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This study is aimed at assessing the usefulness of different feature selection and classification methodologies in the 

context of sleep apnea hypopnea syndrome (SAHS) detection. Feature extraction, selection and classification stages 

were applied to analyze blood oxygen saturation (SaO2) recordings in order to simplify polysomnography (PSG), the 

gold standard diagnostic methodology for SAHS. Statistical, spectral and nonlinear measures were computed to compose 

the initial feature set. Principal component analysis (PCA), forward stepwise feature selection (FSFS) and genetic 

algorithms (GAs) were applied to select feature subsets. Fisher’s linear discriminant (FLD), logistic regression (LR) and 

support vector machines (SVMs) were applied in the classification stage. Optimum classification algorithms from each 

combination of these feature selection and classification approaches were prospectively validated on datasets from two 

independent sleep units. FSFS+LR achieved the highest diagnostic performance using a small feature subset (4 features), 

reaching 83.2% accuracy in the validation set and 88.7% accuracy in the test set. Similarly, GAs+SVM also achieved 

high generalization capability using a small number of input features (7 features), with 84.2% accuracy on the validation 

set and 84.5% accuracy in the test set. Our results suggest that reduced subsets of complementary features (25 to 50% of 

total features) and classifiers with high generalization ability could provide high performance screening tools in the 

context of SAHS. 

Keywords: sleep apnea hypopnea syndrome, oximetry, blood oxygen saturation, feature selection, principal component 

analysis, stepwise selection, genetic algorithms, Fisher’s discriminant, logistic regression, support vector machines.

1.  Introduction 

The sleep apnea hypopnea syndrome (SAHS) is a 

respiratory disorder characterized by frequent breathing 

cessations (apneas) or partial collapses (hypopneas) during 

sleep. These respiratory events lead to deep oxygen 

desaturations, blood pressure and heart rate acute changes, 

increased sympathetic activity and cortical arousals.1 

Daytime hypersomnolence, neurocognitive dysfunction, 

metabolic deregulation and/or cardiovascular and 

cerebrovascular diseases could affect people having 

undiagnosed SAHS.1,2 Common epidemiological data 

reflects a high SAHS prevalence in western countries: 1 to 

5% of adult men and 2% of women. However, recent 

studies suggest that 20% of adults have at least mild SAHS 

and 7% of adults have moderate-to-severe SAHS.3 Unlike 

its high prevalence and negative influence in the quality of 

life, it is estimated that 90% of cases in men and 98% of 

cases in women may be undiagnosed for many years.2 

The gold standard method for SAHS diagnosis is in-

hospital, technician-attended overnight polysomnography 

(PSG).4 However, this methodology is labor-intensive, 

expensive and time-consuming,4 which has led to large 
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waiting lists, delaying diagnosis and treatment.5 Thus, there 

is a great demand on new techniques aimed at simplifying 

the standard procedure and/or reducing the number of PSGs 

needed.6 The main alternatives to PSG focus on developing 

automated analysis using a reduced set of cardiorespiratory-

derived signals. Blood oxygen saturation (SaO2) from 

overnight oximetry provides relevant information to detect 

apneas, it can be easily recorded ambulatory and it is less 

expensive and highly reliable.6 However, there is still a 

great demand on new studies to improve the usefulness of 

SaO2 in SAHS diagnosis.7 

Several studies applied multivariate analysis to assist in 

SAHS detection.8–11 Multivariate adaptive regression 

splines8 and stepwise linear regression9 have been used to 

classify subjects from conventional oximetric indexes. 

Discriminant analysis, logistic regression and neural 

networks have been also applied in the context of 

SAHS.10,11,12 However, few studies applied feature selection 

before classification, which could improve diagnostic 

performance. 

In the present study, feature extraction, selection and 

classification procedures were carried out to analyze SaO2 

recordings. Signal processing techniques were applied to 

compose an initial feature set: statistical, spectral and 

nonlinear measures were computed to obtain as much 

information as possible from oximetry. At this point, we 

hypothesized that an exhaustive analysis of the search space 

by means of variable selection could provide further 

knowledge on SaO2 dynamics. Dimensionality reduction 

and feature selection techniques could be very useful to 

derive a smaller but optimal subset for classification 

purposes. There are many potential benefits of variable 

selection after feature extraction:13,14 simplifying data 

representation, reducing measurement, storage and 

computational requirements, avoiding redundant and noisy 

information, selecting complementary features and defying 

the curse of dimensionality to improve classification 

accuracy. Feature subset selection methodologies are 

essentially divided into wrapper, filter and embedded 

methods.14,15 Wrapper methods use a classifier of interest to 

score subsets of variables according to their predictive 

power, whereas filter methods select subsets of variables as 

a pre-processing stage independently of the predictor. 

Finally, embedded methods integrate variable selection into 

the learning machine training process. Additionally, feature 

construction and dimensionality reduction techniques are a 

different and useful approach when the number of variables 

is not too large and time and computational cost is not a 

concern.14,16 Filter, wrapper and embedded techniques select 

features in the original space, which makes new subsets 

easy to interpret. On the other hand, feature construction 

approaches select variables in a transformed space, 

providing a more efficient representation of patterns. 

However, new features could not have clear physical 

meaning.17 In the present study, three different approaches 

were assessed for feature selection: conventional principal 

component analysis (PCA),18 forward stepwise feature 

selection (FSFS),19 and genetic algorithms (GAs).20 

Additionally, three classifiers were used to investigate 

classification performance: Fisher’s linear discriminant 

(FLD),13 logistic regression (LR)18 and support vector 

machines (SVMs).21 Previous studies already applied these 

feature selection algorithms in different contexts, such as 

image processing,22 signal monitoring,23,24 structural 

monitoring25,26 or model optimization.27,28,29 Similarly, FLD 

and LR are conventional classifiers extensively assessed in 

many fields11,13,30,31 and SVMs are optimal state-of-the-art 

classifiers widely applied in different contexts, such as 

fMRI data analysis,31 document classification,32 biomedical 

signal processing33,34 or motor pump faults detection.35 

The goal of this study is to assess the usefulness of 

these algorithms for feature selection and classification in 

the context of SAHS diagnosis. We hypothesized that a 

prospective evaluation of different feature subsets from 

oximetry could provide further knowledge on SaO2 

dynamics. Thus, we wanted to test if the proposed 

classification schemes will be suitable for applying at 

another sleep laboratory. To achieve this goal, oximetric 

recordings from two independent sleep units were analyzed. 

