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Abstract

In rule-based systems, goal-oriented computations correspond naturally to the pos-

sible ways that an observation may be explained. In some applications, we need to

compute explanations for a series of observations with the same domain. The question

whether previously computed answers can be recycled arises. A yes answer could re-

sult in substantial savings of repeated computations. For systems based on classic logic,

the answer isyes. For nonmonotonic systems however, one tends to believe that the

answer should beno, since recycling is a form of adding information. In this paper, we

show that computed answers can always be recycled, in a nontrivial way, for the class

of rewrite procedures proposed earlier in [12] for logic programs with negation. We

present some experimental results on an encoding of the logistics domain.

∗An extended abstract of parts of this paper appeared in the proceedings of IJCAI-03, Acapulco, Mexico.
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1 Introduction

The question we shall address in this paper is the following.With a sound and complete

procedure for abduction, suppose we have computed explanations (conveniently represented

as a disjunction)Es = E1 ∨ ... ∨ En for observationq. Suppose also that in the course of

computing explanations for another observationp, we run intoq again. Now, we may use

the proofsEs for q without actually provingq again. The question is this: will the use of the

proofsEs for q in the proof forp preserve the soundness and completeness of the procedure?

In this paper, we answer this question positively, but in a nontrivial way, for the class

of rewrite procedures proposed in [12] for abduction in logic programming under (partial)

stable model semantics ([7], [14]). The main result is a theorem (Theorem 4.7) that says

recycling preserves the soundness and completeness.

The general idea of recycling is not new. Recycling in systems based on classic logic is

always possible, since inferences in these systems can be viewed as transforming a logic

theory to a logically equivalent one. In dynamic programming, it is the use of the an-

swers for previously computed subgoals that reduces the computational complexity. In

some game playing programs, for example in the world champion checker programShi-

nook(www.cs.ualberta.ca/̃chinook), the endgame database stores the computed resultsfor

endgame situations which can be referenced in real-time efficiently.

However, the problem of recycling in a nonmonotonic proof system has rarely been in-

vestigated. We note that recycling is to use previous proofs. This differs from adding conse-

quences. For example, it is known that the semantics based onanswer sets or (maximal) par-

tial stable models [4] do not possess thecautious nonmonotonicityproperty. That is, adding

a consequence of a program could gain additional models thuslosing some consequences.

The following example is due to Dix [3]:

P = {a← not b. b← c, not a. c← a.} (1)

P has only one answer set,{a, c}. Thus,c is a consequence. When augmented with the rule

c←, the program gains a second answer set,{b, c}, and losesa as a consequence.

Abduction in the framework of logic programming with answersets [7] or partial stable

models [14] has been studied extensively, and a number of formalisms and top-down query

answering procedures have been proposed [1, 4, 5, 6, 9, 8, 10,11, 12, 15, 16].

The class of rewrite procedures for abduction proposed in [12] is based on the idea ofab-

duction as confluent and terminating rewriting. These systems are calledcanonical systems

in the literature of rewrite systems [2]. The confluence and termination properties guaran-
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tee that rewriting terminates at a unique normal form independent of the order of rewriting.

Thus, each particular strategy of rewriting yields a rewrite procedure.

These rewrite procedures can be used to compute explanations using a nonground pro-

gram, under the condition that in each rule a variable that appears in the body must also

appear in the head. Under this condition, an observation (a ground goal) is always rewritten

to another ground goal, so that a rewriting mechanism desgined for ground programs works

just as well. When the condition is not satisfied, one only needs to instantiate those variables

that only appear in the body of a rule. For example, domain restricted programs [13] can

be instantiated only on domain predicates for variables that do not appear in the head. This

is a significant departure from the approaches that are basedon ground computation where

a function-free program is first instantiated to a ground program with which the intended

models are then computed.

These rewrite procedures can also be used for answer set semantics in the following

way. If a queryq is written intoFalse, there cannot be any answer set containingq. This is

because answer sets for normal programs are special cases ofpartial stable models. However,

if the query is written intoTrue, to see whether there is an answer set containing this query,

one then only needs to check whether thecontextgenerated so far can be extended to an

answer set, a task that is normally much easier than finding ananswer set from scratch.

There is a special case, however, when the corresponding propositional program is finite and

so-calledodd-loopfree, partial stable models coincide with stable models. Thus the rewrite

procedures are also sound and complete for these programs.

The next section defines logic program semantics. Section 3 reviews the rewriting frame-

work. Then in Section 4 we formulate rewrite systems with computed rules and prove that

recycling preserves soundness and completeness. Section 5extends this result to rewrite

systems with abduction, and Section 7 reports some experimental results.

2 Logic Program Semantics

A rule is of the form

a← b1, ..., bm, not c1, ..., not cn.

wherea, bi andci are atoms of the underlying propositional languageL. not ci are called

default negations. A literal is an atomφ or its negation¬φ. A (normal) programis a finite

set of rules.

