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ABSTRACT
Recent research indicates that prediction-based coherence
optimizations offer substantial performance improvements for
scientific applications in distributed shared memory
multiprocessors. Important commercial applications also show
sensitivity to coherence latency, which will become more acute in
the future as technology scales. Therefore it is important to
investigate prediction of memory coherence activity in the context
of commercial workloads.

This paper studies a trace-based Downgrade Predictor (DGP)
for predicting last stores to shared cache blocks, and a pattern-
based Consumer Set Predictor (CSP) for predicting subsequent
readers. We evaluate this class of predictors for the first time on
commercial applications and demonstrate that our DGP correctly
predicts 47%-76% of last stores. Memory sharing patterns in
commercial workloads are inherently non-repetitive; hence CSP
cannot attain high coverage. We perform an opportunity study of a
DGP enhanced through competitive underlying predictors, and in
commercial and scientific applications, demonstrate potential to
increase coverage up to 14%.

Categories and Subject Descriptors
C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures (Multiprocessors); B.3.2 [Memory Structures]:
Design Styles - Shared memory

General Terms
Performance, Design

Keywords
Coherence prediction, commercial workloads, coherence misses,
trace-based prediction, sharing patterns

1. INTRODUCTION
Modern distributed shared memory (DSM) machines face an

ever-growing disparity between processor cycle times and inter-
connect latencies. Semiconductor fabrication advances and circuit
innovations have led to dramatic increases in operating frequen-
cies, and recent architectural developments—such as chip
multiprocessors and simultaneous multithreading—place an even
greater load on memory subsystems. DSMs face all the challenges
associated with uniprocessor designs, as well as coherence
requirements that tax the interconnect.

Distributed shared memory is an attractive multiprocessor
architecture, capable of scaling to a large number of nodes. Unlike
a cluster of independent machines, DSM maintains the familiar
programming model of uniprocessors and symmetric multiproces-
sors, which allows applications to run on a DSM without
modification. However, DSM requires mechanisms to ensure
memory coherence and consistency, which create interconnect
traffic and add latency to critical operations.

Bandwidth limitations in DSM can be overcome by addi-
tional communication channels (feasible but costly).
Unfortunately, interconnect latency cannot be so easily reduced.
Although microarchitectural and memory coherence optimizations
such as out-of-order execution and relaxed memory models can
hide some of the latency associated with coherence traffic [1], they
cannot completely overlap the shared read miss latency.

This paper studies two prediction mechanisms that are used
to reduce coherence latency in DSM. We derive these predictors
from prior work [8,9] in which they were evaluated using scien-
tific workloads. The 2-level Trace-based DownGrade Predictor (2-
TDGP) identifies the final store to a cache block prior to a subse-
quent read by another node and self-downgrades the block, thus
eliminating one network hop from coherent read requests by other
nodes. The 2-level Pattern-based Consumer Set Predictor (2-
PCSP) predicts which nodes will subsequently read (consume) a
value that has been written (produced) by another node. Although
outside the scope of this paper, such a prediction could be used to
forward blocks to consumers, thus obviating the need for a
coherent read request at all and reducing effective latency by
several orders of magnitude.

Evaluation of architectural proposals continually becomes
more sophisticated. Recently, commercial applications have
become very important to the research community [2]. Coherence
latency has been shown to be a first-order determinant of database
performance in multiprocessor systems, and coherence traffic is
increasing with the aggregate caching in the memory hierarchy
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[3]. Thus, we expect commercial applications, in particular online
transaction processing (OLTP), to benefit greatly from techniques
that optimize coherence activity. It is essential to evaluate the
utility of new and existing proposals on this class of application.

Using instruction traces from full-system simulation [13] of
shared-memory multiprocessors running scientific and commercial
workloads on stock operating systems, we demonstrate:
• 2-TDGP on Commercial Workloads: We evaluate a 2-level

trace-based downgrade predictor for the first time on commer-
cial workloads. We show that, despite long and complex execu-
tion paths, 2-TDGP correctly identifies 47%-76% of
productions with 13%-22% mispredictions.