2. Data Set 

Subjects under study were recruited from two independent 

sleep units: the “Río Hortega Hospital” (RHH) from 

Valladolid (Spain) and the “Philipps University Hospital” 

(PUH) from Marburg (Germany). Firstly, a population set 

composed of 249 consecutive subjects (191 males and 58 

females) was studied, with a mean  standard deviation 

(SD) age of 52.2  13.5 years and an average body mass 

index (BMI) of 29.9  4.9 Kg/m2. All subjects were derived 

to the sleep unit of the RHH due to a suspicion of suffering 

from SAHS. This population set was divided into training 

set and validation set. Table 1 shows the demographic and 

clinical characteristics of the population groups. The 

training set was used to compose optimum feature subsets 

from oximetric features and build the classifiers, whereas 

the validation set was subsequently used to assess their 

performance. In order to test whether proposed 

classification schemes will fit recordings from another sleep 
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Table 1. Demographic and clinical features of the population 

from the Rio Hortega Hospital sleep unit. 

Features All SAHS-negative SAHS-positive 

Recordings (n) 249 84 165 

Age (years) 52.2  13.5 47.2  11.5 54.7  13.7 
Males (n) 191 52 139 

BMI (kg/m2) 29.9  4.9 28.0  4.5 31.3  4.7 

Time (h) 7.2  0.6 7.2  0.4 7.2  0.6 

AHI (e/h)  3.9  2.4 37.1  25.8 

Features Training set SAHS-negative SAHS-positive 

Recordings (n) 148 48 100 

Age (years) 52.9  14.1 48.3  11.8 55.2  14.6 

Males (n) 116 32 84 

BMI (kg/m2) 29.8  5.6 27.3  6.3 30.8  5.0 

Time (h) 7.2  0.4 7.2  0.4 7.2  0.4 

AHI (e/h)  4.1  2.4 40.9  27.6 

Features Validation set SAHS-negative SAHS-positive 

Recordings (n) 101 36 65 

Age (years) 51.1  12.7 45.8  11.2 54.1  12.5 

Males (n) 75 20 55 

BMI (kg/m2) 29.0  1.6 27.9  0.8 30.8  0.4 

Time (h) 7.3  0.7 7.2  0.3 7.3  0.9 

AHI (e/h)  3.5  2.3 31.4  21.8 

Table 2. Demographic and clinical features of the population 

from the Philips University Hospital sleep unit. 

Features Test set Normal subjects SAHS-positive 

Recordings (n) 71 50 21 

Age (years) 40.37  12.36 36.72  11.59 49.05  9.66 

Males (n) 46 25 21 
BMI (kg/m2) 25.82  5.86 22.93  3.37 32.67  4.68 

Time (h) 7.7  0.8 7.7  0.7 7.9  0.9 

AHI (e/h)  0.60  1.94 55.27  33.44 

 

laboratory, optimum classifiers were further assessed on an 

independent test set. The Marburg subset (71 recordings) of 

the SIESTA database from the PUH was used. In this 

dataset, healthy subjects with no sleep disturbances 

composed the control group, whereas patients with a 

positive diagnosis of SAHS from PSG composed the SAHS-

positive group. Table 2 shows the demographic and clinical 

features of this population. 

The standard apnea-hypopnea index (AHI) from PSG 

was used to diagnose SAHS. Apnea was defined as a drop 

in the airflow signal greater than or equal to 90% from 

baseline lasting at least 10s, whereas hypopnea was defined 

as a drop greater than or equal to 50% during at least 10 s 

accompanied by a desaturation greater than or equal to 3% 

and/or an arousal. Subjects with an AHI  10 events per 

hour (e/h) were diagnosed as suffering from SAHS. 

Regarding the population under study from the RHH, a 

positive diagnosis of SAHS was confirmed in 165 patients. 

The training set from the RHH was composed of 148 

patients (48 SAHS-negative and 100 SAHS-positive), 

whereas the validation set was composed of 101 patients (36 

SAHS-negative and 65 SAHS-positive). Every subject 

contributed one PSG study each (7.2  0.6 hours of 

recordings, mean  SD). On the other hand, nocturnal PSG 

was carried out during two consecutive nights at the PUH 

sleep unit. In the test set from the PUH, 50 PSG studies 

from 26 healthy subjects composed the control group (24 

subjects contributed two recordings each and 2 subjects 

contributed one recording each), whereas 21 PSG studies 

from 11 SAHS-positive patients composed the SAHS-

positive group (10 patients contributed two recordings each 

and one patient contributed with a single recording). 

All SaO2 recordings from PSG were saved to separate 

files and processed offline to compose the initial oximetric 

feature set. SaO2 was recorded at a sampling rate of 1 Hz. 

SaO2 signals presented zero samples at the beginning of the 

acquisition process and drops to zero due to patient 

movements along the recording time. An automatic signal 

pre-processing stage was carried out to remove these 

artifacts. 

3. Methodology 

Our methodology was divided into three stages: feature 

extraction, feature selection and classification. A total of 16 

features composed the initial feature set from oximetry, 

which was the input to the subsequent feature selection 

stage. Three feature selection algorithms were evaluated: 

principal component analysis (PCA), forward stepwise 

feature selection (FSFS) and genetic algorithms (GAs). 

Three classifiers were applied to assess classification 

performance in the third stage: Fisher’s linear discriminant 

(FLD), logistic regression (LR) and support vector machines 

(SVMs). Therefore, 9 different classification schemes were 

proposed: PCA+FLD, PCA+LR, PCA+SVM, FSFS+FLD, 

FSFS+LR, FSFS+SVM, GAs+FLD, GAs+LR and 

GAs+SVM. Training and a double testing process were 

carried out. The training set was used to perform feature 

selection and compose classifiers, where a number of 

optimum feature subsets were automatically selected. Every 

optimum classifier from each proposed classification 

schema was subsequently assessed on two test sets: a 

validation group from the same sleep unit as the training set 

and a test set from an independent sleep unit. Fig. 1 shows a 

block diagram to illustrate this methodology. 

3.1. Feature extraction stage 

Oximetric recordings were parameterized by means of 16 

features from four feature subsets: time domain statistics, 

frequency domain statistics, conventional spectral measures 
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Fig. 1. System block diagram of the proposed methodology for 

feature extraction selection and classification. 

and nonlinear features. All features were computed for each 

whole overnight recording. 

3.1.1. Time domain statistics 

The amplitude (%) of each SaO2 signal was used to compute 

the normalized histogram. First to fourth order statistical 

moments were computed:36 

(i) Arithmetic mean (M1t), which is a measure of the 

central tendency of the data distribution: 

  
1

1 N

n

n

M1t E x x
N




    . (1) 

(ii) Variance (M2t), which quantifies the amount of 

dispersion in data, assigning higher values to higher 

variation: 

 2 2 2

1

1
( ) ( )

1

N

n

n

M2t E x x
N

  


       
 , (2) 

(iii) Skewness (M3t), which is a measure of symmetry in the 

data distribution. Large negative values suggest 

skewness (asymmetry) to the left while relatively large 

positive values suggest skewness to the right: 

 3

3

1
( )M3t E x 


   

, (3) 

where  is the standard deviation (SD). 

