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ABSTRACT
Reference counting is a garbage-collection technique that main-
tains a per-object count of the number of pointers to that object.
When the count reaches zero, the object must be dead and can be
collected. Although it is cannot detect all garbage on its own, it
is well suited for some applications and is implemented typically
in conjunction with other methods to increase overall precision. A
disadvantage of reference counting is the extra storage traffic that
is introduced. In this paper, we describe a new cache write-back
policy that can substantially decrease the reference-counting traffic
to RAM.

We investigate a cache design that takes advantage of tempo-
rally silent stores, by remebering the first-fetched value of a cache
subblock, so that the subblock need not be written back to RAM
unless a different value is present. We present results from exper-
iments that show the effectiveness of this approach, particularly in
mitigating the storage traffic due to reference counting.

1. INTRODUCTION
In this paper, we examine the effectiveness of a write-back cache

policy that can eliminate some writes to memory. One scenario in
which this policy can be effective is reference counting, a garbage-
collection technique that can perform well [11], except for the in-
troduction of excessive memory traffic to maintain reference counts.
Reference counting maintains a count of pointers that reference ev-
ery object. In many cases, a reference count changes from its value
v, but then quickly returns to v. Normal write-back cache pol-
icy marks the count dirty upon the first value change, ensuring its
eventual copy back to RAM. When the value returns to v, it is still
considered dirty, and when it is evicted from cache, it will be un-
necessarily written back to memory.

In this paper, we examine the extent to which an enhanced write-
back cache policy can reduce the cost of reference counting. Our
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Figure 1: Write-back cache organization

experiments use the Java SPEC Benchmarks and the Liquid Ar-
chitecture platform we have developed to implement and quanti-
tatively analyze the microarchitecture optimization at clock-cycle
resolution.

In terms of related work, we essentially investigate a form of
silent stores [1, 9]—in particular, temporally silent stores [10]—
based on memory traffic induced by reference-counting [2]. Our
contribution lies in demonstrating the extent to which reference-
counting traffic is temporally silent, in providing a design based on
write-back caches, and in deploying that design on reconfigurable
hardware.

While others [9, 10] consider more efficient and effective im-
plementations for store squashing, we consider a simpler but more
costly approach of duplicating L1 cache and squashing stores to
RAM via a modified write-back policy. However, reference-counting
traffic can be segregated from other storage traffic at compile-time,
and reference-counting values can be implemented as very small
nonnegative integers. Thus, we can observe temporally silent stores
in an area where its benefits may be concentrated and more highly
effective. Moreover, many avoid reference counting because of the
extra storage traffic it induces; our contribution shows how much
that traffic can be reduced by observing temporally silent stores.
Our design is based on the write-back cache, whose organization is
shown in Figure 1.

Consider the following situation in which a write-back is unnec-
essary even though the relevant subblock is dirty. If a value is al-
tered and promptly returns to the same value in a subsequent write,
it is still marked dirty and is written back to main memory even
though the value in main memory is identical. Each store is not
silent [1] because the stored value is different, but the cummulative
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effect of the stores is temporally silent [10]. The dirty bit is thus
sufficient but not necessary to indicate whether a value needs to be
written back to memory. We investigate a potentially more effec-
tive cache design that verifies and squashes some temporally silent
stores.

2. REFERENCE COUNTING AND OOP
Reference counting [2] is an efficient albeit inexact means of

automatic memory management, otherwise known as garbage-co-
llection [16]. Garbage-collection entails automatically reclaiming
heap-allocated objects from memory once they are no longer needed
by a program, and is utilized in languages such as Java and C#.
Reference counting is one avenue to garbage-collection function-
ality; it works by counting the pointers that reference each object.
When the count reaches zero, the object is “garbage” and may be
collected. Reference counting can perform well in real-time sys-
tems [3] and has been shown to be efficient for Java [11].

