
An Integrated Token-Based Algorithm for Scalable
Coordination

Yang Xu+, Paul Scerri∗, Bin Yu∗, Steven Okamoto∗, Michael Lewis+ and Katia Sycara∗

+ University of Pittsburgh, ∗ Carnegie Mellon University
yxu@sis.pitt.edu, {pscerri, byu, sokamoto}@cs.cmu.edu, ml@sis.pitt.edu, katia@cs.cmu.edu

ABSTRACT
Efficient coordination among large numbers of heterogeneous
agents promises to revolutionize the way in which some com-
plex tasks, such as responding to urban disasters can be per-
formed. However, state of the art coordination algorithms
are not capable of achieving efficient and effective coordina-
tion when a team is very large. Building on recent successful
token-based algorithms for task allocation and information
sharing, we have developed an integrated and efficient ap-
proach to effective coordination of large scale teams. We use
tokens to encapsulate anything that needs to be shared by
the team, including information, tasks and resources. The
tokens are efficiently routed through the team via the use of
local decision theoretic models. Each token is used to im-
prove the routing of other tokens leading to a dramatic per-
formance improvement when the algorithms work together.
We present results from an implementation of this approach
which demonstrates its ability to coordinate large teams.

1. INTRODUCTION
Efficient and flexible coordination among large numbers

of robots, agents and people promises to revolutionize the
achievement of complex and distributed tasks. In domains
such as disaster response [9], the military [20] and business
organizations [6], decentralized cooperative coordination can
dramatically reduce costs and improve efficiency while low-
ering risks and improving safety. In these applications, a
large number of heterogeneous agents need to coordinate in
a dynamic, uncertain environment and adjust their activi-
ties according to the status of the team and their teammates.
Typically, coordination requires tasks including plan mon-
itoring, information delivery, role allocation and resource
sharing. While rapid progress has been made in develop-
ing coordination algorithms [7], teamwork algorithms that
scale to large numbers of agents while remaining efficient,
distributed and flexible are not yet available.
Previous work on coordination has typically focused on

only one specific coordination task, e.g. role allocation [15]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05,July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

or planning [8], precluding the use of knowledge from other
aspects of coordination being used to improve the perfor-
mance of that algorithm. For example, results of the task
allocation process have not been used to guide resource al-
location, although intuitively they will improve the search.
Moreover, even algorithms designed for single coordination
tasks do not scale well to very large teams [14, 24] because of
infeasible requirements such as requiring accurate models of
all team members [14]. Algorithms that are scalable, often
rely on swarm-like behavior that, while robust, can be very
inefficient [3]. Other approaches, e.g., using an auctioneer
[8], require some degree of centralization which is not always
desirable.
In this paper, we present an integrated and scalable ap-

proach to coordinating a large number of heterogeneous agents.
Three novel ideas underlie this approach. The first idea is
to encapsulate all coordination interactions, including in-
formation, assignable tasks and sharable resources within
tokens. The agent holding the token has exclusive control
over whatever is represented by that token, hence tokens
provide a type of access control. Agents either keep tokens
or pass them to teammates. For example, an agent holding
a resource token has exclusive access to the resource rep-
resented by that token and passes the token on to transfer
access to that resource. The resulting movement of tokens
implements the coordination by distributing information, re-
sources and tasks with low communication overhead.
The second novel idea is for agents to use local decision

theoretic models to determine when and where to pass to-
kens. When an agent passes a token to another agent, that
exchange is used to refine local models of the team. These
models are used in a decision theoretic way to determine
whether and where to forward any token the agent currently
holds, so as to maximize the expected utility of the team.
Informally, agents will try to pass tokens to where they help
team performance the most by inferring from their local
models which team member will either have use for the in-
formation, resource or task represented by the token or be in
the best position to know who will. A logical static network
across the team, limits agents to forwarding tokens to their
neighbors in this network. As a result an agent directly re-
ceives tokens from only a small number of neighbors in the
network and can thus build better models of those agents.
By ensuring that the network has a small world property
[22], i.e., the distance between any two nodes in the net-
work is small, the effect of these better models outweighs
the additional number of “hops” a token might need to take
to get where it is required.

The third novel idea in this work is to leverage all avail-
able information for creating models of the team, specifically
using the movement of one token to inform the movement
of other tokens. This synergistically integrates the execu-
tion of key coordination algorithms in a way not done be-
fore. For example, tokens representing resources useful for
a particular task should be passed to the same agent as the
token representing that task was. Intuitively, making use
of the relationship between tokens, each coordination task
becomes more efficient because it focuses its search based on
the progress of other coordination tasks.
In the remainder of this paper we describe how tokens

are routed around the network to maximize the expected
utility of the team. Specifically, we begin with a Markov
Decision Process (MDP) model based on the fully obser-
vation of team state then make a series of approximations
to develop efficient, local reasoning for routing the tokens.
Our experiments show that the local routing models lead
to a dramatic improvement in coordination performance.
Moreover, excluding any type of token from the develop-
ment of the local reasoning models decreases performance.
Notice that this paper focuses on the local routing models
and builds on previously described individual token-based
algorithms [15, 18, 21, 23].