• 2-PCSP on Commercial Workloads: We evaluate a 2-level
pattern-based consumer set predictor for the first time on com-
mercial workloads, and show that it cannot predict a significant
fraction of consumers. Due to data- and timing-dependent
behavior, the sharing patterns in commercial applications are
inherently non-repetitive and therefore unpredictable.

• Competitive Predictor Opportunity: We observe that 2-TDGP
is sensitive to the inclusion of address information in prediction
signatures, and the optimum design point varies within and
across commercial and scientific applications. We present an
opportunity study for a competitive predictor that dynamically
varies signature encoding, exposing up to 14% additional oppor-
tunity for 2-TDGP.

The rest of this paper is organized as follows. In Section 2 we
review related work in the field. Section 3 presents the design of 2-
TDGP and 2-PCSP. Section 4 describes our experimental infra-
structure and procedures. Section 5 presents the results. We
conclude the paper in Section 6.

2. RELATED WORK
Speculative release of shared data from processor caches in a

multiprocessor system was first proposed by Lebeck and Wood
[11]. Their technique, Dynamic Self-Invalidation, triggered invali-
dation of shared data blocks, identified via coherence protocol
hints, at annotated critical section boundaries. Last Touch Predic-
tion (LTP), proposed in [9], instead associates invalidation events
with the sequence of instructions accessing a cache block prior to
its invalidation. By storing PC traces which repetitively lead to
invalidation, LTP can trigger self-invalidation immediately upon
the last access without the aid of program annotation. Our 2-TDGP
is a derivation from LTP that only predicts the release of dirty
shared data (downgrades rather than invalidations). Techniques
that relax memory order have been shown to effectively hide
coherent write latency [1], obviating the need to predict invalida-
tions. However, these techniques cannot fully overlap coherent
read latency; therefore, the retrieval (via a downgrade operation) of
a value modified by another node remains on the processor’s crit-
ical path. [9] evaluated LTP using scientific workloads. This paper
presents the first evaluation of this class of predictor for commer-
cial applications. In the context of a uniprocessor system, Hu et al.
[7] investigated timekeeping approaches for predicting memory
system events. These are straightforward to adapt for coherence
prediction in DSM, and in this paper we compare 2-TDGP against
a dead-time-based predictor.

Predicting the subsequent sharers of a newly produced value,
which we generically call consumer set prediction (CSP), was first
attempted by Mukherjee and Hill in [14]. Their scheme adapted

two-level branch prediction [19] to predict coherence messages
based on the history of previously received messages. Memory
Sharing Prediction (MSP) [8] improves upon this approach by
eliminating prediction of acknowledgement messages. Further,
MSP summarizes the set of consumers for a value without regard
to the order each consumer requests the value, enabling the
predictor to tolerate reordering of read requests. Our 2-PCSP
further optimizes MSP to predict only read requests. As with 2-
TDGP, coherent write latency can be addressed with memory
ordering optimizations and write messages need not be predicted.
Kaxiras presents a taxonomy for the design space of consumer set
prediction [6], and classifies CSPs based on their access and
prediction functions. In the Kaxiras taxonomy, 2-PCSP is best
categorized as address-based access with two-level prediction.
However, 2-PCSP differs in that it uses per-node saturating confi-
dence counters in the second-level table to reduce mispredictions.
All previous work on consumer set prediction has evaluated
predictors using scientific applications; this paper presents the
effectiveness of 2-PCSP for commercial workloads.

3. DESIGN
In this section we present the details of our predictors.

Section 3.1 presents 2-TDGP, its derivation from previous predic-
tors, and an example of its operation. Section 3.2 does the same for
2-PCSP. Section 3.3 proposes a competitive design that chooses
among underlying predictors and describes an opportunity study of
this approach.