(iv) Kurtosis (M4t), which quantifies the peakedness, i.e. 

the frequency of data in the middle of the distribution. 

Positive peakedness suggests large concentration of 

probability in the center around  accompanied by 

relative long tails, while negative values indicate 

relatively short tails: 

 4

4

1
( )M4t E x 


   

. (4) 

3.1.2. Frequency domain statistics 

The power spectral density (PSD) of each oximetric 

recording was estimated applying the Welch’s method. A 

512-sample Hanning window with 50% overlap and 1024-

points discrete Fourier transform were used. The following 

statistics were computed: 

(i) First to fourth-order moments (M1f–M4f) in the 

frequency domain.36 The amplitude (W/Hz) of the PSD 

function at each single spectral component was used to 

obtain the normalized histogram. 

(ii) Median frequency (MF), which is defined as the 

spectral component which comprises 50% of the total 

signal power:37 

 
0.5

0 0

0.5 ( ) ( )
S

j j

f MF

j j

f Hz f Hz

PSD f PSD f
 

  . (5) 

(iii) Spectral entropy (SE), which is a disorder quantifier 

related to the flatness of the spectrum:37 

  
j

jj ppSE ln , (6) 

where pj is the normalized value of the PSD at each 

frequency component: 

 
0.5

0

( )

( )
s

j

j

j f

j

f Hz

PSD f
p

PSD f






 (7) 

3.1.3. Conventional spectral features 

The frequency band from 0.014 to 0.033 Hz proposed by 

Zamarrón et al. was parameterized. A significant power 

increase linked with suffering from SAHS was found in this 

frequency band.38 The following measures were computed: 

(i) Total spectral power (PT), which is computed as the 

total area under the PSD. 

(ii) Peak amplitude (PA) in the apnea frequency band, 

which is the local maximum of the spectral content in 

the apnea frequency range 0.014 – 0.033 Hz. 

(iii) Relative power (PR), which is the ratio of the area 

enclosed under the PSD in the apnea frequency band to 

the total signal power. 
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3.1.4. Nonlinear features 

Linear methods cannot capture all the information from 

biological signals due to their nonlinearities and non-

stationary behavior.39–42 Therefore, nonlinear measures of 

irregularity, variability and complexity were applied to 

obtain additional and complementary information from 

SaO2 dynamics.30,43,44 

(i) Sample entropy (SampEn), which is a nonlinear 

measure of irregularity in time series, with larger values 

corresponding to more irregular data:45 

 













)(

)(
ln),,(

rB

rA
NrmSampEn

m

m

, (8) 

where Am and Bm are the average number of (m)-length 

and (m+1)-length segments Xm(i) (1  i  N-m+1) with 

d[Xm(i),Xm(j)]  r (1  j  N-m, j  i), respectively, and 

   |))()((|max)(),(
1,,0

kjxkixjXiXd
mk

mm 
 

. (9) 

(ii) Central tendency measure (CTM), which is a nonlinear 

measure of variability from second order difference 

plots, assigning larger values to lower variability:46,47 

 







2

1

)(
2

1
N

i

id
N

CTM  , (10) 

where 
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i

x i x i x i x i
d



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  



.  (11) 

(iii) Lempel – Ziv complexity (LZC), which is a nonlinear 

measure of complexity linked with the rate of new 

subsequences and their repetition along the original 

sequence.48,49 The complexity counter c(n) is increased 

every time a new subsequence is encountered: 

 ( )

( )

c n
LZC

b n
 , (12) 

where b(n) is a normalization parameter.48 

3.2. Pre-processing stage 

Units used to measure input variables or changes in scale of 

measurement can influence the performance of 

classifiers.13,50 Therefore, standardize each feature by 

subtracting its mean and dividing by its SD is a common 

practice in the context of pattern recognition.50,51 A linear 

re-scaling of each individual variable was carried out to 

obtain a zero mean and unit variance distribution for each 

input feature: 

 
( )

( ) , 1,...,

k

raw

k k

k

x

x i x
x i k p




  , (13) 

where ( )kx i  is the standardized value for sample i of feature 

k, ( )raw

kx i  is the original raw value for sample i of feature k, 

kx  is the mean value of feature k and 
kx  is its SD. 

3.3. Feature selection stage 

3.3.1. Principal component analysis 

PCA is probably the best known orthogonal transform for 

variable construction, which has been widely used as 

reference methodology for dimensionality reduction in 

pattern recognition.16,17 As a variable construction 

technique, PCA is aimed at finding an appropriate transform 

that maps the pattern vector x(i) from the original p-

dimensional feature space to a new d-dimensional feature 

space, where d  p.17 When the number of features in the 

original space is large, the high correlation between 

variables under study becomes a problem in multivariate 

analysis. In order to avoid this issue, all variables or 

principal components from PCA in the new d-dimensional 

space are uncorrelated and mutually orthogonal.13,18 New 

variables from PCA are linear transformations of the 

original features in a d-dimensional space, providing pattern 

representation with minimum mean-squared error for a 

given dimension d.17 In the transformed space, new patterns 

are the projection of the original observations onto the 

eigenvectors of the original covariance matrix.13,17 Each 

eigenvector accounts for a portion of the total variation of 

original data and the variance linked with each eigenvector 

is represented by its associated eigenvalue.13,18 The portion 

of the total variation accounted for by the eigenvalue d is 

given by its explained variance (EV): 

 





p

k

k

dEV

1



 . (14) 

Regarding dimensionality reduction, PCA is commonly 

applied as a filter method to select variables in the 

transformed space as a pre-processing stage independently 

of the classifier. PCA allows discarding the components 

with lower EV to deal with a transformed space with lower 

dimension without significant loss of information.18 The 

optimum number of components to accomplish 

dimensionality reduction can be estimated using some cut-

off proportion.  In this study, new variables from PCA were 

ranked according to their EV and the average criterion or 

eigenvalue-one-criterion was used as threshold to filter 
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principal components. According to this rule, components 

whose variance (j, j=1,… p) exceeds the average variance 

  were selected: 

 
1

/
p

j j

j

p  


  . (15) 

In the present study, we applied PCA to the original 

data set of 16 features from oximetry. PCA+FLD, PCA+LR 

and PCA+SVM classification schemes were subsequently 

built using the principal components automatically selected. 

