each paiv’ € V, and each pair of
messagesi; = (s1,71) € A(v), ma2 = (s2,72) € A(v') do the following. Sep =
P(s1), ¢ = P(r1). Let H(v,v', p, q) be the HMSC obtained by deleting frof all
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nodes other tham, v’ that have send events pror ¢. Output “yes” if all of the following
four conditions hold:

(1) in A(v) there are no send events pafters;;

(2) in A(v) there are no send events @afterr;

(3) inA(v") thereis no chain from any eventbr ¢ to r,, (in particular,P(r2) # p, q);
(4) the HMSCH (v,v’, p, q) contains a path from to v'.

If (1) — (4) are all true, then the pafrn, m2) provides a witness th@iscord(H) =
p L. Conversely, by the reasoning aboveDifscord(H) = p~!, then there is a pair
(m1,mg) that satisfies (1) — (4).

The running time of this algorithm can be bounded®gH|?). To see this, note
that there ar@(|H|?) pairs of messages; € A\(v), ma € A(v'). For each such pair,
conditions (1) — (3) can be verified in tim@(| H|) assuming that the relation* for
A(v") has been precomputed (by Corollary 1, we can precomptifer all MSCs that
appear inf in time O(| H|?)). Condition (4) corresponds to solving a single instance
of reachability problem, so it can be checked in timgH |) as well.

We can change the order of operations so that the algoritheintimeO(|P|?| H |?).
This is more efficient if ?|? < | H|, which is likely to be the case in practice. First, we
compute the transitive closure of each MSCHnR by Corollary 1, this can be done in
time O(|H|?). Then for each € V, each event in \(v), and eaclp € P, we use the
information about the transitive closure to check whethex(v) there is a chain from
any event ofp to e. There areD(|H|) events|P| processes, and for each p§ir e),

e € E;, this computation take® (| H|) steps, so this can be done in tid¢|P|| H |?).

Next, fix a pairp, ¢ € P and se¥/°(p, q) = {v € V | A(v) has no send events gng}.
Consider a modified version of depth-first searchdothat backtracks as soon as it
reaches anode M\ V(p, ¢). This algorithm discovers a path fromto +’ if and only
if the HMSC H (v,v’, p, ¢) contains a path from to v'. From any giver, it runs in
time O(|H|). For eachy; € V we will do the following. Find the last send event pn
identify the corresponding receive and check whether ihig and there are no send
events ony after it. This can be done in tim@(|H|). Then we run fromv; the modi-
fied version of the depth-first search described above. Fov adiscovered during this
search and for each receive eventgf= \(v;), we check if it is not reachable from
any event op or ¢ using the precomputed information.

For each triplp, ¢, v), we traverse each edge®hat most twice, and do a constant-
time computation for each event &f. Hence, the computation that has to be done for
each triple(p, ¢, v) takesO(| H|) steps, and the total running time of our algorithm is
O(|P||H|? + |P|*n|H|) = O(|P|?|H|?), as claimed.

Discord(H) = o~!. Suppos®iscord(H) = o~!. Then there exists a pair of nodes
v,v' €V, apair of messages, = (s1,7m1) € A(v), ma = (s2,72) € A(v') and a path
L= (v=v,...,v;, =) suchthatliscordyr)(m1,ms) = 0~ !,i.e., in\(L) there
is a chain froms; to r,, but no chain froms; to s, and no chain from; to r,. Let
C = A\v), " = \v'), andC = A(vi,, ..., v, _,)-

Observe thatiiC; C') there is no chain from, to any send event Indeed, suppose
such a chain exists, and lebe the receive that corresponds to this send. X{ih) there
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is no chain froms to o, we would haves, r)p~!(s1, r2), a contradiction. On the other
hand, a chain from; to s together with a chain fromto r, gives a chain from; to r

in A(L), a contradiction again. By a similar argument(@ C’) there is no chain from
any receive eventto ss.

Setp = P(r1), ¢ = P(s2). It follows that inC there are no send events prafter
r1, in C’ there are no receive events giefores,, and inC there are no sends gn
and no receives o Obviously, inC' there is no chain from; to any event of;, and
in C’ there is no chain from any event pfto r. Moreover, it cannot be the case that
p=¢q,q=P(s1)orp= P(ra).

Consequently, we have the following algorithm for checkirrgetheMiscord(H ) =
o~ L. First check thaDiscord(H) # p~—*. Then for each paiv,v’ € V, and each pair
of messagesn; = (s1,71) € A(v), m2 = (s2,72) € A(v') do the following. Set
p = P(r1),q = P(s2). Let H(v,v',p, q) be the HMSC obtained by deleting frof
all nodes other than andv’ that have send events @ror receive events oq Output
“yes” if the following six conditions hold:

(1) we havep # q,q # P(s1), p # P(r2);

(2) inC there are no send events pafterr;;

(3) inC’ there are no receive events @hefores,;

(4) in C there is no chain from; to any event ofj;

(5) in C’ there is no chain from any eventpto ro;

(6) the HMSCH (v, v', p, q) contains a path from to v'.

Suppose that for some v’ € V, m; € A(v), ma € A(v') (1) — (6) are all true.
By (6), there existsa path = (v = v;,,...,v;,, =) in H(v,v',p, q). SetA\(v) = C,
M) = C', C = \vi,,...,v;,_,). Suppose thak(L) contains a chain from, to
s2. As g # P(s1),p, this chain must contain a receive eventomBy (3), there is no
such event inC’, and by construction off (v, v’, p, ¢), there can be no such event in
C. Finally, by (4) there is no such eventdh Hence, in\(L) there is no chain from;
to so. Similarly, a chain fromr; to 7o must contain a send event pnand there is no
such event irC' (by (2)),C’ (by (5)), orC (by construction off (v, ', p, q)). Hence,
the pair(m;,ms) provides a witness thddiscord(H) = o~! Conversely, by the rea-
soning above, if for some paiifn;, mo) we havediscord g (my,m2) = o1, then our
algorithm will succeed. As in the previous case, this alhomican be implemented in
time O(|H|?) or, by changing the order of operations(i|P|?| H|?).

7 Conclusions

We proposed using Allen’s logic for detecting and measunregsage order discrep-
ancy in HMSCs. We believe that Allen’s logic can be a versatbl for other message
order-related problems in MSCs and HMSCs, such as, e.g@.caaditions and message
overtake. Allen’s logic is very well studied from algoritioyperspective [12]; while in
this paper we did not use these results, they may be veryldsefother applications
of Allen’s logic for message order analysis.

We introduced the notion of discord, which measures thesidifice between the
message order in an HMSC and the “ideal” message order foiHM&SC. We have
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shown a coNP-hardness result for computing the discord @firagb messages in an
HMSC, as well as polynomial-time algorithms for restrictegisions of this problem.
In contrast, we showed how to find the worst-case discord t1SC in polynomial
time. We believe that the concept of discord will be usefuhwoiding design errors
in HMSCs. In particular, it can be applied when one wants titp@n a large HMSC
into smaller components: one should prefer partitions wittall discord. Finally, con-
sider an MSC-based programming approach such as the “pJgjaly-out” framework
of [10], which practically assumes synchronous MSC comtten. Calculating dis-
cords allows one to quantify the potential for relaxing thipchronization assumption
and check for possible hazards. This may increase conayrigrd efficiency of the
implementation and thus can be useful in protocol design.
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