3.1. Trace-Based Downgrade Predictor
We propose the 2-level Trace-based DownGrade Predictor (2-

TDGP), derived from the Last Touch Predictor (LTP) [9], to
predict shared block downgrades. 2-TDGP predicts the last store to
a cache block prior to its downgrade as a result of a read by another
processor. 2-TDGP maintains a trace of all store instructions from
the start of a write miss (either to an invalid or read-only cache
block) until a subsequent downgrade request. Traces are used to
predict the last store prior to future downgrades.

Figure 1 (left) depicts the anatomy of 2-TDGP. For each
shared cache block resident in the processor’s caches, the history
table records a fixed-size trace, encoded using truncated addition
[9] of the program counter (PC) of every store to that cache block.
2-TDGP implements the history table as a duplicate copy of the
cache tag arrays to ensure 2-TDGP operations do not impact the
cache’s critical path.

A second table maintains signatures that are used to predict
downgrades. Unlike LTP, which uses per-address signature tables,
2-TDGP organizes the signature table as a global set-associative
structure. Signatures are generated by hashing bits of the block
address into the history trace via an xor operation, which distrib-
utes signatures over sets in the table and improves prediction
accuracy. 2-TDGP achieves much of the benefit that has been
demonstrated for per-address signatures [9] with reduced storage
requirements.

When an explicit downgrade message is received, 2-TDGP
records the current signature for the corresponding cache block in
the signature table. Each time a store instruction touches a cache
block, the cache block’s updated signature is looked up in the
signature table. If present, 2-TDGP initiates a self-downgrade,
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releasing write permission and updating main memory. Each
signature table entry uses a 2-bit confidence counter to add hyster-
esis to the training process. In the event of a misprediction, the
directory detects that a self-downgrade was followed by a write by
the same node, and notifies the 2-TDGP, lowering confidence of
the associated signature table entry.

Figure 1 (left) depicts an example prediction. Previously,
between a shared miss and downgrade, the instructions with
program counters {PC1,PC2,PC3} stored to the block at address
X. The history table entry indicates that {PC1,PC2} is the current
trace of stores to the block. The next store (PC3) updates the
history table entry, which causes 2-TDGP to generate a signature,
and look it up in the signature table. Because the table indicates a
match and the 2-bit counter for the entry has saturated (not shown),
2-TDGP triggers a self-downgrade.

Much like LTP, 2-TDGP relies on repetitive program
behavior to predict timely downgrades. Trace-based predictors
require history table accesses to be in program order [10], because
out-of-order updates to the history table disrupt the repetitive
nature of signatures. 2-TDGP only records store references, thus
exploiting the in-order placement of stores in the store buffer. In
contrast, LTP needs auxiliary reordering mechanisms. By not
recording load references, 2-TDGP minimizes the number of
signatures generated and reduces predictor storage requirements
compared to LTP.

A correct DGP prediction reduces the coherent read latency
for the first consumer of a particular block, by the traversal time of
the network. Updated data already resides in main memory; thus
no downgrade is required, saving one network hop. A DGP
misprediction requires the node to re-obtain write permission for
the block. 2-TDGP exploits a relaxed memory system to hide the
latency of these extra upgrades [1], and can therefore tolerate
higher misprediction rates than LTP, for which mispredictions may
result in read misses that lie on the critical path of the processor.

3.2. Pattern-Based Consumer Set Predictor
We propose the 2-level Pattern-Based Consumer Set Predictor

(2-PCSP) to predict subsequent consumers of cache blocks that
have been modified. 2-PCSP is derived from the Memory Sharing
Predictor (MSP) [8]. Figure 1 (right) illustrates the anatomy of 2-
PCSP. As in MSP, a history table maintains a history of read/write
sequences for each cache block. 2-PCSP encodes history entries to
be either a read or a write. Write entries contain a processor ID and

read entries contain a bit vector that indicates the consumers of the
previous write. The vector encoding of reads helps eliminate
mispredictions due to reordering of read requests in the system [8].
We embed the history table in the directory as a register per cache
block. A signature table maintains the predicted consumer set for
each history pattern, using a 2-bit confidence counter per node.
Each time a history pattern recurs and a particular node consumes
the block, its confidence counter is increased. If the consumer does
not request the block, its confidence counter is decreased.