3.3.2. Forward stepwise feature selection 

Sequential forward selection and backward elimination 

algorithms allow exploring the original p-dimensional 

feature space looking for a small subset that could 

reasonably describe the original data and avoiding the need 

to compute all possible 2p combinations, which becomes 

impracticable when p is large.19,52 Both forward selection 

and backward elimination techniques yield nested subsets of 

features, where variables are progressively added into larger 

and larger subsets or progressively removing the least 

promising ones starting from the complete set of variables, 

respectively.14 Advantages of both methodologies of feature 

selection are computational efficiency and robustness 

against overfitting. On the other hand, their main limitation 

is that once a variable has been included or removed from 

the subset, there is not a feedback process to modify the 

inclusion or exclusion of previous variables, which could 

improve the information provided by the model.17 Forward 

stepwise selection and backward stepwise elimination 

improve sequential approaches by considering both feature 

addition and feature deletion at each step.53 

Forward and backward stepwise strategies are usually 

classified as wrapper feature selection methods.14,15 

However, they can also be used as a embedded method if 

the criterion to decide whether or not to include or exclude a 

feature is not based directly on the accuracy of a classifier 

but on another objective function.17 In the present study, we 

used a forward stepwise classifier-building strategy to find 

the simplest feature subset that still significantly explains 

original data.19 Bidirectional FSFS decides to add or to 

remove a variable from the current feature subset through an 

iterative process. FSFS selects the strongest variables in the 

data set and removes variables that provide redundant 

information in terms of statistical significant differences: at 

each iteration, the stepwise method performs a test for 

backward elimination followed by a forward selection 

procedure.19 Different tests of statistical significance are 

used to compare models differing in one degree of freedom 

(1 input variable) depending on the output of the classifier. 

FSFS+FLD, FSFS+LR and FSFS+SVM schemes were 

analyzed in this study. The likelihood ratio test is used when 

output values can be interpreted as probabilities, such as in 

LR.19 The output of a SVM can also be mapped to pseudo-

probabilities using a logistic function.54 In stepwise linear 

problems an F-test is used since the errors are assumed to be 

normally distributed.19 Therefore, the Rao’s R approximate 

F test was used for FLD. 

In FSFS, a new variable is selected if the p-value 

associated to the statistical test was lower than a 

significance level E, which usually varies between 0.05 and 

0.25.19 Similarly, a variable was removed if the p-value was 

higher than a significance level R, commonly between 0.20 

and 0.90:19 

 ( ) ( )min( ) addfeaturestep step

feature j Ep p    , (16) 

 ( ) ( )max( ) removefeaturestep step

feature j Rp p    . (17) 

The FSFS algorithm stops when all variables from the 

original feature set are selected or when all variables in the 

model have p-values lower than R and the remaining 

variables have p-values greater than E. In the present study, 

we used the less restrictive E = 0.25 and a moderate R = 

0.40 significance thresholds to let the algorithm 

significantly explore the original feature space.19 

3.3.3. Genetic algorithms 

GAs are usually used as optimization schema to efficiently 

inspect the search space of variables or parameters that 

govern a model.28,29 They encode a potential solution as a 

chromosome-like data structure and apply recombination 

operators on these structures.24 A population from a GA 

optimization procedure comprises a group of chromosomes 

or candidate solutions that are modified iteratively: a 

particular group of chromosomes (parents) are selected from 

an initial population to generate the offspring by means of 

predefined genetic operations (crossover and mutation). The 

offspring replaces chromosomes in the current population 

based on certain replacement strategies.28 The optimization 

process is carried out in cycles called generations. 

In this study, GAs were applied as a wrapper feature 

selection procedure to obtain the optimum input feature 

subset of a classifier in terms of classification performance. 

In this case, an individual or chromosome from the 

population is just a combination of a predetermined number 

of features from SaO2 recordings.24 While conventional 

approaches just evaluate and improve a single feature 

subset, a GA intensively analyzes the whole feature space 
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by modifying and improving a group of subsets at the same 

time. 

A feature subset in the GA search space is codified with 

a finite binary sequence, where the k-th bit denotes the 

absence (0) or the presence (1) of the k-th feature. Each 

sequence has p bits, where p is the dimension of the original 

space, i.e. the number of features in the whole set.20 The 

classification accuracy is used as the objective value, in 

order to assess each chromosome performance and to 

achieve parent selection. A fitness function is used to map 

each objective value to a proportional predefined fitness 

interval. In this study, a proportional fitness scaling function 

was used. Additionally, roulette and tournament schemes 

were used as parent selection strategies. One-point 

crossover was applied to produce offspring: a crossover 

point is randomly selected and the portions of both parents 

beyond this point are exchanged to form the offspring.28 

Uniform mutation was applied to introduce variations into 

the offspring. In the present study, probability of crossover 

(Pc) values between 0.5 and 0.9 and probability mutation 

rate (Pm) values between 0.01 and 0.09 were used.20 The 

elite or percentage of the best individuals in the old 

population preserved after each generation were varied 

between 0 and 25%. A number of realizations were carried 

out varying the parent selection strategy, Pc, Pm and elite. 

Each implementation of the genetic algorithm was run with 

an initial population size of 16 individuals during 100 

generations.24 For each realization, the feature subset with 

the highest accuracy at the last generation was saved. 

Finally, the optimum feature subset in terms of diagnostic 

performance was selected. In this study, GAs+FLD, 

GAs+LR and GAs+SVM classification schemes were 

assessed. 

3.4. Feature classification stage 

3.4.1. Fisher’s linear discriminant 

In a binary (two class) context, FLD performs a linear 

projection of p-dimensional input data to a 1-dimensional 

space: 

 Ty w x , (18) 

where w is the projection weight matrix whose components 

maximizes the class separation in the transformed space.13 

The Fisher criterion can be written as follows: 

 ( )
T

B

T

W

w S w
J w d

w S w
 , (19) 

where SB is the between-class covariance matrix and SW is 

the total within-class covariance matrix. Differentiating J(w) 

with respect to w, the separation of classes in the projected 

space is maximize when:13 

 1

2 1( )Ww S m m  , (20) 

where mi is the mean vector of the class i. The projected 

data can be used to construct a discriminant by choosing a 

threshold y0 so that we classify a new point as belonging to 

C1 if y(x) y0 and classify it as belonging to C2 otherwise. 

3.4.2. Logistic regression 

LR relates a categorical dependent variable Y with a set of 

input features Xi. For dichotomous problems, input patterns 

are classified into one of two mutually exclusive categories 

(SAHS-positive or SAHS-negative in the context of SAHS 

diagnosis) and the probability density for the response 

variable can be modeled by a Bernoulli distribution:18 

      
(1 )

| ( ) ( ) 1 ( )
y y

f y p d p d p d


  , (21) 

where 

 
0

1

( ) ( )
p

i i

i

p d p x 


  , (22) 

models the linear relationship between input features Xi. 