Though the implementation is straightforward, reference count-
ing can impose considerable overhead due to increased memory
traffic. Examples of said traffic are found in common Object-
Oriented Programming (OOP) patterns that have one object point
to another for a short time, before pointing away. The Iterator pat-
tern [6] is a very simple and frequently deployed example of this
behavior.

2.1 The Thumb Idiom
More generally, we define the thumb idiom as the following se-

quence of operations:

1. a pointer references an object

2. Based on that pointer, a relatively quick computation is per-
formed

3. the pointer moves on to point to another object.

For example, we observe this behavior often when iterating through
any data structure such as a linked list, tree, vector, or hashtable.
This behavior is also common in sorting algorithms.

A common use of the Iterator pattern is shown below, where we
traverse an entire list and process each item in the collection.

LinkedList list;
...
Iterator iter = list.Iterator();
while (iter.hasNext()) {

Object item = iter.next();
foo(item);

}

As we iterate over the list, the Iterator’s internal place-keeping
pointer switches from node ni−1 to ni, and onward to ni+1, until
the end of the list. The reference count of node ni increments from
k to k + 1 once the iterator touches it, remains at k + 1 for a
short while, then decrements back to k as the iterator moves onward
to node ni+1. The thumb touches every node of the collection,
generating two reference-counting transactions per node. We next
examine the effect of such activity on a data cache.

2.2 Effect on the Cache
With a write-through cache policy, both the increment and the

decrement will be written directly to memory as we point to and
away from the object, respectively.

With a write-back policy, the reference count is marked dirty
after the increment, and remains dirty after the decrement. Though
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Figure 2: Dusty cache structural design

the reference count is the same before and after the short hiccup,
the write-back cache has marked it dirty. Therefore, upon eviction
from cache, the value is written to memory, even though the cached
value is the same as what is stored in memory. This will occur every
time a thumb-pointer (or any pointer) points to an object, then away
again.

With our dusty cache policy, we experience no writes to mem-
ory for such hiccups—just a single read from memory to load the
reference count into cache. Upon the value’s eviction from cache,
the microarchitecture finds it to be identical to its former value and
does not write it back to memory. We discuss the implementation
of this idea in Section 3.

3. DUSTY CACHE
In this section we present our dusty data cache microarchitecture

optimization and discuss its design and interaction with the ma-
chine architecture. We classify this policy as an enhancement to a
standard write-back policy. This dusty cache specification is im-
plemented in the Liquid Architecture system (Section 4) as a data
cache and is analyzed in Section 6.

3.1 Dusty Cache Design
The dusty cache specification employs the same lines (blocks),

subblocks, and valid bits as both the write-through and write-back
policies. The write-back cache policy uses a dirty bit to decide
when to write a value back. Our proposed dusty cache uses a dusty
check to decide when to write the value back to memory.

The Dusty Check. The dusty check is not an actual bit (in the
sense of a “dirty bit”), but is instead a mechanism for deciding if
the cached value duplicates what was fetched from storage initially.
Like the write-back policy, the dusty cache has a dirty bit to decide
whether the value has changed since entering the cache. In addi-
tion, the dusty cache has a second cache bank that acts as an image
of main memory, labeled DImage in Figure 2. This bank is readily
accessible without incurring the time delay of reading main mem-
ory, discussed in Section 1. In our implementation, we actually
duplicate the data cache to realize the image; in systems offering
L2 cache, that layer could serve as the image if it can be accessed
sufficiently quickly.

This dusty check occurs upon cache eviction, discussed below in
Subsection 3.2.
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Dusty Cache Structures. The dusty cache policy has a sin-
gle Tag RAM and a set of data lines DData like write-through
and write-back, but it also has an extra set of data lines, discussed
above. We maintain that for each entry in the Tag table Tagi the
corresponding line in the DData cache bank, Datai, is the cached
value pertaining to the address in Tagi. The corresponding value
Imagei in the DImage cache bank is an image of the value in
memory at the address specified in Tagi. We discuss the interac-
tion of these corresponding elements in Section 3.2.