The predictor is trained each time a write request is received
by the directory. 2-PCSP encodes the current sharers of the block
(i.e., immediately prior to the write being serviced by the direc-
tory) into a read entry. This read entry, and an entry for the
incoming write, are appended to the current history for the block.
The updated history can be looked up in the signature table and
used to make a prediction. However, a prediction at this point in
time is pointless, because the writing processor has not finished
updating the block.

2-PCSP is best used in conjunction with a downgrade
predictor. When a DGP-initiated downgrade arrives at the direc-
tory, 2-PCSP is consulted to predict subsequent sharers, using the
current history. This prediction can then be used to forward the
block to consumers. Although details of forwarding mechanisms
are beyond the scope of this work, generalizations may be made
about the effect of CSP predictions. Correctly predicted consumers
will find the block in their local memory hierarchy, thus converting
a coherent read miss requiring at least one network round trip
(hundreds or thousands of cycles) into a local hit (tens of cycles or
less). Mispredicted consumers increase utilization of the network,
both to erroneously forward the block and to invalidate it upon the
next write. However, little additional latency is incurred, because
invalidations of mispredicted sharers occur in parallel with invali-
dations of actual sharers (predicted or not).

Similar to 2-TDGP, and unlike MSP, 2-PCSP organizes the
signature table as a set-associative cache, and generates signatures
through an xor operation of address bits with the current history.
Including address information in 2-PCSP signatures has been
shown to improve prediction accuracy on scientific applications
[6]. 2-PCSP’s ability to capture sharing patterns also depends on
the number of history entries encoded in signatures. The history
depth can be arbitrarily increased to improve prediction accuracy
at the cost of higher learning time and increased storage for history
information.

Figure 1. The Trace-Based Downgrade (left) and Pattern-Based Consumer Set (right) Predictors.
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Figure 1 (right) depicts an example prediction for a consumer
set, given a history depth of two requests. For the block at address
X, if a write from processor P5 is preceded by reads from P1 and
P2, 2-PCSP predicts that nodes P4 and P6 will consume the
produced value, as their confidence counters (not shown) have
saturated.

As with 2-TDGP, our 2-PCSP design assumes that a relaxed
memory system is used to tolerate write miss latency, obviating the
need to predict writers. This reduces 2-PCSP prediction storage
requirements by at least a factor of two over MSP. A relaxed
memory system also hides the latency of invalidating incorrectly
forwarded blocks, strengthening the argument given above that
CSP mispredictions do not impact the critical path of the system.
In contrast, incorrectly forwarding writable blocks using MSP may
prematurely take readable copies away from current sharers, incur-
ring orders of magnitude higher misprediction penalties.

3.3. Opportunity for Competitive Predictors
Our results (shown in Section 5.1 and Section 5.2 for

commercial applications) demonstrate empirically that there is no
optimal configuration for the number of address bits the predictors
use to generate signatures. Instead, the best-performing configura-
tion varies across target applications and operating systems. This
variability in performance suggests that a more complex competi-
tive predictor might be able to adapt to the varying application
demands, and perhaps even outperform the best fixed-bit predictor
configuration.

Many advanced predictors are composed of distinct base
predictors with different configurations; each is better at predicting
a different subset of events in the system. An algorithm or another
predictor is used to choose among the available options at each
prediction opportunity. The tournament branch predictor [7] used
in Alpha 21264 is likely the most well known predictor employing
this design. In the context of multiprocessors, R-NUMA [5]
proposed a competitive algorithm for choosing between coherence
mechanisms.