2. LARGE SCALE COORDINATION
In this section, we provide a detailed model of the orga-

nization and coordination problem for the team.

2.1 Problem Description
Coordination is required between a team A = {α1, α2,,

αn} of agents that share a top level common goal G (as in
[19]). Achieving G requires achieving a number of sub-goals
{g1, g2, ..., gi, ...}. When sub-goal gi is satisfied the team re-
ceives a reward rewardi. For example, sub-goals of a high
level goal to respond to a disaster might be to extinguish
fires and provide medical attention to injured civilians. To
satisfy sub-goals, the team follows plan templates Plan =
{plan1, plan2, ..., plani, ...} represented in a library. Each
template i includes four parts and is written as plani =<
gi, conditionsi, rolesi, rewardi >. The first element is the
sub-goal gi; the second is the conditions under which it is ap-
plicable, conditionsi = event1∩event2∩...∩eventl; the third
element is the individual roles rolesi = {r1, r2, ..., rk} which
are required to achieve gi and the last part, the rewardi is to
be received by the team on successful satisfaction of gi. Each
role ri =< taski, abilityi, resourcei > is represented by its
task, i.e., a description of the actual thing to be done, the
capabilities required to perform that task and the resources
needed to perform the role.
For example, a fire fighting template can be defined as:

<planfire=(Fight fire at location X), (Fire alarm at X ∩
Smoke at X), {r1, r2, r3}, (100)>. This template requires
two conditions before it is initiated: a fire alarm and smoke.
After this plan is initiated, three roles, {r1, r2, r3} need
to be assigned and a reward 100 will be credited to the
team. The three roles in this template are: driving the
fire truck, fighting the fire and searching for victims, i.e.,
r1=<(Driving the fire truck), (Skillful in driving truck),
(Fire truck)>, r2=<(fighting the fire), (Have training in fire
fighting), (Hose, water)> and r3=<(Searching for victims),
(None), (Breathing equipment)>. To perform r1, an agent
is required to be able to drive and have access to a fire truck

2

1

3

4

5

6

7

8

9

Figure 1: An example of a subset of a typical acquain-
tance network.

which is an exclusive resource.

2.2 Acquaintance Network
We arrange the team as an acquaintance network. The

acquaintance network is a graph G = (A, N), where A is
the team of agents and N is the set of links between agents.
Specifically, for αi, αj ∈ A, < αi, αj >∈ N denotes that αi

and αj are acquaintances and are able to exchange tokens
directly. n(α) is defined as all the acquaintances of agent α.
Note that n(α) << |A|. We additionally require that the ac-
quaintance network be a small world network, which means
a relatively small number of links separate any two agents
than regular grid network. Previous work has shown that
such networks lead to better performance of token-based al-
gorithms [23]. A subset of a typical acquaintance network
for a large team is shown as Figure 1. In the Figure, each
node represents a team member and when pairs of agents
are connected by a line, they can exchange tokens with each
other directly.

3. TOKENS FOR COORDINATION
Token-based algorithms for specific tasks have been devel-

oped by us and others and have been shown to be effective
for specific coordination tasks [23, 15]. Control information
is included in the token to help the agents determine what
to do within the token. For example, for information shar-
ing the control information is the number of "hops" a token
can move before stopping [23]. For task allocation, the con-
trol information is the minimum capability an agent must
have to accept a task [15]. However, while these algorithms
share the important common feature of being based on to-
kens, they operate separately. In this paper, we generalize
and integrate token-based approaches to make a complete
approach to coordination.
Let Γ = {∆1, ∆2,, ∆m} be all types of coordination to-

kens. These tokens can be classified into three basic types:
information tokens, roles tokens and resources tokens. Each
token ∆i is defined as a tuple with four elements:∆i =<
Type, Coordination, Path, Threshold >. Type = {inf, role,
res} denotes the type of coordination it contains informa-
tion, role or resource respectively. Coordination captures
the specific coordination element represented by this token.
In the case of an information token, it is the information to
be shared. In the case of a resource token, it is a description
of the resource to which this token grants exclusive access.
In the case of a role token, it is a description of the task for
which the accepter of this token is responsible. Path records
the route the token has taken through the network. ∆.path
is also used as stop condition for information and role to-
kens when |∆.path| > TTL where TTL is empirically set to

be the maximum number of “hops” that ∆ is allowed to be
passed. Threshold generalizes the control information for
resource and role tokens but is not required for information
tokens. An agent may keep a resource if its need for that
resource is greater than the token’s threshold. Determining
an agent’s requirement for a resource is outside of the scope
of this paper. While an agent holds a resource token ∆,
∆.threshold slowly increases up to some maximum. When
the token is passed, ∆.threshold is decreased to avoid the to-
ken being passed indefinitely. This mechanism ensures that
resources can flow through the team resource. For example,
to coordinate a team of Unmanned Aerial Vehicles (UAVs)
holding tokens representing airspace, might be forced to re-
linquish tokens to the longest held regions as their thresh-
olds increased unless the airspace was critical. Similarly, a
role token ∆ will be accepted by an agent whose capability
is greater than ∆.threshold and its threshold will be de-
creased if not been accepted. The role allocation algorithm
is described in detailed in [15].