Both cache banks have valid bits for each subblock, but only the
subblocks in DData have dirty bits. We will see why as we discuss
the behavior.

3.2 Dusty Cache Behavior
Because the DImage cache bank is an image of main memory,

it is never written directly by the CPU in the event of a memory
store; instead, only DData is written. Whenever the CPU reads
from memory, however, both cache banks are written. We update
DImage to retain an accurate reference of memory, and we write to
DData because the CPU uses it as its data cache.

Our proposed cache policy is designed to prevent the unneces-
sary memory writes incurred by write-back policy. We examine
the dusty cache’s behavior in several different scenarios:

• Upon a read hit the value is in DData, so the value is re-
turned to the CPU.

• Upon a read miss the value is not in DData, so we read the
value from main memory and write it to both DData and
DImage. This can result in a cache eviction.

• Upon a write hit the value is in DData, so we alter the value
in cache and set the dirty bit. We do not alter the value in
DImage.

• Upon a write miss the value is not in DData, so we write it
to DData. This can result in a cache eviction.

• Upon a cache eviction, if the subblock’s dirty bit is set, we
compare the value in DData against the corresponding value
in DImage. If they are identical, nothing is written. Other-
wise, we write the value back to main memory if the valid bit
is set.

4. THELIQUIDARCHITECTURESYSTEM
The Liquid Architecture [8] system takes advantage of reconfig-

urable logic to permit timely design, prototyping, and analysis of
new hardware modules. Without such a tool, the dusty cache idea
could not have been prototyped, tested, and analyzed at the circuit
level without undue time or cost.

In this section, we describe the features of the Liquid Architec-
ture project that were used to conduct experiments for this work.

4.1 The Liquid Processor Module
The Liquid Architecture processor began as LEON [5], a stan-

dard Sparc ISA for embedded systems, developed by the ESA (Eu-
ropean Space Agency). The LEON core provides typical microar-
chitecture features such as instruction and data caches, the entire
SPARC V8 instruction set [7], and buses for high-speed memory
access and low-speed peripheral control.

The Liquid Architecture system is an extensible hardware mod-
ule on a Field-programmable Port Extender (FPX) [4]. This plat-
form is surrounded by Layered Protocol Wrappers, which parse
input and formats output as User Datagram Protocol (UDP) net-
work packets. Once packets are parsed, they are routed by a Control

Figure 3: Photograph of the FPX
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sor Module

Packet Processor (CPP) which delivers certain packets with com-
mand codes to the LEON controller. The LEON controller reads
these commands and directs the LEON processor accordingly, or
it communicates with the memory controller to read the contents
of external memory. Also present is a Message Generator which
formats messages that contain opcode acknowledgements and pro-
filing data.

4.2 The Statistics Module
We modified the core to add the Statistics Module [14], a per-

formance-measurement functionality for obtaining cycle-accurate
timing results, cache-behavior statistics, and method-specific out-
put for each. Such statistics are typically unavailable in generic
processors, and are incredibly monotonous and time-consimuing to
obtain through simulation. By comparison, the Liquid Architecture
processor runs programs at full (FPGA) speed.

This module is implemented as a collection of smaller counter
modules, each of which offers the following:

• One specific instruction or event to track

• One counter to track how many times this instruction or event
has fired

• Two memory addresses (a low and a high) that represent a
program-counter range in which the event should be counted

• A connection to the address bus

• A connection to the event bus

• A connection to an output data bus

With this information, each counter can listen on the buses, and if
the event occurs within the designated program-counter range, the
counter is incremented. This is all done in parallel, so the tracking
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mechanisms do not add extra clock overhead to the execution of the
program.

The entire module is customizable; that is, we can instantiate
varying numbers of these tracking modules within the statistic mod-
ule with a simple change to the VHSIC Hardware Description
Language (VHDL) specification. Once instantiated, we can send
packets to the microarchitecture to program the instructions and
addresses for each counter module of the Statistics Module.