The maximum likelihood criterion is used to optimize 

coefficients of the independent input features.18 LR 

classifiers assign an input vector to the class with the 

maximum a posteriori probability value. The logistic 

regression model is expressed as follows:18 

 
0

1

ln
1

p

i i

i

p
x

p
 



 
  

 
 . (23) 

3.4.3. Support vector machines 

SVMs are binary classifiers that search for the optimum 

separating hyperplane between classes.13 The hyperplane is 

built in a transformed high dimensional space in order to 

maximize separation, resulting in the following mapping 

function: 

 
0( , ) Ty x w w z w  , (24) 

where xp is the input pattern, 

( ) | ,dz x z d p   performs the transformation of 

input data to a high dimensional space, y is the output of the 

classifier and w is the weight vector. w is obtained by 

minimizing the following functional:21 
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subject to the constrains 

 
0( ) 1 and 0, 1,...,n T n n nt w z w n N      , (26) 

where N is the number of observations in the training set, tn 

is the target or desired output ( 1 for the positive class and 

1  for the negative class), n measures a deviation of a data 

point xn from the ideal condition of separability (non-

separable classes) in the transformed space and C is a 

regularization parameter that controls the trade-off between 

the maximum margin of separation between classes and 

minimizing the classification error.55 This optimization 

problem is commonly reformulated in terms of Lagrange 

multipliers n, so that the weight vector is expressed as 

follows: 

 
1

( )
N

n n n

n

w t x 


 , (27) 

Only the support vectors, those for which their 

Lagrange multipliers are non-zero, contribute to the 

definition of the decision boundary. The output of the SVM 

classifier is expressed in terms of these support vectors as 

follows:21 

 
0( , )n n n

n S

y t K x x w


  , (28) 

where S is a subset of the indices {1,…, N} corresponding 

to the support vectors and K(·,·) represents the inner product 

kernel function in the transformed space. In the present 

study, a linear kernel is used. The linear combination of 

inputs is the simplest but most useful kernel for SVM 

classification in many contexts, such as fMRI data analysis31 

or document classification.32Leave-one-out cross-validation 

(loo-cv) was carried out in the training set to obtain the 

optimum value of the regularization parameter C for each 

SVM classifier. The following values were assessed: 10-4, 

10-3, 10-2, …, 103, 104. For each value of C, we computed 

the accuracy of the classifier applying loo-cv. The value of 

C that achieved the highest accuracy was selected and the 

classifier was re-trained using the whole training set. 

3.5. Statistical analysis 

Matlab R2012a (7.14.0.739) and IBM SPSS Statistics 20 

were used to implement feature extraction methods and to 

develop the feature selection and classification stages. 

Sensitivity (proportion of SAHS-positive patients correctly 

classified), specificity (proportion of SAHS-negative 

subjects rightly classified) and accuracy (the total 

percentage of subjects correctly classified) were computed 

to quantify classification performance. For every classifier, 

a ROC analysis was carried out to obtain its optimum 

decision threshold in the training set. This threshold was 

applied on further assessments in the validation and test 

sets. 

4. Results 

4.1. Training 

Feature extraction was carried out for each SaO2 recording 

from the populations under study. Fig. 2(a) shows the 

nocturnal SaO2 profile of a common SAHS-negative subject 

and a common SAHS-positive patient from the training set. 

Fig. 2(b) shows the normalized averaged histogram 

envelope of recordings in the time domain for the whole 

SAHS-negative (dashed black) and SAHS-positive (dotted 

grey) groups in the training set. We can observe that the 

histogram envelope corresponding to the SAHS-negative 

group showed higher mean, skewness (symmetry) and 

kurtosis (peakedness) and lower variance in the time domain 

than that corresponding to SAHS-positive patients. This 

agrees with the fact that recordings from subjects without 

sleep apnea tend to remain constant around 96%,6 i.e. higher 

mean and peakedness, whereas SAHS patients show deep 

desaturations during the night, i.e. higher variability and 

lower symmetry due to the left tail of the histogram 

envelope as a result of lower saturation values. Fig. 2(c) 

shows the normalized averaged PSD for the whole SAHS-

negative (dashed black) and SAHS-positive (dotted grey) 

groups in the training set. In the frequency domain, spectral 

power of oximetric recordings from SAHS-negative 

subjects concentrates on very low frequencies, showing 

lower mean and variance and higher skewness and kurtosis 

than SAHS-positive patients due to the continuous 

component (baseline) in the time domain around 96%. We 

can observe from Fig. 2(c) that spectral power of recordings 

from SAHS-positive patients spreads in a wider frequency 

band due to the repetitive apnea events during the night, 

leading to higher MF and SE. As a result, PT, PA and PR 

from SAHS-positive patients were also higher than 

conventional spectral measures from the SAHS-negative 

group. Finally, common oximetric recordings in the time 

domain plotted in Fig. 2(a) show marked changes in the 

SaO2 profile due to recurrent desaturations during the night 

in SAHS-positive patients, leading to higher irregularity 

(SampEn), variability (lower CTM) and complexity (LZC) 

than non-SAHS subjects. This trend was also present in the 

test set, although some differences between patient groups 
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from both sleep units under study (RHH vs. PUH) can be 

seen both in time and frequency domains. Fig 2(d) shows 

the SaO2 profile of a normal subject and a SAHS patient 

from the PUH database, whereas Figs. 2(e) and (f) show the 

normalized averaged histograms and PSDs for the whole 

normal (dashed black) and SAHS-positive (dotted grey) 

groups in this test set. Differences between databases agree 

with heterogeneity of population commonly derived to sleep 

units. Additionally, the histogram envelope in the time 

domain of the normal group from the PUH shows a marked 

peak, higher than that corresponding to the RHH. This is 

due to the fact that the dataset from the PUH is composed of 

non-SAHS subjects with lower average AHI than SAHS-

negative patients from the RHH. Similarly, the PSD of the 

SAHS-positive group from the PUH show higher power 

increase in the apnea frequency band than SAHS-positive 

patients from the RHH due to the fact that, on average, they 

have higher SAHS severity. 

PCA, FSLR and GAs were applied for feature selection 

in the training set and a number of FLD, LR and SVM 

classifiers were composed. Table 3 shows principal 

components from PCA in the training set ranked in 

decreasing order of their EV. The 3 first consecutive 

principal components were selected according to the 

average criterion. Table 4 summarizes the performance of 

feature selection and classification schemes under study. 