We present a study to determine the opportunity available to
improve coverage with a competitive predictor that can use
different address-bit encodings across signatures. The potential
coverage of a competitive predictor is limited by the aggregate
coverage achieved by all underlying predictors. We evaluate this
opportunity assuming an oracle mechanism to select among the
available address-bit sizes. We predict using four address-bit sizes
in parallel, and after the outcome of each prediction is known, we
choose the best. Results of the study are presented in Section 5.4.

4. EXPERIMENTAL METHODOLOGY
This study, for the first time, presents results of these predic-

tion mechanisms on commercial applications. We compare results
to previously studied scientific applications [6,8,9]. We analyze
full-system memory traces created using SimFlex [6] on Virtutech
Simics [13]. Simics is a full system simulator that allows functional
simulation of unmodified commercial applications and operating
systems. The simulation models all memory accesses that occur in
a real system, including all OS references. We evaluate commer-
cial workloads on Solaris 8 on SPARC and Red Hat Linux 7.3 on
x86. We use two platforms because OS code has a significant
impact on the performance of commercial workloads [3]. In partic-

ular, database management systems use different low-level
libraries for locking and synchronization on each platform, causing
distinct memory sharing behavior. We simulate a 16-node SPARC
system and an 8-node x86 system (Simics uses a BIOS that does
not support more than eight processors for x86), both with 1GB of
memory. For the scientific applications, we configure Simics to
simulate a 16-node multiprocessor system running Solaris 8.

Table 1 lists the applications studied and their inputs. We
select a representative group of pointer-intensive and array-based
scientific applications from previous studies to act as a baseline for
comparison with our commercial workloads. We choose scientific
applications: (1) that are scalable to large data sets, and (2) main-
tain a high sensitivity to memory system performance when scaled.
These include barnes [18] a hierarchical N-body simulation, em3d
[4] an electromagnetic force simulation, moldyn [15] a
CHARMM-like molecular dynamics simulation, ocean [18]
current simulation, and water [18] an N-body molecular simulation
using a 3D spatial grid. 

We model the selection and design of our commercial work-
loads on [2]. We run version 7.2 of IBM DB2 with the TPC-C
workload [12], an online transaction processing workload. We use
a highly optimized toolkit, provided by IBM, to build the TPC-C
database and run the benchmark. This toolkit provides a tuned
implementation of the TPC-C specification for optimal transaction
execution on DB2. Prior to measurement, we warm the database
until the transaction completion rate in Simics reaches steady state.
We analyze traces of at least 5,000 transactions.

SPECjbb2000 [17] is a Java-based OLTP benchmark that
models typical business use of a Java server application: the
middle-tier of a 3-tier electronic commerce application, with a
memory-resident database backend similar in design to the TPC-C
database. There is a one-to-one correspondence between clients
and warehouses in SPECjbb.

Table 1. Applications and configurations

Scientific applications

barnes 64K particles., 2.0 subdiv. tol., 10.0 fleaves

em3d 400K nodes, 15% remote, degree 2, span 5

moldyn 19652 molecules, max interactions 2560000

ocean 514x514 grid, 9600 sec

water 4913 molecules, spatial, 6.2128Å cutoff

Commercial applications

DB2 Solaris TPC-C, 100 warehouses (10 GB), 96 clients,
360 MB buffer pool

DB2 Linux TPC-C, 100 warehouses (10 GB), 96 clients,
450 MB buffer pool

JBB Linux SPECjbb2000, 8 warehouses (200MB),
768MB Java heap

JBB Solaris SPECjbb2000, 16 warehouses (400MB),
1GB Java heap

Web Linux SPECweb99, Apache 2.0.48

Web Solaris SPECweb99, Apache 1.3.27
4



SPECweb99 [16] evaluates the performance of WWW
servers, including both dynamic and static content. We run the
SPECweb99 workload on recent versions of the Apache web
server on each platform. We use a default installation of Apache.