One precaution the Statistics Module takes is overflow preven-
tion. When a user-designated amount of clock cycles expire, the
entire module evicts the data from its counters and passes the sta-
tistical data to the packetization module to be sent back to the user.
It then resets the counters and continues monitoring execution with-
out skipping an event.

5. INITIAL EVALUATION
Before implementing the hardware solution to the dusty cache

principle, we first examined some popular benchmarks (the SPEC
JVM ’98 suite [15]) to make an initial quantification of the reference-
counting benefits of this cache policy over write-through and write-
back.

As discussed above, we expect reference counting to affect cache
in such a way that dusty cache will save on storage traffic. We
therefore designed this experiment to track reference counts in Java
and examine how many times the reference counts are written back
to memory for different cache configurations.

5.1 JVM Instrumentation and Output
The benchmark results are gathered from an instrumented ver-

sion of Sun’s Java Virtual Machine 1.1.8 [12] in Solaris that imple-
mented a variation of Reference Counting Garbage Collection [2,
16]. We instrumented the JVM to provide customized traces for
events of interest, such as reference count increments and decre-
ments, putfields, getfields, and a variety of other events,
complete with a dynamic count of JVM instructions at each point
of execution.

The JVM outputs this data during the execution of the program,
allowing us to capture runtime statistics. We ran and captured sev-
eral benchmark programs as well as customized programs that im-
plemented common programming patterns, such as linked list iter-
ation example presented in Section 2.1.

We parsed the JVM output with a trace analysis tool (of our own
devising) that constructs a graph of per-object reference count be-
havior. This allows us to observe the following, for every object
instantiated in the benchmark:

• Its reference count at any point in execution

• The number of total JVM instructions between changes in its
reference count

• The number of cache-altering instructions, such as put-
fields, getfields, aastores, and aaloads, that
occur between changes in its reference count

It is important to note that this particular reference counting im-
plementation uses a stack optimization [3] that obviates the need
to manipulate reference counts based on (JVM) stack and register
activity. References from the stack are not tallied in an object’s
reference count. Instead, a single reference is made from the last-
to-be-popped stack frame that contains a pointer to the object. Once
this stack frame is popped, the stack reference disappears, and the
object may be collected if it has has no (other thread) stack frame
references or heap references. The heap references are counted

using the traditional reference counting. For this reason, we only
track heap-based references in this experiment (see Section 6 for a
stack-based reference counting traffic approximation).

While our results would look better if we accounted for the stack
activity, much of that traffic would not be present if the program
were executed in native code on a typical RISC register machine.
For example, to reference a field of an object, the JVM bytecode
architecture requires pushing the object pointer from a register on
stack. After the field is referenced, the stack cell is popped. On a
RISC machine, the register could be used directly with no need
to develop another, temporary pointer to the object. Thus, the
reference-counting approximation seems a more appropriate envi-
ronment in which to evaluate our idea.

5.2 Quantifying Memory Savings With JVM
Output

The next task is to simulate cache memory and evaluate the cache
performance for several different cache configurations. We intend
to measure the efficiency of the cache in preventing writes to mem-
ory, so the metric of success in this experiment is “memory writes
saved”. We crafted a software solution that emulates cache behav-
ior to gather this data.

To represent cache effectiveness, we must have a way of express-
ing what is currently stored in cache memory; otherwise, we cannot
know which reads and writes escape the cache. We employ a prob-
abilistic, worst-case approach here.

Whenever something is written to cache, we take the worst-case
approach and assume that it will evict some value from cache. In
other words, we assume that there is no locality in cache writes;
every getfield and putfield instruction writes one value to
cache and evicts another. From a probabilistic approach, we as-
sume these instructions are equally likely to evict any cached value.
In our implementation, this is realized as a lifetime, or “window”
of cache time for each reference count value. That is, for a window
of k cache writes, if value v is written to cache on write i, v will be
evicted on write i + k.