Regarding PCA dimensionality reduction, PCA+LR 

achieved the highest diagnostic accuracy in the training set 

(90.5%), while PCA+FLD and PCA+SVM achieved similar 

but lower performance than LR (83.8% and 84.5%, 

respectively). Similarly, FSFS+LR also achieved the highest 

accuracy (91.9%) after bidirectional feature selection in the 

training set. A reduced LR model composed of 4 features 

was built. FSFS+FLD (8 features) and FSFS+SVM (5 

features) achieved slightly lower performance (90.5% and 

87.8%, respectively). Exhaustive feature selection by means 

of evolutionary algorithms built more complex classifiers 

composed of a larger number of features, ranging from 7 to 

15 variables. GAs+LR also obtained the highest diagnostic 

accuracy in the training set (96.6% using 14 and 15 

features). GAs+FLD (7 and 9 features) and GAs+SVM (7 

and 8 features) yielded to lower performances in the training 

set (93.2% and 86.5%, respectively). 

 

Fig. 2. Overnight SaO2 profiles for a common SAHS-negative subject and a common SAHS-positive patient (a) from the RHH hospital 

database and (b) from the PUH database. Average histogram envelopes in the time domain for the whole SAHS-negative and SAHS-

positive group (b) in the training set from the RHH and (e) in the test set from the PUH. Average PSD functions for the whole SAHS-

negative and SAHS-positive group (c) in the training set from the RHH and (f) in the test set from the PUH. 
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Table 3. Explained variance for each principal component 

from PCA in the training set. 

Principal components EV 

First principal component 42.60994 

Component 2 26.69255 
Component 3 11.82037 

Component 4 6.00241 

Component 5 3.64536 
Component 6 3.24952 

Component 7 1.69924 

Component 8 1.48557 
Component 9 1.23793 

Component 10 0.88975 

Component 11 0.33337 
Component 12 0.20245 

Component 13 0.06906 

Component 14 0.05557 
Component 15 0.00690 

Component 16 0.00001 

Table 4. Optimum feature subsets for each feature selection 

and classification methodology and their performance in the 

training set. 

Algorithm n Features Se Sp Ac 

PCA+FLD 3 3 principal components 80.0 91.7 83.8 

PCA+LR 3 3 principal components 92.0 87.5 90.5 
PCA+SVM 3 3 principal components 81.0 91.7 84.5 

FSFS+FLD 8 M1t, M3t, M4t, SE, PR, SampEn, 

CTM, LZC 

90.0 

 

91.7 

 

90.5 

 

FSFS+LR 4 M2t, M4t, PR, LZC 92.0 91.7 91.9 
FSFS+SVM 5 M4t, PA, PR, SampEn, LZC 87.0 89.6 87.8 

GAs+FLD 7 

 
9 

M1t, M3t, M4t, M1f, SE, 

SampEn, LZC 
M2t, M4t, M1f, M2f, M4f, PT, 

PA, PR, LZC 

94.0 

 
94.0 

 

91.7 

 
91.7 

 

93.2 

 
93.2 

 

GAs+LR 14 
 

 

15 

M1t, M3t, M4t, M1f, M3f, M4f, 
MF, SE, PT, PA, PR, SampEn, 

CTM, LZC 

M1t, M2t, M3t, M4t, M1f, M2f, 
M3f, M4f, MF, SE, PT, PA, PR, 

CTM, LZC 

97.0 
 

 

97.0 
 

 

95.8 
 

 

95.8 
 

 

96.6 
 

 

96.6 
 

 

GAs+SVM 7 
 

8 

M2t, M3t, M4t, M2f, M4f, SE, 
CTM 

M2t, M3t, M4t, M2f, M3f, M4f, 

SE, CTM 

84.0 
 

84.0 

 

91.7 
 

91.7 

 

86.5 
 

86.5 

 

 

4.2. Validation and testing 

Each feature selection and classification schema was 

prospectively assessed. Optimum classifiers were evaluated 

on two independent test sets from different sleep units. 

Table 5 summarizes the performance assessment of the 

proposed methodology. The accuracy of optimum classifiers 

from PCA significantly decreased, with accuracies ranging 

from 71.3% to 81.2% in the validation set and 40.9% to 

54.9% in the test set. Similarly, the FSFS+FLD classifier 

composed of 8 features achieved 78.2% accuracy in the 

validation set and 57.8% accuracy in the test set. On the 

other hand, optimum classifiers from FSFS+LR and 

FSFS+SVM schemes showed lower performance decrease. 

The LR model composed of 4 features achieved 83.2% 

accuracy in the validation set and 88.7% accuracy in the test 

set, whereas the SVM classifier with 5 input features 

achieved 82.2% accuracy in the validation set and 80.3% 

accuracy in the test set from the PUH sleep unit. Optimum 

classification schemes from GAs showed different 

performance depending on the classifier. GAs+LR achieved 

moderate to high accuracies in the validation set, ranging 

from 68.3% (15 features) to 85.2% (14 features), but 

extremely low performance in the test set, with accuracies 

ranging form 29.6% (15 features) to 31.0% (14 features). 

GAs+FLD achieved unbalanced accuracies in the validation 

set, ranging from 39.6% (9 features) to 81.2% (7 features), 

and moderate performance in the test set, with accuracies 

ranging from 66.2% (9 features) to 60.6% (7 features). On 

the other hand, GAs+SVM provided higher performance 

and more stable classifiers, leading to 84.2% accuracy (7 

and 8 features) in the validation set, and accuracies ranging 

from 81.7% (8 features) to 84.5% (7 features) in the test set. 

5. Discussion 

This study assessed the usefulness of 9 feature selection and 

classification schemes to enhance information from SaO2 

oximetric recordings in the context of SAHS diagnosis. An 

initial feature set composed of 16 features was developed to 

characterize SaO2 dynamics. A filter-based selection 

approach from variable construction (PCA), an embedded 

feature selection approach (FSFS) and a wrapper 

methodology for exhaustive analysis of the feature space 

(GAs) were applied. FLD, LR and SVM classifiers were 

involved on each feature selection methodology. Optimum 

classification schemes from the training set were 

subsequently assessed in datasets from different sleep units. 