5. RESULTS
In Section 5.1 we evaluate 2-TDGP on commercial work-

loads, and do the same for 2-PCSP in Section 5.2. Section 5.3
compares 2-TDGP against a timer-based DGP design, and 2-PCSP
against other address-based consumer predictors. We present an
opportunity study in Section 5.4 that investigates the potential for
competitive predictors to improve upon the base predictor designs.

5.1. Evaluation of 2-TDGP
Figure 2 presents the coverage and mispredictions of 2-TDGP

for commercial workloads, as well as an average of the scientific
benchmarks studied. The performance of 2-TDGP is measured
with respect to productions (i.e., the last store a node makes to a
shared cache block prior to consumption by another node).
Because we normalize results to productions, these results are
independent of cache size or configuration—productions and
consumptions always incur coherence misses in a system without
predictors. Coverage is the fraction of all productions that 2-TDGP
predicts correctly. Mispredictions are placed above the 100% mark
because they do not correspond to production events in a system
without a DGP. Rather, they are erroneously triggered self-down-
grade events. Unpredicted downgrades are labelled as Training
because the predictor uses these to generate new signatures that
can be subsequently used to predict.

We evaluate 2-TDGP with unbounded signature table storage,
in order to eliminate any sensitivity to dataset size when
comparing across applications. We have empirically determined
that a practical finite implementation of 2-TDGP (64k entries, 16-
way associativity) attains almost the same performance. We use
the full PC of each store instruction in generating the PC trace (the
precise number of bits varies across architectures). We vary the
number of data address bits from 0 (no disambiguation) to the
maximum available (26 bits for the systems studied).

Ideally, program behavior itself should be sufficient to predict
memory access patterns. 2-TDGP captures this behavior through

its PC history trace. However, the PC trace may not be sufficient to
exactly determine program context. In particular, data address bits
in 2-TDGP signatures enable the predictor to disambiguate
subtrace aliases [6,9]. For example, suppose the cache blocks in a
large array are each stored to five times prior to downgrade. If the
array is not aligned on a cache block boundary, the first and last
cache blocks may be stored only twice. The trace containing only
two stores is a subtrace of the five store general case. Without
additional information, the predictor cannot determine whether to
predict a downgrade when this two-store subtrace is encountered.
Including data address bits in the signatures distinguishes such
corner cases, enabling 2-TDGP to predict correctly in each case.

Including more address bits increases 2-TDGP learning time,
because particular signatures occur less frequently. Scientific
applications generally have repetitious memory access patterns, so
many address bits do not inhibit 2-TDGP’s ability to train. Compu-
tation typically proceeds in iterations, warming 2-TDGP by the
end of the second iteration (because of the 2-bit confidence
counters). Subsequent iterations require no training, thus yielding
very high coverage, and mispredictions are low because of
subtrace disambiguation.

Commercial workloads do not exhibit the same degree of
repetitiveness in their memory access patterns, because of complex
datasets that continually change throughout execution. A number
of programming practices common in commercial applications
cause the evolution of the dataset over time, including dynamic
memory allocation and garbage collection. If data address bits are
included, these programming practices prevent 2-TDGP from
applying signatures learned in one program context to the next.
Therefore, adding address bits reduces the number of predictions
made, resulting in lower coverage.

5.2. Evaluation of 2-PCSP
Figure 3 explores 2-PCSP in a similar manner. Its perfor-

mance is measured with respect to consumptions (i.e., the first read
by each node of a newly produced value). Coverage is the fraction
of all subsequent readers that were predicted correctly. Mispredic-
tions are nodes that were predicted to consume a value, but did not.
Training is the gap between coverage and mispredictions,

Figure 2. 2-TDGP Results for Commercial Applications. The number of data address bits used to disambiguate PC traces is indicated 
below each bar.
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containing unpredicted patterns from which 2-PCSP learns. As
with 2-TDGP, we evaluate using an infinite signature table. We
have determined that a practical finite implementation of 2-PCSP
(64k entries, 16-way associativity) attains similar performance. We
present results for a history depth of four. In these experiments, we
supply 2-PCSP with oracle knowledge of each production (i.e., as
if a perfect DGP were used).