We evaluate both unified and data (non-unified) cache configu-
rations, and with each, we simulate write-through, write-back, and
dusty policies.

• To represent the effects of unified cache we designate every
JVM instruction as a cache write - this means that if reference
count value v is written to cache on instruction i, it will be
evicted on instruction i + k.

• To represent the effects of non-unified (data) cache, we mon-
itor only events that will potentially evict a value from data
cache. This includes JVM instructions getfield, putfield,
aaload, and aastore, as well as reference count incre-
ments and decrements. If reference count value v is written
to data cache, it will be evicted after k of these special events.

On top of the unified and data cache configurations, we simu-
late several cache policies: write-through, write-back, and the new
dusty policy. This entails recording the number of writes to mem-
ory for each policy.

• For write-through policy, each reference count increment and
decrement will be written back to memory. We use this as the
frame of reference for the results of the write-back and dusty
cache trials.

• For write-back policy, we adapt the above notion of the win-
dow. If a reference count enters cache memory, it is evicted
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Benchmark Objects Created

db 8,088
javac 26,127
jess 46,129
jack 410,479

Figure 5: Objects created per benchmark simulated
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Figure 6: Cache simulation results for SPEC benchmark
209 DB

after the window expires. If it has changed within the win-
dow due to an increment or decrement, it must be written
back to memory (even if the value is equivalent to what it
was upon entering cache). These are the only writes to mem-
ory in the write-back simulation.

• For dusty cache, we monitor savings the same way as write-
back cache, save one difference: when it comes time to evict
a reference count from cache, we compare its current value
to its value upon entering cache. If the values are identi-
cal, it does not get written back to main memory, and this is
recorded as a saving over write-back cache.

5.3 Experimental Results
We evaluated four Java benchmarks over a number of window

sizes to observe memory-write savings as a function of cache sizes.
In addition, we examine some statistics of each program to under-
stand why we observed these trends.

Memory Savings per Benchmark. In Figure 6, we see that
we can save roughly a third of all reference-counting overhead in
the 209 db benchmark with a cache eviction window of size 50
if we incorporate a dusty data cache. This is roughly a 5% saving
over a write-back data cache of the same size. The memory writes
that the dusty policy saves over write-back policy are the “hiccups”
discussed in Subsection 2.1.

We do not expect a great deal of savings for 209 db; this bench-
mark reads a 1MB data file that contains personnel records, then
reads a 19KB file that contains operations to perform on the records
of the data file, then performs these operations [15]. In addition, we
see that it only allocates 8,088 objects in total, in comparison to the
other benchmarks as shown in Figure 5.

The Javac benchmark, shown in Figure 7, is the Java compiler
from the JDK 1.0.2 [15]. We can see from the results that the dusty
data cache implementation saves 5% of the reference counting traf-
fic due to “hiccups.” Though the benchmark itself allocates more
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213 Javac
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202 Jess
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Figure 9: Cache simulation results for SPEC benchmark
228 Jack

objects than 209 db, it does not show use of quick pointer arith-
metic and consequentially does not suffer heavy reference counting
traffic.

The Java Expert System Shell (JESS) benchmark, a clone of
the NASA CLIPS expert system shell shown in Figure 8, processes
a set of rules, or logical “if” statements, and solves a set of puz-
zles [15]. The numbers for this benchmark are more interesting
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Figure 10: Comparison of memory-access savings due to
dusty write policy across benchmarks

from a reference counting aspect. We save 25% of all reference
counting traffic with a write-back cache policy in a window of 50
data cache evictions, suggesting rapid pointer manipulation. The
memory-access savings from dusty data cache are more noticeable
here; this may be a result of high object allocation as shown in
Figure 5. Rougly 25% of the memory traffic savings at any win-
dow size can be attributed to preventing unnecessary write-back of
reference count “hiccups.”