4. ROUTING TOKENS
Token-based coordination is a process by which agents

attempt to maximize the overall team reward by moving to-
kens around the team. If an agent were to know the exact
state of the team, it could use an MDP to determine the
expected utility maximizing way to move tokens. Unfortu-
nately, it is infeasible for an agent to know the complete
state, however, [14] it is illustrative to look at how tokens
would be passed if it were feasible. Then, by dividing the
monolithic joint activity into a set of actions that can be
taken by individual agents, we can decentralize the token
routing process where distributed agents, in parallel, make
independent decisions of where to pass the tokens they cur-
rently hold. Thus, we effectively break a large coordination
problem into many small ones.

4.1 MDP Model for Complete Team State
The basic decision model of agent α for a token ∆ can

be written as an MDP < S, Actionα, T, R >. S is the state
space and its specific value in time t defined as s(t), Actionα

is the action space of α, T : S × A → S, is the transition
function that describes the resulting state s(t+1) ∈ S when
executing χ ∈ Actionα in s(t). R : S → R defines the in-
stantaneous reward for being in a specific state. This model
can be applied to any agent and any token.
In this case, the state s(t) at time t is modelled as the

locations of all tokens across the team and is written as:
s(t) =<< Tokens(α, t), Hα(t) >, < Tokens(α1, t), Hα1(t) >
, < Tokens(α2, t), Hα2(t) >, ... >. Tokens(α, t) are all the
tokens currently held by α and Hα(t) records all the incom-
ing and out-going tokens of α before t. For notation con-
venience, we write Tokens(α, t) as Tokens(α) and Hα(t) as
Hα when there is no ambiguity. Figure 2 shows an exam-
ple of specific team state s(t) =<< Tokens(α), Hα >, <
Tokens(α1), Hα1 >, < Tokens(α2), Hα2 >> where
Tokens(α) = {∆, ∆2}, Hα = {∆3}, T okens(α1) = {∆5},
Hα1 = {∆}, and Tokens(α2) = {∆4}, Hα2 = ∅. Since the
tokens represent resources, roles and information, s(t) un-
ambiguously defines who is doing what, with what resources
and what information.

Actionα : S → (n(α) ∪ α) is to move ∆ to one of n(α) or
keep it for itself. For notation convenience, χ ∈ Actionα can
be written as move(∆, b) where b ∈ (n(α) ∪ α). Note, keep

Figure 2: An example showing part of a team.
Agent α holds ∆, ∆2 and has previously had ∆3 ;
α2 holds ∆4 while α1 holds ∆5 and has previously
had ∆.

a token for itself applies when the agent accepts the role or
requires the resource or information has propagated suffi-
ciently for across the team. In general, we define a function
Acceptable(α, ∆) to determine whether ∆ should be kept by
agent α.

R(s(t)) > 0 when at s(t), a sub-goals gi are achieved.
Team will be credited an instant rewards value of R(s(t)) =
rewardi.
The utility of state S under a policy π is defined as

vπ(s) =
∑

t=0:∞
(dt ×R(s(t))− t× commcost)

where commcost is the communication cost and d < 1 is a
predefined discount factor. v∗(s) allows the agent to select
actions according to optimal policy

π∗(s(t)) = argmaxχ∈Actionαv∗(s(t + 1))

By value iteration, v∗(s(t)) = argmaxχ∈Actionα [R(s(t)) −
commcost + d × v∗(s(t + 1))]. This policy tells the agent
where to move resources information and roles to maximize
the team’s expected utility.
We define a matrix V where each element V [s(t), b] =

R(s(t))−commcost+d×v∗(s(t+1)) when χ = move(∆, b).
Then V [b] represents the expected utilities vector for α to
send token ∆ to b at each different state s(t).

4.2 Local POMDP Model
Knowing the complete team state is only feasible for small

teams. In large teams, agents must make token coordination
decisions based on a more limited view of the team. Thus
the reasoning must be modelled as a Partially Observable
Markov Decision Process (POMDP). Standard POMDP tech-
niques such as [2] and [11] could be used to solve the POMDP
to determine optimal token routing. However, for fast rout-
ing of tokens, while this local POMDP does tell the agent
the optimal action, the computational complexity is still
too high for practical applications. However, the POMDP
model does provide important hints for how to do a heuristic
approach.
The POMDPmodel is defined as < S, Actionα, T, Θα, O, R >.

In this case, the observations of agent α are defined as
Θα =< Tokens(α, t), Hα(t) > to include not only the to-
kens the agent currently holds but also all the previously
incoming and out-going tokens (in Hα(t)). The observation
function is defined as O : Θα×S → Ωα. Belief state Ωα is a
discrete probability distribution vector over the team state
s(t) inferred from current local state Θα. For example, if

S = {s1, s2, s3} and Ωα = [0.6, 0.2, 0.2], α estimates that
the probability of s(t) being s1 is 0.6 and being s2 and s3

are 0.2.
One way of solving a POMDP is via a Q-MDP [11]. Agent

α makes use of V , see above, to calculate the expected re-
ward vector EU(Ωα) = Ωα × V . For example, if α has
acquaintances b, c, and d and EU(Ωα) = [5, 10, 6, 4], then
EU(Ωα, b) = 10 represents the expected utility to send ∆
to b according to the Q-MDP. The locally-optimal policy
π∗∗(Ωα) is argmaxχ∈ActionαEU(Ωα, c). This is the action
the agent should take to maximize expected utility, given
that it has an incomplete view of the team state. As in the
previous example, passing ∆ to b is the best choice because
EU(Ωα, b) = 10 is the maximum value of EU(Ωα).