The completionof a programP , denotedComp(P ), is a set of equivalences: for each

atomφ ∈ L, if φ does not appear as the head of any rule inP , φ ↔ F ∈ Comp(P ); other-
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wise,φ↔ B1 ∨ ...∨Bn ∈ Comp(P ) (with default negations replaced by the corresponding

negative literals) if there are exactlyn rulesφ← Bi ∈ P with φ as the head. We writeT for

Bi if Bi is empty.

The rewriting system of [12] is sound and complete w.r.t. thepartial model semantics

[14]. A simple way to define partial stable models without even introducing 3-valued logic

is by the so calledalternating fixpoints[17]. Let P be a program andS a set of default

negations. Define a function over setsS of default negations:FP (S) = {not a |P ∪ S 6⊢ a}.

The relation⊢ is the standard propositional derivation relation with each default negation

notφ being treated as a named atomnot φ.

A partial stable modelM is defined by a fixpoint of the function that appliesFP twice,

F 2
P (S) = S, while satisfyingS ⊆ FP (S), in the following way: for any atomξ, ¬ξ ∈ M if

not ξ ∈ S, ξ ∈M if P ∪ S ⊢ ξ, andξ is undefinedotherwise. Ananswer setE is defined by

a fixpointS such thatFP (S) = S andE = {ξ ∈ L | P ∪ S ⊢ ξ}.

3 Goal Rewrite Systems

We introduce goal rewrite systems as formulated in [12].

A goal rewrite system is a rewrite system that consists of three types of rewrite rules: (1)

Program rules fromComp(P ) for literal rewriting; (2) Simplification rules to transform and

simplify goals; and (3) Loop rules for handling loops.

A program ruleis a completed definitionφ↔ B1 ∨ . . .∨Bn ∈ Comp(P ) used from left

to right: φ can be rewritten toB1 ∨ . . . ∨ Bn, and¬φ to¬B1 ∧ . . . ∧ ¬Bn. These are called

literal rewriting.

A goal, also called agoal formula, is a formula which may involve¬, ∨ and∧. A goal

resulted from a literal rewriting from another goal is called aderived goal. Like a formula, a

goal may be transformed to another goal without changing itssemantics. This is carried out

by simplification rules.

We assume that in all goals negation appears only in front of aliteral. This can be

achieved by simple transformations using the following rules: for any formulasΦ andΨ,

¬¬Φ→ Φ

¬(Φ ∨Ψ)→ ¬Φ ∧ ¬Ψ

¬(Φ ∧Ψ)→ ¬Φ ∨ ¬Ψ
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3.1 Simplification rules

The simplification rules constitute a nondeterministic transformation system formulated with

a mechanism of loop handling in mind, which requires keepingtrack of literal sequences

g0, . . . , gn where eachgi, 0 < i ≤ n, is in the goal formula resulted from rewritinggi−1. Two

central mechanisms in formalizing goal rewrite systems arerewrite chainsandcontexts.

• Rewrite Chain:Suppose a literall is written by its definitionφ ↔ Φ wherel = φ or

l = ¬φ. Then, each literall′ in the derived goal is generated in order to provel. This

ancestor-descendant relation is denotedl ≺ l′. A sequencel1 ≺ . . . ≺ ln is then called

a rewrite chain, abbreviated asl1 ≺+ ln.

• Context:A rewrite chaing = g0 ≺ g1 ≺ . . . ≺ gn = T records a set of literalsC =

{g0, ..., gn−1} for provingg. We will write T ({g0, ..., gn−1}) and callC a context. A

context will also be used to maintain consistency: ifg can be proved via a conjunction,

all of the conjuncts need be proved with contexts that are non-conflicting with each

other. For simplicity, we assume that whenever¬F is generated, it is automatically

replaced byT (C), whereC is the set of literals on the corresponding rewrite chain,

and¬T is automatically replaced byF .

Note that for any literal in a derived goal, the rewrite chainleading to it from a literal in

the given goal is uniquely determined. As an example, suppose the completion of a program

has the definitions:a↔ ¬b ∧ ¬c andb↔ q ∨ ¬p. Then, we get a rewrite sequence,

a→ ¬b ∧ ¬c→ ¬q ∧ p ∧ ¬c.

For the three literals in the last goal, we have rewrite chains from a: a ≺ ¬b ≺ ¬q; a ≺

¬b ≺ p; anda ≺ ¬c.

Simplification Rules: Let Φ andΦi be goal formulas,C be a context, andl a literal.