The Jack benchmark is an early version of JavaCC, a Java parser
generator with lexical analyzers. Figure 9 shows us a very steep
slope of memory savings in the beginning, for small cache-write
windows. This data and the number of objects allocated in the
benchmark (as shown in Figure 5) suggests high-traffic object ma-
nipulation in some portion of the benchmark, and consequentially,
a lot of reference counting overhead.

Results AcrossBenchmarks. We can easily see the difference
in reference counting overhead if we examine the savings across
benchmarks.

Due to the results of Figure 10 and the processing nature of the
benchmarks, we can conclude that 213 javac and 209 db repre-
sent software that does not have heavy pointer arithmetic and there-
fore does not incur major overhead from reference counting. The
benchmarks 202 jess and 228 jack suggest considerable benefit
from a dusty cache implementation, and justify further investiga-
tion in hardware.

6. EXPERIMENTATION ON LEON
After considering the simulation results of Section 5.3, we ex-

pect to contain from 30% to 50% of a program’s reference counting
memory traffic in cache, depending on the program’s behavior.

To see the results of our design in action, we implemented the
dusty cache in the context of the Liquid Architecture platform de-
scribed in Section 4. We point out the following characteristics of
the platform in its current form:

• Off-chip memory is currently SRAM and offers only 4 MBytes.

• SRAM is relatively fast, taking only two cycles to complete a
write operation. We therefore present results in terms of the
number of accesses saved. As the distance between mem-
ory and the CPU increases, the performance obtained by not
writing to storage also increases.

Event Occurrences

Reads 1,182,870
Writes 209,491
AStores 197,794
Heap-Based RefCount++ 67,691
Heap-Based RefCount−− 54,706

Figure 11: Occurrences of Cache-Altering Events

We designed a set of trials to quantify the performance of a refer-
ence counting system with the Liquid Architecture platform. Be-
cause we could not as yet deploy a Java Virtual Machine on with
our Liquid Architecture, we employ a probabilistic approach to cre-
ate a benchmark that elicits microarchitecture behavior similar to
that of the JVM profiled in the previous section.

This experiment is a Monte Carlo simulation [13]: it randomly
triggers a set of events based on their probabilities to simulate a
model. Such experiments are employed when a scenario is too
difficult or expensive to evaluate analytically. Because our target
benchmarks have elements that do not comply with the current Liq-
uid Architecture platform and because we are only interested in the
cache behavior these benchmarks elicit, a Monte Carlo simulation
suits our needs.

To execute this experiment, we had to supply the set of events,
the probabilities of each, and a framework to elicit the microarchi-
tecture behavior of each event.

6.1 Determining the Set of Events
We are interested in evaluating the performance of the cache;

this depends on what values are resident in cache. Therefore, we
are interested in monitoring only certain events that will alter the
cache performance. In reference to our JVM with reference count-
ing garbage collection, this pertains to the following:

• Reads: getfield and aaload instructions.

• Writes: putfield and aastore instructions.

• Heap-based RefCount++/−−: heap-based reference points
to or away from an object.

• Stack-based Refcount++/−−: stack-based reference points
to or away from an object (approximated with astore in-
structions as discussed in Section 6.2).

From the above events, we can infer reference count increments
and decrements. We next develop a mechanism to determine the
relative probability of each event.

6.2 Determining Event Probability
We discovered in Section 5.3 that the dusty policy is a reasonable

cache write policy to adopt on the data cache, most noticeably for
programs with high reference counting traffic. The results in Fig-
ure 10 encourage us to examine the JESS benchmark to examine
the probabilities of each event.

We gather the results by running the benchmark on the same
instrumented JVM from our software simulation experiments. We
added event-counting functionality to our trace analysis tool dis-
cussed in Section 5.1 and analyzed the JVM output. These results
are shown in Figure 11.