Unlike most scientific applications, commercial workloads do
not exhibit regular sharing patterns. The commercial applications
studied are synchronized using locks. Thus, the consumer of a
particular data item depends on which CPU next acquires the lock
for a critical section, which is often timing or data dependent. Data
migration patterns are therefore irregular and unpredictable. CSP
techniques in general, including 2-PCSP, perform well on scien-
tific applications, as the sharing patterns, though sometimes
complex, are highly repetitive [8,6].

2-PCSP achieves nearly 50% coverage for DB2 on Linux, in
stark contrast to its behavior on the other commercial workloads.
This is caused by 2-PCSP’s ability to accurately predict sharing of
highly contended spin locks in the Linux kernel. When several
nodes are spinning on a lock, 2-PCSP identifies the nodes and
correctly predicts their consumption of the lock variable. The
contention on such a lock generates considerable coherence traffic.
Together, these two factors lead to unusually high coverage. For
DB2 on Linux, the increased 2-PCSP coverage is caused almost
entirely by the kernel lock io_request_lock. This is due to heavy I/
O activity in online transaction processing, both to retrieve data-
base pages and to write log entries for each transaction.

For scientific applications, adding address bits to disambig-
uate 2-PCSP signature aliases uniformly improves both coverage
and mispredictions. As with 2-TDGP, adding address or other
information can eliminate trace aliases [6]. However, this is not the
case for commercial workloads. All commercial workloads show
the highest coverage with no address disambiguation. Removing
address bits allows the predictor to reuse sharing patterns learned
for one address on another, increasing the number of predictions
that can be made. However, lack of disambiguation causes many of
the additional predictions to be incorrect, leading to increased
mispredictions. The inherent non-repetitiveness of sharing patterns
in commercial workloads is the root cause of this phenomenon.

5.3. Comparisons with Other Techniques
We compare 2-TDGP against a simple timer-based DGP,

similar to the dead-time predictor found in [7]. Every cache block
possesses a timer, which is reset on each store to the block. Timers
are decremented on every access to the cache, and on timer expira-
tion, we predict the corresponding block should be self-
downgraded. For each workload, we evaluate performance for a
wide range of timer values, and present two results: one that
matches 2-TDGP’s coverage (labelled Cov) and one that matches
2-TDGP’s misprediction rate (labelled Misp). Figure 4 presents the
results. TDGP represents a realistic configuration, with 64k signa-
ture entries and 16-way associativity.

The nature of the timer-based DGP allows it to attain any
coverage (at the expense of mispredictions) or misprediction rate
(at the expense of coverage). The workloads studied exhibit a
range of timer values for which coverage and mispredictions are
both reasonable. Outside this range, mispredictions jump to
hundreds of percent or coverage drops below 10%, depending on
whether the timer value is decreased or increased. In matching
with 2-TDGP, there is evidence of all three scenarios.

There are no workloads for which the timer-based DGP
performs better than 2-TDGP. A timer cannot learn sufficiently
complex behavior to exhibit high coverage and low mispredictions
simultaneously. Indeed, the large variability in performance of the
timer-based DGP suggests its base design be re-evaluated.

Figure 5 presents a comparison of 2-PCSP with two other
consumer set prediction mechanisms. Inter records the previous
two consumer sets for a cache block, and predicts the intersection
of the two [6]. 2Bit keeps a 2-bit saturating counter for all nodes
for every cache block (i.e., the same storage overhead as Inter).
When a block transitions from shared state, the counter is incre-
mented for all sharers of the cache block, and decremented for
non-sharers. PCSP represents a realistic 2-PCSP configuration
with 64k signature entries and 16-way associativity. Additionally,
we have investigated using the single most recent consumer set for
prediction, but do not include results because of its unacceptable
misprediction rate (> 60%).