Our results showed that all algorithms from different 

feature selection and classification procedures reached high 

performance in the training set, with accuracies ranging 

from 83.8% to 96.6%. In contrast, optimum classification 

schemes showed different behavior when were further 

tested. Regarding results from PCA, significantly lower or 

unbalanced sensitivity and specificity values were reached 

in the validation set from the RHH, leading to accuracies 

ranging from 71.3% to 81.2%. The diagnostic performance 

was even lower in the test set from the PUH, with a 

maximum accuracy of 54.9% using a LR classifier. PCA 

performs feature selection as a preprocessing stage 

regardless of the classification method. This is the reason 

why PCA achieved the lowest performances in the training 
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set and subsequently failed in the validation and test sets 

independently of the classifier. Optimum classification 

schemes from GAs showed high dependence on the number 

of selected features. GAs+LR achieved the highest 

performances in the training set using high dimensional 

feature subsets automatically selected. However, extremely 

unbalanced sensitivity and specificity values were obtained 

in further assessments, especially in the test set from the 

PUH, with accuracies ranging from 29.6% (15 features) to 

31.0% (14 features). On the other hand, GAs+SVM 

provided higher performance and more stable classifiers 

using half of the features: 84.5% (7 features) and 81.7% (8 

features) in the test set. GAs are optimization algorithms 

aimed at extensively inspecting the search space in the 

training set to maximize the fitness function, usually the 

performance of a classifier. SVMs provide high 

generalization performance on pattern classification 

problems.31,55 Indeed, the regularization parameter C 

controls the trade-off between the maximum margin of 

separation between classes and minimizing the classification 

error.21,31 Our results suggest that, when low generalization 

capability predictors are used, GAs might build classifiers 

composed of a high number of features that overfit the 

training set and fail on subsequent assessments in different 

population groups. It is noteworthy that GAs+FLD selected 

feature subsets of similar size than those from GAs+SVM. 

However, optimum classifiers from GAs+FLD reached 

significantly lower accuracy in the test set. Performance 

decrease could be due to the fact that SVMs do not 

hypothesize any a priori statistical distribution of variables, 

whereas input features are assumed to have normal 

distributions and equal covariance matrices when using 

FLD.31 Similarly, FSFS+FLD achieved unbalanced 

sensitivity and specificity values and low accuracy in the 

test set using 8 features. On the contrary, FSFS+LR and 

FSFS+SVM provided high performance and balanced 

classifiers with reduced input feature subsets composed of 4 

and 5 features, respectively. This agrees with the aim of 

forward stepwise selection: features are selected taking into 

account the amount of information added to the model, 

instead of maximizing classification accuracy on a specific 

dataset. Using efficient search strategies instead of “brute 

force” techniques did not decrease prediction performance. 

Indeed, our results support previous studies reporting that 

greedy search strategies, such as stepwise feature selection, 

are computationally advantageous and robust against 

overfitting.14 

Regarding the number of features, the highest and more 

balanced performances in the validation and test sets were 

obtained using reduced feature subsets (25-50% of input 

features). From FSFS, FSFS+LR and FSFS+SVM schemes 

selected the smallest feature subsets: 4 (M2t, M4t, PR, LZC) 

and 5 (M4t, PA, PR, SampEn, LZC) features, respectively. 

Similarly, GAs+SVM provided 2 models with 7 (M2t, M3t, 

M4t, M2f, M4f, SE, CTM) and 8 (M2t, M3t, M4t, M2f, M3f, 

M4f, SE, CTM) features that yield to high accuracy both in 

the validation and test sets. Our results suggest that the 

larger the number of features, the larger overfitting is on the 

training set, leading to poor performance in subsequent 

assessments. Regarding PCA, only the first 3 principal 

components were selected using the average criterion. 

However, each principal component is a linear 

transformation of the original features, i.e. all 16 features 

contribute to every new variable in the transformed space. 

Thus, information from a large amount of features is used to 

achieve high performance in the training set, whereas 

accuracy significantly decreases in the validation and test 

sets. 

Table 5. Diagnostic performance assessment of optimum feature subsets from each feature selection and classification methodologies 

in the validation set and in the test set from an independent sleep unit. 

   Validation set (RHH) Test set (PUH) 

Algorithm n Features Se Sp Ac Se Sp Ac 

PCA+FLD 3 First 3 principal components 66.2 80.6 71.3 52.4 44.0 46.5 

PCA+LR 3 First 3 principal components 92.3 61.1 81.2 100.0 36.0 54.9 
PCA+SVM 3 First 3 principal components 67.7 80.6 72.3 28.6 46.0 40.9 

FSFS+FLD 8 M1t, M3t, M4t, SE, PR, SampEn, CTM, LZC 76.9 80.6 78.2 9.5 78.0 57.8 

FSFS+LR 4 M2t, M4t, PR, LZC 83.1 83.3 83.2 95.2 86.0 88.7 

FSFS+SVM 5 M4t, PA, PR, SampEn, LZC 83.1 80.6 82.2 76.2 82.0 80.3 

GAs+FLD 7 

9 

M1t, M3t, M4t, M1f, SE, SampEn, LZC 

M2t, M4t, M1f, M2f, M4f, PT, PA, PR, LZC 

80.0 

10.8 

83.3 

91.7 

81.2 

39.6 

95.2 

0.0 

46.0 

94.0 

60.6 

66.2 

GAs+LR 14 
15 

M1t, M3t, M4t, M1f, M3f, M4f, MF, SE, PT, PA, PR, SampEn, CTM, LZC 
M1t, M2t, M3t, M4t, M1f, M2f, M3f, M4f, MF, SE, PT, PA, PR, CTM, LZC 

89.2 
100.0 

77.8 
11.1 

85.2 
68.3 

100.0 
100.0 

2.0 
0.0 

31.0 
29.6 

GAs+SVM 7 

8 

M2t, M3t, M4t, M2f, M4f, SE, CTM 

M2t, M3t, M4t, M2f, M3f, M4f, SE, CTM 

84.6 

84.6 

83.3 

83.3 

84.2 

84.2 

95.2 

95.2 

80.0 

76.0 

84.5 

81.7 
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In order to obtain high performance classifiers is 

essential to build an initial feature set that concentrates as 

much non-redundant information as possible about the 

problem under study. Therefore, in the present research we 

built an original feature set from oximetry composed of 

metrics from complementary analyses: time vs. frequency 

and linear vs. nonlinear. After the feature selection stage, 

time, spectral and nonlinear features are included in the 

optimum feature subsets from FSFS+LR, FSFS+SVM and 

GAs+SVM, which achieved the highest accuracies in both 

test populations. Both subsets from the FSFS feature 

selection approach share 60-75% of features (3 features): a 

linear statistic in the time domain (M4t), a linear measure in 

the frequency domain (PR) and a nonlinear measure in the 

time domain (LZC). These features jointly account for the 

main characteristics of overnight SaO2 profiles of non-

SAHS subjects and the influence of apnea events in the 

recordings of SAHS-positive patients. M4t measures the 

peakedness of the data distribution in the time domain, 

which is especially high in the case of SaO2 recordings from 

non-SAHS subjects due to its near-constant behavior. On 

the other hand, there is a significant power increase in the 

frequency band between 0.014 Hz and 0.033 Hz due to the 

quasi-periodic components of overnight respiratory events. 