It is important to note that the write and read occurrences do not
include the actual read and increment of the reference count value.
Rather, these counts pertain to JVM instructions that can alter the
data cache.
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Event Occurrences

Stack-Based RefCount++ 197,794
Stack-Based RefCount−− 159,851 - 197,794
Heap-Based RefCount++ 67,691
Heap-Based RefCount−− 54,706

Figure 12: Occurrences of Reference Counting Events

Event Probability

Read .5727
Write .1263
RefCount++ .1601
RefCount−− .1409

Figure 13: Probability of Cache-Altering Events

As discussed in Section 5, our particular JVM reference-counting
implementation [3] does not increment or decrement an object’s
reference count when a stack-based pointer points to or away from
it. For this reason, we approximate stack-based reference-counting
traffic by observing the occurrences of the astore instruction. We
know that an astore will increase a reference count, but we must
estimate how often the instruction overwrites a non-null value and
decrements a reference count.

For a lower bound, we look at the ratio of heap-based decrements
to heap-based increments (found in Figure 11) and multiply the
value by the total number of astores. For our upper bound of
stack-based decrements, we use the total number of astores. We
see the results in Figure 12.

A similar approach to approximating reference-counting traffic
on the stack is to track the aload instruction in addition to the
astore instruction. For a stack-based machine, we could argue
that an object’s reference count would increase upon an aload,
increase again upon the astore, then decrease once the opera-
tion is over. This behavior would result in even more unnecessary
reference counting traffic to memory because it exhibits the thumb
idiom described in Section 2.1. Since we use a register-based ar-
chitecture, we do not account for this aload phenomena.

After gathering the occurrences of each event, we then convert
these values to relative probability format, as shown in Figure 13.
For our immediate purposes, we will assume the stack-based refer-
ence count decrement is the median value in the range.

Now that we have the events and their relative probabilities, we
construct a framework to fire these events at their respective prob-
abilities.

6.3 A Framework to Model JVM Behavior
As we discussed earlier in this section, we cannot load our in-

strumented JVM onto the Liquid Architecture platform for execu-
tion due to the current platform restrictions. However, we can elicit
similar microarchitecture behavior with different programs. There-
fore, our objective is to develop a framework to fire actions that
provide machine instructions that are similar to that of the JVM for
each event discussed above. We can identify these actions for each
individual event.

• A read is an access to a memory address whose value may or
may not be cached. For this reason, we allocate an array of
1024 integers to represent the memory used by our program.
Upon a memory read, we randomly access an array index and
read the value at that memory address into a register.

• We execute a write by generating another random index into

the same memory array. Instead of saving this value to a
register, we simply write over it with another value.

• In the event of a reference count increment, we access an
array of 128 integers that represent our reference count ta-
ble. We generate a random index to determine which refer-
ence count to increment, read the corresponding value into a
register, increment it, and write it back to its position in the
array.

• A reference count decrement is the same as the above, except
the value we write is one less than the one we read in.

The majority of the program branches off a main loop that gen-
erates a random number and selects an event based on the proba-
bilities listed in Figure 13.

Aside from deciding the probability and the implementation of
our increment and decrement operations, we have to create a frame-
work for deciding which “object” to increment or decrement. As
said above, we use an array of integers to represent object reference
counts; however, we have found through previous implementations
of this benchmark that the strategy of deciding which integer to in-
crement or decrement can profoundly alter the results.

In a normal reference-counted program, we expect all reference
counts to start at one upon an object’s creation, vary somewhat dur-
ing program execution, and return to one or zero by the end of the
program or object collection. We adopted the following policy to
determine which objects to decrement. When we increment an ob-
ject, we immediately schedule it for a decrement after a window of
time twindow in the future such that 0 < twindow < Windowmax.
Upon each iteration of the simulation, we decrement any scheduled
reference counts.