5. LOCAL HEURISTIC APPROACH
In this section, we provide a heuristic approach for token-

based team coordination inspired by the local POMDP. The
resulting approach allows fast, efficient routing decisions,
without requiring accurate knowledge of the complete state.
In the next section, we show that this approach is effective
for improving token routing.

5.1 Local Model
Pα is the decision matrix agent α uses to decide where to

move tokens. Each row Pα[∆] in Pα represents a vector that
determines the decision where to pass a token ∆ to one of its
acquaintances. Specifically, each value Pα[∆, b] → [0, 1], b ∈
n(α) represents α’s decision that the probability of pass-
ing token ∆ to an acquaintance b would be the action that
maximize team reward. Then our policy π∗∗∗ for this lo-
cal model is to choose action χ to argmaxχ∈ActionαPα[∆, c]
where χ = move(∆, c). Figure 3 shows an example where
Pα[∆] = [0.6, 0.1, 0.3] and agent α has three acquaintances
α1, α2, α3. Pα[∆, α1] = 0.6, Pα[∆, α2] = 0.1, Pα[∆, α3] =
0.3 and π∗∗∗ will choose the action move(∆, α1) to pass ∆
to α1. The key to this distributed reasoning lies in how the
probability model Pα for each agent α is updated. If the
action indicated by Pα matches the optimal policy π∗ from
the MDP model, then the team will act optimally.
Initially, agents do not know where to send tokens, but as

tokens are received, a model can be developed and better
routing decisions made. That is, the model, Pα is based on
the accumulated information provided by the receipt of pre-
vious tokens. For example, when an agent sends a role to an
acquaintance that has previously rejected a similar role, the
team is potentially hurt because this acquaintance is likely
to reject this role too and thus communication bandwidth
has been unnecessarily wasted.
From this view point, Pα can only depend on α’s history of

received tokens, Hα. The update function Update(Pα[∆], ∆i)
for Pα[∆] defines the calculation of the probability vector of
where to send ∆ based on previously received token ∆i in
Hα. It will be explained in detail in next section.
Algorithm 1 shows the reasoning of agent α when it re-

ceives incoming tokens from its acquaintances via function
getToken(sender) (line 2). For each incoming token ∆,
function Acceptable(α, ∆) determines whether the token will
be kept by α (line 4). When a resource is kept, its threshold
is raised (line 6). If α decides to pass ∆, it will add itself to
the path of ∆ (Line 9) and Update(Pα[∆], ∆i) will update
how to send ∆ according to each previously received token
∆i in α’s history (line 11). If ∆ is a resource or role token,

Figure 3: Agent α’s local model for where to send
∆. The probability that α1 is the best to send ∆ to
is 0.6 and α will pass ∆ to α1 according to π∗∗∗

its threshold will be decreased (line 14). Then α will choose
to the best acquaintance to pass the token to according to
Pα[∆] (line 16) and record ∆ in its history, Hα (line 18).

Algorithm 1: Decision process for agent α to pass incoming
tokens
1: while true do
2: Tokens(α) ← getToken(sender);
3: for all ∆ ∈ Tokens(α) do
4: if Acceptable(α, ∆) then
5: if ∆.type == Res then
6: Increase(∆.threshold);
7: end if
8: else
9: Append(self, ∆.path);
10: for all ∆i ∈ Hα do
11: Update(Pα[∆], ∆i);
12: end for
13: if (∆.type == Res)||(∆.type == Role) then
14: Decrease(∆.threshold);
15: end if
16: acquaintance ← Choose(Pα[∆])
17: Send(acquaintance, ∆);
18: AddtoHistory(∆);
19: end if
20: end for
21: end while

5.2 Model Update Function
The effectiveness of the token-based approach depends on

how well agents maintain their local models so that tokens
are routed to where they lead to the highest gain in expected
reward. In this section, we describe an algorithm to update
the localized decision model by utilizing previously received
tokens. The key is to make use of relationships between
tokens, which we refer to as relevance.
Deciding where to send one token based on the receipt of

another relies on knowing something about the relationship
between the tokens. We quantify this relationship as the
Relevance and define the relationship between tokens ∆i

and ∆j as Rel(∆i, ∆j). Rel(∆i, ∆j) > 1 indicates that an
agent with use for ∆i will often also have use for ∆j , while
Rel(∆i, ∆j) < 1 indicates that an agent ∆i has use for it is
unlikely to have use for ∆j . If Rel(∆i, ∆j) = 1 then nothing
can be inferred. Details about how relevance is computed
to ensure appropriate behavior will be explained in the next
section. The update function of Pα[∆j] according to Hα,

written as Update(Pα[∆j], ∆i) where ∆i ∈ Hα is found by
using Bayes’ Rule as follows:

∀b ∈ n(α), ∀∆i ∈ Hα, d = first(n(a), ∆i.path)
Update(Pα[∆j , b], ∆i) =

Pα[∆j , b]×Rel(∆i, ∆j) if ∆i 6= ∆j , b = d

Pα[∆j , b] if ∆i 6= ∆j , b 6= d

Pα[∆j , b]× ε if ∆i = ∆j , b ∈ ∆j .path ∩ n(α)

where Update(Pα[∆j , b], ∆i) is to update the Pα[∆j , b] in
Pα[∆j] according to ∆i and first(n(a), ∆i.path) extracts
from the recorded path of the token the acquaintance of
agent α that had the token ∆i earliest. The first case in this
function is the most important. The probability that the
sender of previous token ∆i is the best agent to receive the
token ∆j is updated according to Rel(∆i, ∆j). The second
case in the equation changes the probability of sending that
token to agents other than the sender in a way that ensures
the subsequent normalization has the desired effect. Finally,
the third case encodes the idea that α should typically not
pass a token back from where it came. Pα[∆j] is subse-
quently normalized to ensure that

∑
b∈n(α) Pα[∆j , b] = 1.

To see how the updating function works, consider the fol-
lowing example. Supposed agent α has five acquaintances
{a, b, c, d, e} and Pα[∆j] = [0.1, 0.4, 0.2, 0.2, 0.1]. Moreover,
Hα = {∆i, ∆k}, rel(∆i, ∆j) = 1.2 and rel(∆k, ∆j) = 0.4.
∆i.path = {b, ..}; ∆k.path = {c, ..}; ∆j .path = {e, ..}. If
currently α holds ∆j , by applying our updating function to
Pα[∆j], we get the result as Pα[∆j] = [0.12, 0.56, 0.09, 0.23, ε]
and ∆j will be passed to acquaintance b.

5.3 Token Similarity
When an agent receives two tokens that are relevant to

one another they are more likely to be usable in concert to
obtain a reward for the team. While infeasibly complex, the
POMDPmodel can suggest how relevance should be defined.
If the local policy π∗∗∗ always matches with π∗∗, Pα[∆] will
be the normalization of EU(Ωα).

∀b ∈ n(α), Pα[∆, b] =
EU(Ωα, b)∑

c∈N(α)

EU(Ωα, c)

That is, the largest expected utility for sending a token to
an acquaintance should result the highest probability. Fol-
lowing the previous example, if EU(Ωα) = [5, 10, 6, 4], then
for optimal behavior Pα[∆] = [0.2, 0.4, 0.24, 0.16].
Now we are in a position to see how the receipt of a token

affects the locally optimal policy for routing token ∆ and
hence determine how to compute relevance. Suppose that
the state estimation of agent α just before a token ∆pre

arrives is Ωα while after it arrives, the state estimation is
changed to Ω′α because α gains additional knowledge from
this token. Thus, according to Q-MDP, before ∆pre is re-
ceived, the expected reward of α is EU(Ωα) = Ωα×V while
after the arrival of ∆pre, EU(Ω′α) = Ω′α × V . Moreover,
agent α’s local model will also be updated according to ∆pre.
Suppose ∆pre comes from acquaintance b and Pα[∆, b] is the
probability that α will send ∆ to b before ∆pre comes while
P ′α[∆, b] is the updated probability after the arrival of ∆pre.
According to our assumption that policy π∗∗∗ (according to
the Pα model) and π∗∗ (according to the POMDP model)
will choose the same action which is to send ∆ to b. Thus,

we have

P ′α[∆, b]

Pα[∆, b]
=

EU(Ω′α, b)

EU(Ωα, b)
=

[Ω′α × V]b
[Ωα × V]b

Where [Ω′α × V]b is the value of the component in vector of
[Ω′α × V] according to acquaintance b. It is the same vector
as EU(Ω′α, b).
According to the update function Update(Pα[∆, b], ∆pre),

we should get P ′α[∆, b] = Rel(∆, ∆pre)×Pα[∆, b]. Thus, the
relationship between Rel and our POMDP model is:

Rel(∆, ∆pre) =
[Ω′α × V]b
[Ωα × V]b

From this equation, we can conclude that a received token
changes the agent’s estimation of the probability distribu-
tion of the team’s state, which in turn directly influences
the decision of where to send related tokens. If we know a
little bit of how the probability distribution changes for an
agent after it has passed a token, we can use this to predict
how this agent updates its distributed decision model and
therefore define the relevance between tokens. A heuristic
that captures this relationship will approximate the locally
optimal policy and hence lead to good behavior. In this
paper, we simply estimate this value based on the similar-
ity between tokens. Intuitively, if two tokens are similar,
receiving one token allows an agent to update its estima-
tion of the team state and infer where to pass the similar
tokens. For example, receiving a role token from a partic-
ular acquaintance, tells the agent that it is relatively less
likely that similar role tokens will be accepted in the part of
the network accessible via that acquaintance; receiving an
information token with information about Pittsburgh tells
the agent that some agents in that part of the network must
currently be in Pittsburgh.
The similarities between tokens come from the coordination