2Bit outperforms Inter because its hysteresis smooths over
temporary perturbations in a sharing pattern. Nevertheless, neither
of the simple sharing predictors can capture complex sharing

Figure 3. 2-PCSP Results for Commercial Applications. The number of data address bits used to disambiguate history signatures is 
indicated below each bar.
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patterns. For example, in moldyn, data is shared according to
different patterns during distinct phases of each iteration. 2-PCSP’s
history-based approach is able to record this complex pattern in its
signature table, correctly predicting each subsequent set of sharers
from recent sharing history across phases. The 2Bit and Inter
results further demonstrate the unpredictability of sharing patterns
in commercial applications.

5.4. Competitive Predictor Opportunity
Section 5.1 and Section 5.2 demonstrated that 2-TDGP and 2-

PCSP are sensitive to their address bit configuration. In this
section, we present the opportunity for a competitive design, which
dynamically chooses the amount of address information to utilize,
to outperform any of the fixed address bit designs. We evaluate a
competitive predictor composed of a set of underlying fixed
address bit predictors that are accessed and updated in parallel. At

each prediction opportunity, the competitive predictor chooses
from the available predictors. Competitive algorithms have been
shown to meet the accuracy of the underlying prediction algo-
rithms, and can even outperform the best underlying design in
some cases [5]. In this paper, we present an opportunity analysis
for such a hybrid, and do not consider the design of the mechanism
which selects among the predictors. The results presented assume
an oracle selection mechanism that chooses the predictor that will
result in the highest coverage at each prediction opportunity.
Because misprediction rates are highly sensitive to the selection
mechanism and our oracle avoids nearly all mispredictions, we
present only coverage results. We compare the best fixed design
with a competitive predictor composed of the four address bit
configurations presented in Section 5.1 and Section 5.2. All
predictor configurations use unlimited storage.

Figure 4. Comparison of DGP Techniques.
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Figure 5. Comparison of CSP Techniques.
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Figure 6 presents the opportunity for the oracle competitive
predictor to better 2-TDGP. The scientific applications have little
room for improvement, yet the competitive predictor shows
coverage gains up to 4%. Multiple predictors alleviate the effects
of aliasing that are seen with a single predictor. The commercial
workloads achieve up to 14% higher coverage. Those running on
Solaris show a much larger increase in coverage than their Linux
counterparts; this is likely due to common OS elements utilized by
all applications.

Due to space constraints, we do not present a graph of the
opportunity results for 2-PCSP. The improvements are minor, with
no workload achieving more than 6% higher coverage. For
commercial applications, even a competitive PCSP is not able to
attain reasonable coverage. Given the non-repetitiveness of
memory sharing patterns, this matches our expectations—regard-
less of the complexity of a predictor, high coverage cannot be
obtained.

A competitive prediction approach has substantial opportu-
nity to improve coverage over 2-TDGP. It is worthwhile to
investigate further in this direction, to design and explore a real-
istic implementation. Such a design may even reduce predictor
storage requirements, as it will generate fewer signatures than a
base 2-TDGP design that uses many data address bits. Depending
on the performance of such a predictor, it may be beneficial to also
study methods for minimizing mispredictions.

6. CONCLUSION
In this paper, we studied two predictors for memory coher-

ence activity in distributed shared memory architectures. 2-TDGP
predicts the last store to a cache block prior to consumption by
another node, and 2-PCSP predicts the consumers of updated
cache blocks. We evaluated this class of predictors for the first
time on commercial workloads and determined that 2-TDGP
correctly predicts 47%-76% of productions, while 2-PCSP is
largely ineffective due to the inherent non-repetitiveness of
memory access patterns in these applications. We studied an oracle
competitive predictor design, and found opportunity to increase 2-
TDGP coverage up to 14%.
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