6.4 Ensuring Valid Experimental Results
The foremost challenge of this Monte Carlo approach is keep-

ing the simulation program from contaminating the results that we
wish to monitor. While our platform measures exactly the num-
ber of cache misses seen by the executing program, the program
itself is executing and has some effect on the data cache. To mit-
igate the program’s effects, we wrote the program so as to cause
as much storage as possible to be allocated on the runtime stack
and in registers—both are implemented as structures separate from
storage in the LEON core.

As discussed above, Monte Carlo simulations require random
numbers. Because we want to refrain from disturbing the simula-
tion results, our random number generator must disrupt the mem-
ory system state as little as possible. However, our random number
generation method necessarily reads and writes a single value in
memory upon each new value generated. This will alter the cache,
but we can take further precautions to lessen its effect on our ex-
perimental results.

The Liquid Architecture system allows us to take other measures
to ensure valid results. As discussed in Subsection 4.1, we can per-
form method-wise profiling. This allows us to isolate our random
number computation to a single method and refrain from explicitly
tracking it in our statistics module. Therefore, though the random
number computation will alter the state of the cache, the actual
cache hit or cache miss event will not be tracked.

6.5 Monte Carlo Experimental Results
We ran the above program with the realized microarchitecture

discussed in Section 3 on the Liquid Architecture platform. We
leverage the Liquid Architecture Statistics Module to gather and
return relevant data.
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Figure 14: Monte Carlo benchmark results for write-back
and dusty policies

For each cache policy, we observe three results: total memory
writes, memory writes without reference-counting, and memory
writes due to reference counting. We obtain these results by ex-
ecuting the benchmark twice: once with reference-counting en-
abled, and once with the same sequence of events but omitting the
reference-counting instrumentation. In our implementation, this in-
volved commenting out two lines, but leaving the surrounding in-
strumentation. We compute the reference-counting memory writes
from these two execution results by subtracting: WritesRefCount =
WritesTotal − WritesNoRefCount.

The results are shown in Figure 14 were gathered with a write-
back cache size of 4KB and a dusty cache of size 4KB (4KB data,
4KB image). We find that the non-reference-counting instrumenta-
tion and read/write simulation occupies over two-thirds of the pro-
gram’s memory writes. Once we separate the reference-counting
traffic from the rest, we find that we save roughly half of our mem-
ory writes. It follows from the data and from the design of our
cache in Section 3 that half of the memory-write traffic of write-
back cache was unnecessary.

The dusty cache savings on non-reference-counting traffic is un-
remarkable here. The write event of our Monte Carlo simulation
consisted of writing a random number to memory, so we find very
few occurrences of value change-and-return.

In our JVM experiment analysis, we categorized dusty cache as
more effective for data cache than for unified cache. In analyzing
this experiment, we can conclude that when put into practice, dusty
cache is more effective for some classes of data than others. We
can identify a distinctive class of momentary data such as reference
counting that operates better under dusty write policy than under
write-back.

7. CONCLUSION AND FUTURE WORK
We designed and implemented the dusty cache write policy, and

we present experimental results that show its effectiveness in exe-
cuting the garbage collection technique of reference counting. We
use reference counting as our vehicle for analyzing cache effective-
ness in this paper, and examine common programming idioms in
which write-back cache policy and reference counting causes un-
necessary writes to memory. Though we primarily explore refer-
ence counting in this paper, we make the case that this cache write
policy effectively prevents said writes to memory in any instance
where a cached value changes and returns to its former value prior
to eviction.

We utilized the Liquid Architecture platform to realize our pro-
posed microarchitecture. This platform allowed us rapidly to de-
velop and test our cache policy as well as quantify its memory traf-
fic and performance at clock cycle level with normal C benchmarks.

The results of instrumented JVM experiments suggest that the
dusty cache is more effective as a data cache than as a unified or
instruction cache. However, it may be the case that it would be even
more effective on a subset of the data cache, such as an exclusive
cache for reference counts. This would follow in the intent of this
paper: biasing the microarchitecture to take advantage of common
programming idioms.
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