they carry and the calculation depends on the domain knowl-
edge of applications. We assume that, from ∆i.coordination
and ∆j .coordination, we can deduce the similarity between
two tokens as sim(∆i, ∆j). sim(∆i, ∆j) > 1 if ∆i and ∆j

are a pair of similar tokens. For example, if two tokens both
reference Pittsburgh, we deem them similar because both
are involved with the same location; we deem two tokens
which require driving a specific machine as similar because
they need the same kind of capacity; two tokens that both
are preconditions of the same plan would also be considered
similar.
We distinguish the relationship between relevance and

similarity of two tokens as positively related or negatively
related. For two similar tokens ∆i and ∆j , if an agent previ-
ously received a token from an acquaintance and would pre-
fer to send a similar token to that acquaintance, similar to-
kens are positively related to each other and Rel(∆i, ∆j) =
sim(∆i, ∆j) . Otherwise, if this agent is less likely to send
the similar token to that acquaintance similar tokens are
negatively related to each other, so Rel(∆i, ∆j) = 1

sim(∆i,∆j)

The similarity between different types of tokens poten-
tially influences agents’ estimation in different ways. As
we have shown in the previous example, receipt of role to-
kens discourages sending similar tokens to agents along the
role tokens’ paths because the previous token senders re-
fused the role token and are incapable of accepting the role,
therefore are less likely to be interested in the information,
tasks or resources that similar tokens carry. Thus, a pre-

vious role token is negatively related to its similar tokens.
Similarly, receipt of an information token will indicate that
agents along the information tokens’ paths are more likely
to work on things related to that information and are inter-
ested in other similar tokens. Hence, a previous information
token is positively related to its similar tokens.
If the threshold of a resource token ∆i is greater than its

initial value (init) upon arrival to current agent, this means
that the resource has been used by the agents previously
holding ∆i and that those agents are potentially engaged in
tasks requiring the resource. Therefore, if the current agent
gets similar tokens, it will be more likely to send them to
the part of the network where the previous token has been
passed. In this case, the previous resource token is positively
related to similar tokens. Alternatively, if ∆i.threshold is
lower than its initial value (init), it means that agents pass-
ing the token did not need it. In such a case, the previous
resource token is negatively related to similar tokens.
Supposed ∆i is a previously received token, we can sum-

marize the calculation of Rel(∆i, ∆j) according to sim(∆i, ∆j).
No matter what ∆j .Type is, this function only depends on
the type of previously incoming token:

Rel(∆i, ∆j) =

sim(∆i, ∆j) if ∆i.Type = inf

sim(∆i, ∆j) if ∆i.Type = res, ∆i.threshold > init
1

sim(∆i,∆j)
if ∆i.Type = role

1
sim(∆i,∆j)

if ∆i.Type = res, ∆i.threshold < init

6. EXPERIMENTAL RESULTS
In this section, we describe an empirical evaluation of our

approach. Tests were conducted using an abstract simu-
lation called TeamSim configured to simulate a group of
400 distributed UAVs searching a hostile area. The network
topology was that of a small world network where each UAV
had, on average, four acquaintances. Simulating automatic
detection rates, 200 pieces of information were randomly
sensed by UAVs and passed around the team. Fifty plans
instances, each with four independent preconditions, were
given to the team. After a plan was initiated, tokens for the
four roles needed to realize the plan were circulated through
the acquaintance network. To accept a role an agent must
be close to the region the role requires and have access to
resource tokens for airspace at the role allocation. Airspace
over the hostile area was divided into fifty regions. Each
of these regions were duplicated in three resource tokens al-
lowing a maximum of three UAVs to simultaneously access
to that airspace. Each UAV needed to obtain the resource
for the region related to its task before they could be per-
formed. If all four roles of a plan were successfully executed,
a reward of 10 units was credited to the team. A maximum
reward of 500 units (10 units x 50 plan instances) was possi-
ble. Results for each experiment are based on one hundred
trials.
The first experiment investigated the algorithm’s perfor-

mance in enhancing overall team reward. Reward obtained
was recorded for each tick of the simulation which corre-
sponded to the time taken for a token to move from agent to
agent. Five configurations of the algorithm were compared.
In the first configuration, agents passed tokens randomly if
they did not keep them. In the next three configurations,

0

50

100

150

200

250

300

350

400

450

500

0 100 200 300 400

Time

O
ve

ra
ll

R
ew

ar
d

No local routing model Information Token Role Token
Resource Token Integrated Coordination

Figure 4: The team gets more reward (y-axis) over
time (x-axis) when all token types are used to up-
date local models.