PR quantifies the effect of repetitive apneic episodes on 

SaO2 recordings in the frequency domain. Finally, 

desaturations of different severity modify the normal SaO2 

profile by adding new patterns or subsequences. LZC 

quantifies to what extent these desaturations increase the 

complexity of the SaO2 signal in the time domain. Similarly, 

subsets from the GAs+SVM schema share 87.5% of 

features (7 out of 8). Comparing shared optimum features 

from both feature selection techniques (FSFS and GAs), we 

can observe that M4t is present in subsets from both 

approaches, PR is replaced by SE, which is also influenced 

by the presence of additional frequency components in the 

power spectrum due to recurrent apneic events, and the 

nonlinear measure of complexity LZC is replaced by the 

nonlinear measure of variability CTM, which also quantifies 

time domain changes in the SaO2 profile due to overnight 

desaturations. Therefore, our results suggest that a suitable 

feature selection stage applied to a well-situated and 

balanced initial feature set could detect complementary 

information and thus increase the diagnostic performance of 

oximetry in the context of SAHS diagnosis. 

Previous researchers applied multivariate analysis in the 

context of SAHS. Using conventional oximetric indexes 

based on the number, duration and amplitude of the 

desaturations, 88.0% sensitivity and 70.0% specificity were 

reached from stepwise linear regression,9 whereas 90% 

sensitivity and 70% specificity were obtained using 

multivariate adaptive regression splines.8 Using spectral 

features from the high frequency range, a sensitivity of 82% 

and a specificity of 84% were obtained with a LR 

classifier.10 Higher performance (91.1% sensitivity and 

82.6% specificity) were obtained applying linear 

discriminant analysis to conventional spectral features in the 

apnea frequency band.11 Neural networks have been also 

applied using clinical and anthropomorphic features (94.9% 

sensitivity and 64.7% specificity)56 and oximetric features 

(89.4% sensitivity and 81.4% specificity) as input 

variables.12 Different approaches of multivariate analysis 

using features from non-portable ECG have been also 

developed in the context of SAHS detection, reaching 

accuracies ranging from 74.4% to 100% using populations 

with no more than 80 subjects.57–59 Other researchers 

suggested the use of wavelet features as inputs to a SVM 

classifier to assist in SAHS diagnosis from ECG.60,61 A 

diagnostic accuracy of 92.86% was achieved on a small test 

set composed of 42 subjects.60 The proposed methodology 

was also assessed on a slightly larger database composed of 

70 recordings.61 An accuracy of 100% was reached on a test 

set with 30 subjects. However, borderline subjects were 

excluded from the study. 

Recent studies by our group applied dimensionality 

reduction and stepwise feature selection procedures before 

classification.30,62,63 PCA was applied to a small set of 3 

spectral and 3 nonlinear features.62 First-to-fifth principal 

components were selected and 93.0% accuracy (97.0% 

sensitivity and 79.3% specificity) was reached on a test set 

from the same sleep unit. FSFS+LR was previously applied 

to a larger feature set from oximetry, reaching 89.7% 

accuracy (92.0% sensitivity and 85.4% specificity) using 

cross-validation.30 Similarly, FSFS+LR was also applied to 

a wide feature set (42 features) from single channel airflow 

and respiratory rate variability.63 Using cross-validation, 

82.4% accuracy was reached by the LR model composed of 

features automatically selected from both signals. Finally, a 

preliminary study on the usefulness of GAs for feature 

selection in the context of SAHS diagnosis from oximetry 

has been recently carried out.64 A LR model composed of 6 

features achieved the highest accuracy (87.5%) in the test 

set from the same sleep unit. Nevertheless, these studies 

tested their approaches on populations from the same 

hospital. In the present research, we analyzed SaO2 datasets 

from two different sleep units to assess our methodologies. 

To our knowledge, this is the first study where several 

complementary feature selection and classification 
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algorithms are prospectively tested in the context of SAHS 

diagnosis from oximetry. 

We should take into account some limitations regarding 

the general application of our methodology. Recurrent 

desaturations during sleep are not exclusively characteristic 

of SAHS. The presence of other disorders, such as asthma, 

chronic obstructive pulmonary disease (COPD) or obesity-

hypoventilation syndrome could influence the performance 

of methodologies based on oximetry alone.4 Regarding this 

issue, the rules of the American Academy of Sleep 

Medicine (AASM) about the use of portable monitoring as 

an alternative to PSG were taken into account, which 

recommend that portable monitoring should not be used in 

patient groups with significant comorbid medical 

conditions, patients suspected of having other sleeps 

disorders and for general screening of asymptomatic 

populations.7 Our results suggest that LR and SVMs 

classifiers fed with reduced input feature subsets provide 

high-performance and stable classifiers across independent 

populations form different sleep units. However, further 

analyses are needed to assess its robustness against common 

limitations of oximetry. Moreover, further work is required 

to test the performance of our methodology from 

ambulatory portable monitoring at patient’s home. An 

additional limitation should be taken into account. In the 

present study, an AHI  10 e/h was used as threshold for a 

positive diagnosis of SAHS in both sleeps units under study. 

However, there is not a standardized AHI threshold for 

SAHS diagnosis65 and different cut-off points (commonly 5, 

10 and 15 e/h) have been widely applied. Therefore, further 

analysis is needed to assess the influence of changes in the 

diagnostic threshold in order to generalize our methodology. 

In addition, SAHS-positive patients are predominant in the 

training set, which could influence the model design and the 

performance of the classifiers. Finally, additional drawbacks 

regarding feature selection must be considered. As 

optimization algorithms, GAs achieved higher performance 

in the training set. However, significant unbalanced values 

of sensitivity and specificity were reached in the validation 

and the test sets when large feature subsets are selected. 

Genetic programming, which is a significant extension of 

GAs66 could be applied to further assess the usefulness of 

evolutionary algorithms for feature selection in the context 

of SAHS diagnosis from oximetry. Moreover, additional 

feature selection techniques could be applied to further 

assess our methodology, such as independent component 

analysis, subspace clustering or simulated annealing. 

6. Conclusions 

In summary, three feature selection approaches (PCA, 

FSLR and GAs) and three classification algorithms (FLD, 

LR and SVMs) were assessed in the context of SAHS 

diagnosis using populations from two independent sleep 

units. Optimum classification schemes from PCA achieved 

highly unbalanced sensitivity–specificity pairs and poor 

accuracy both in the validation and test sets regardless of the 

classifier. Additionally, performance of optimum classifiers 

from GAs significantly decreased when large feature subsets 

are selected due to overfitting on the training set. On the 

other hand, FSFS+LR, FSFS+SMV and GAs+SVM 

classifiers, composed of a reduced number of features 

automatically selected, achieved a balanced sensitivity–

specificity pair and high accuracy on populations from both 

sleep units. Thus, greedy search feature selection strategies 

and classifiers with high generalization ability against 

overfitting could be useful to avoid noisy and redundant 

information and to obtain complementary features in order 

to enhance SAHS detection from oximetry. 
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