15000

20000

25000

30000

35000

40000

45000

50000

55000

60000

150 200 250 300 350 400 450

Reward Received

N
um

be
r

of
 M

es
sa

ge
s

No local routing model Information token Role Token
Resource Token Integrated Coodination

Figure 5: The team needs to send less messages (y-
axis) to coordinate when all token types are used to
create local models.

local reasoning model updating is only applied to only one
type of token, i.e., information, resource or role, with no
updating by the other two types. The fifth configuration
provided integrated coordination using tokens of each type
to update agents’ local model for routing tokens. The re-
sults are shown in Figure 4. Use of any previous tokens for
token routing improved team reward. This benefit was most
pronounced when all token types were used. In fact reward
was almost doubled over random token movement. Notice
that early on using plan instantiation alone was more effec-
tive than using other types of tokens but later role allocation
tokens were the most effective type. We hypothesize that as
roles are allocated they become most useful but before then
it is critical to know who is initiating plans.
The second experiment investigated the effect of our algo-

rithm on communication. In this experiment we compared
the number of messages need for a team to gain a particular
level of reward. A message was credited to each transfer
of a token from an agent to its acquaintance. The same
five configurations (random, 3 with coordination for single
token-types, and integrated) were employed. As shown in
Figure 5 configurations using token coordination algorithm
performed better. They used fewer communications to at-
tain the same level of reward as the random configuration.
Once again, complete integrated token routing was superior

20
40
60
80

100
120
140
160

200 300 400 500 600 700 800
Team Size

M
es

sa
ge

s p
er

 A
ge

nt

No local routing model Integrated Coordination

20
40
60
80

100
120
140
160

200 300 400 500 600 700 800
Team Size

M
es

sa
ge

s p
er

 A
ge

nt

No local routing model Integrated Coordination

Figure 6: The average number of messages per agent
(y-axis) stays relatively constant as the team size is
increased (x-axis). This holds tokens when tokens
are used for integrated model and when they are
not.

to these partial token-based algorithm in attaining the same
results with substantially fewer messages. Notice also that
the total number of references is quite low, even for a large
team.
The third experiment examined in more detail the scala-

bility of our algorithm to larger teams. In this experiment
teams of 200 to 800 agents were run under conditions oth-
erwise identical to the first two experiments, however, only
two configurations were used: no use of previous tokens to
improve agents’ local reasoning model versus use of all types
of previous tokens to improve agents’ local reasoning model
to routing tokens. Performance was measured using average
number of messages per agent. In Figure 6, the top configu-
ration is to get a team reward of 200 units while the bottom
one is to get a reward of 400. Our results show that inte-
grated token-based routing produced lower message overload
under all conditions. For both 200 and 400 reward levels ob-
served message overhead was lower for teams of 800 agents
using the integrated algorithm than for 200 agent teams us-
ing the random one.

7. RELATED WORK
Multiagent coordination is an extensively studied area of

multiagent systems, but most of the existing work does not
scale well to very large teams. Distributed constraint-based
algorithms[12, 13] have high communication requirements
that get dramatically worse as the team size in increased.
Combinatorial auctions[8] have an exponential number of
possible combinations of bids, and frequently use centralized
auctioneers that can become severe bottlenecks. Swarm-

inspired approaches[3] have been used for large-scale coor-
dination, but the behavior can be inefficient.
Decision theoretic approaches, such as MDPs and POMDPs,

have been used for team coordination[7, 14, 24]. Because
centralized control is frequently not possible, the team coor-
dination problem is recast as a communication problem[14].
However, such approaches are known to be intractable in
general[14], and so are of limited use in large scale applica-
tions.
Recent work focusing on scalable coordination[17] illus-

trates that exponential search spaces, excessive communi-
cation demands, localized views, and incomplete informa-
tion of agents pose major problems for large scale systems.
Initial work on token-based approaches promises a way to
address these challenges. Large scale coordination in the
GPGP/TAEMS framework[10] was demonstrated using a
token-based algorithm[21]. The effectiveness of large-scale,
token-based coordination has also been demonstrated in the
Machinetta proxy architecture[16] for task allocation[15] and
information sharing[23].
Research on social networks began in physics[1, 22]. [5]

showed that social network structures in team formation
can dramatically affect team abilities to complete cooper-
ative tasks. In particular, using scale-free network struc-
tures for agent teams facilitates team formation by balanc-
ing the number of skill-constrained paths available in the
agent organization with the effects of potential blocking. [4]
compared the merits of small world networks and scale-free
networks in the application of emergent coordination.

8. CONCLUSION AND FUTURE WORK
This paper presented a novel integrated token-based al-

gorithm for team coordination. By utilizing relationships
between tokens we were able to use the execution of one
type of coordination algorithm to improve the performance
of the others. Our experiments show that our approach is
scalable and efficient. This approach opens the possibility
to develop a range of new executing applications of hetero-
geneous agents not possible with existing approaches.
While the results presented here represent a step forward,

they also point to significant challenges and exciting ques-
tions. We plan to address some of these issues in the near
future. From a scientific perspective, the effect of the un-
derlying acquaintance network on the coordination is clearly
important but poorly understood. We will investigate the
effect of the properties of the network on the team’s per-
formance, specifically looking at how the small worlds na-
ture of the network is important. This work represented a
novel attempt at integrating coordination algorithms into a
unified approach and showing how by working together the
overall performance can be improved. However, the indi-
vidual algorithms were designed without thought to future
integration. A key question is whether knowing that we will
be integrating the token algorithms allows us to build al-
gorithms that work better with other algorithms. Finally,
but critically, we will use the token-based approach in more
realistic domains to understand its utility in the real world.
Specifically, we are currently developing large scale coordi-
nation applications for rescue response and unmanned aerial
vehicle applications.

Acknowledgements
This research has been sponsored in part by AFRL/MNK
Grant F08630-03-1-0005 and AFOSR Grant F49620-01-1-
0542.

9. REFERENCES
[1] A. Barabasi and E. Bonabeau. Scale free networks.

Scientific American, pages 60–69, May 2003.
[2] A. Cassandra, M. Littman and N. Zhang Incremental

pruning: a simple, fast, exact method for partially
observable Markov decision processes. Proceedings of
the Thirteenth Annual Conference on Uncertainty in
Artificial Intelligence, 1997.

[3] V. Cicirello and S. Smith. Wasp nests for
self-configurable factories. In Proceedings of the Fifth
International Conference on Autonomous Agents,
2001.

[4] J. Delgado, J. Pujol and R. Sanguesa. Emergence of
coordination in scale-free networks. In Web
Intelligence and Agent Systems 131-138, 2003.

[5] M. Gaston and M. desJardins. Social network
structures and their impact on multi-agent system
dynamics. In Proceedings of the 18th International
Florida Artificial Intelligence Research Society
Conference, 2005.

[6] D. Goldberg, V. Cicirello, M. Dias, R. Simmons, S.
Smith, and A. Stentz. Market-based multi-robot
planning in a distributed layered architecture. In
International Workshop on Multi-Robot Systems.
Kluwer Academic Publishers, 2003.

[7] C. Goldman and S. Zilberstein. Optimizing
information exchange in cooperative multi-agent
systems. In Proceedings of the Second International
Joint Conference on Autonomous Agents and
Multiagent Systems, 2003.

[8] L. Hunsberger and B. Grosz. A combinatorial auction
for collaborative planning. In Proceedings of the
Fourth International Conference on Multi-Agent
Systems, pages 151 – 158, 2000.

[9] H. Kitano, S. Tadokoro, I. Noda, H. Matsubara,
S. Takahashi, A. Shinjoh and S. Shimada. Robocup
rescue: Search and rescue in large-scale disasters as a
domain for autonomous agents research. In IEEE
International Conference on Systems, Man and
Cybernetics, volume VI, pages 739–743, 1999.

[10] V. Lesser, K. Decker, T. Wagner, N. Carver,
A. Garvey, B. Horling, D. Neiman, R. Podorozhny,
M. NagendraPrasad, A. Raja, R. Vincent, P. Xuan
and X. Zhang. Evolution of the GPGP/TEAMS
domain-independent coordination framework.
Autonomous Agents and Multi-Agent Systems, 9, 2004.

[11] M. Littman, A. Cassandra, and L. Kaelbling. Learning
policies for partially observable environments: scaling
up. In International Conference on Machine Learning,
1995.

[12] R. Mailler and V. Lesser. Solving distributed
constraint optimization problems using cooperative
mediation. In Proceedings of Third International Joint
Conference on Autonomous Agents and Multiagent
Systems, 2004.

[13] P. Modi, W. Shen, M. Tambe and M. Yokoo. An
asynchronous complete method for distributed

constraint optimization. In Proceedings of Second
International Joint Conference on Autonomous Agents
and Multiagent Systems, 2003.

[14] D. Pynadath and M. Tambe. The communicative
multiagent team decision problem: analyzing
teamwork theories and models. In Journal of AI
research, 2002.

[15] P. Scerri, A. Farinelli, S. Okamoto and M. Tambe.
Allocating tasks in extreme teams. In Proceedings of
Fourth International Joint Conference on Autonomous
Agents and Multiagent Systems, Forthcoming, 2005.

[16] P. Scerri, D. Pynadath, L. Johnson, P. Rosenbloom,
N. Schurr, M. Shi and M. Tambe. A prototype
infrastructure for distributed robot-agent-person
teams. In Proceedings of Second International Joint
Conference on Autonomous Agents and Multiagent
Systems, 2003.

[17] P. Scerri, R. Vincent and R. Mailler. Comparing three
approaches to large scale coordination. In AAMAS’04
Workshop on Challenges in the Coordination of Large
Scale MultiAgent Systems, 2004.

[18] P. Scerri, Y. Xu, E. Liao, J. Lai and K. Sycara.
Scaling teamwork to very large teams. In Proceedings
of Third International Joint Conference on
Autonomous Agents and Multiagent Systems, 2004.

[19] M. Tambe. Towards flexible teamwork. Journal of AI
research, 7: 83–124, 1997.

[20] A. Vick, R. Moore, B. Pirnie and J. Stillion.
Aerospace operations against elusive ground targets.
RAND Documents, 2001.

[21] T. Wagner, V. Guralnik and J. Phelps. A key-based
coordination algorithm for dynamic readiness and
repair service coordination. In Proceedings of Second
International Joint Conference on Autonomous Agents
and Multiagent Systems, 2003.

[22] D. Watts and S. Strogatz. Collective dynamics of
small world networks. Nature, 393: 440–442, 1998.

[23] Y. Xu, M. Lewis, K. Sycara and P. Scerri. Information
sharing in large scale teams. In AAMAS’04 Workshop
on Challenges in Coordination of Large Scale
MultiAgent Systems, 2004.

[24] P. Xuan, V. Lesser and S. Zilberstein. Communication
decisions in multi-agent cooperation: Model and
experiments. In Proceedings of the Fifth International
Conference on Autonomous Agents, 2001.