SR1. F ∨ Φ→ Φ

SR1’ Φ ∨ F → Φ

SR2. F ∧ Φ→ F

SR2’ Φ ∧ F → F

SR3. T (C1) ∧ T (C2)→ T (C1 ∪ C2) if C1 ∪ C2 is consistent
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SR4. T (C1) ∧ T (C2)→ F if C1 ∪ C2 is inconsistent

SR5. Φ1 ∧ (Φ2 ∨ Φ3)→ (Φ1 ∧ Φ2) ∨ (Φ1 ∧ Φ3)

SR5’. (Φ1 ∨ Φ2) ∧ Φ3 → (Φ1 ∧ Φ3) ∨ (Φ2 ∧ Φ3) ✷

SR3 merges two contexts if they contain no complementary literals, otherwise SR4

makes it a failure to prove. SR4 can be implemented more efficiently by

T (C) ∧ l → F if ¬l ∈ C

Repeated applications of SR5 and SR5’ can transform any goalformula to a disjunctive

normal form (DNF).

3.2 Loop rules

After a literall is rewritten, it is possible that at some later stage eitherl or¬l appears again

in a goal on the same rewrite chain. Two rewrite rules are formulated to handle loops.

Definition 3.1 LetS = l1 ≺
+ ln be a rewrite chain.

• If ¬l1 = ln or l1 = ¬ln, thenS is called anodd loop.

• If l1 = ln, then

– S is calleda positive loopif l1 andln are both atoms and each literal onl1 ≺+ ln

is also an atom;

– S is calleda negative loopif l1 and ln are both negative literals and each literal

on l1 ≺
+ ln is also negative;

– Otherwise,S is called aneven loop.

In all the cases above,ln is called aloop literal.

Loop Rules: Let g1 ≺+ gn be a rewrite chain.

LR1. gn → F

if gi ≺+ gn, for some1 ≤ i < n, is a positive loop or an odd loop.

LR2. gn → T ({g1, ..., gn})

if gi ≺+ gn, for some1 ≤ i < n, is a negative loop or an even loop. ✷
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A rewrite sequenceis a sequence of zero or more rewrite stepsQ0 → . . .→ Qk, denoted

Q0 →
∗ Qk, such thatQ0 is an initial goal, and for each0 ≤ i < k, Qi+1 is obtained fromQi

by

• literal rewriting at a non-loop literal inQi, or

• applying a simplification rule to a subformula ofQi, or

• applying a loop rule to a loop literal inQi.

Example 3.2 For the program given in the Introduction,

P0 = {a← not b. b← c, not a. c← a.}

a is proved butb is not. This is shown by the following rewrite sequences:

a→ ¬b→ ¬c ∨ a→ ¬a ∨ a→ F ∨ a→ a→ T ({a,¬b})

b→ c ∧ ¬a→ a ∧ ¬a→ ¬b ∧ ¬a→ F ∧ ¬a→ F

LetP1 = {b← not c. c← c.}. b is proved and¬b is not.

b→ ¬c→ ¬c→ T ({¬b,¬c}); ¬b→ c→ c→ F

✷

Note that, in general, the proof-theoretic meaning of a goalformula may not be the same

as the logical meaning of the formula. For example, the goal formulaa ∨ ¬a (a tautology in

classic logic) could well lead to anF if neithera nor¬a can be proved, e.g., for the program

{a← not a}.

Definition 3.3 A goal rewrite systemfor a programP is a triple 〈QL,RP ,→〉, whereQL

is the set of all goals,RP is a set of rewrite rules which consists of program rules from

Comp(P ), the simplification rules and the loop rules, and→ is the set of all rewrite se-

quences.
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3.3 Previous results

Goal rewrite systems are like term rewriting systems [2] everywhere except at terminating

steps: a terminating step at a subgoal may depend on the history of rewriting.

A set of rewrite sequences defines a binary relation, sayR, on the set of goal formulas:

R(Q,Q′) iff Q→∗ Q′. Hence, a set of rewrite sequences corresponds to a binary relation.

Two desirable properties of rewrite systems are the properties of termination and conflu-

ence. Rewrite systems that possess both of these propertiesare called canonical systems. A

canonical system guarantees that the final result of rewriting from any given goal is unique,

independent of any order of rewriting.

Definition 3.4 A goal rewrite system〈QL,RP ,→〉 is terminatingiff there exists no endless

rewrite sequenceQ1 → Q2 → Q3 → ...... in→.

Definition 3.5 A goal rewrite system〈QL,RP ,→〉 is confluentiff for any rewrite sequences

t1 →
∗ t2 andt1 →∗ t3, there existt4 ∈ QL and rewrite sequencest2 →∗ t4 andt3 →∗ t4.

In [12], it is shown that all goal rewrite systems defined above are canonical, i.e., they are

confluent and terminating. It was also shown any goal rewritesystem is sound and complete

w.r.t. the partial stable model semantics:

Theorem 3.6 LetP be a finite program and〈QL,RP ,→〉 a goal rewrite system.

Soundness: For any literalg and any rewrite sequenceg →∗ T (C1) ∨ . . . ∨ T (Cm), there

exists a partial stable modelMi ofP , for eachi ∈ [1..m], such thatg ∈ Ci ⊆Mi.

Completeness: For any literal g true in a partial stable modelM of P , there exists a

rewrite sequenceg →∗ T (C1)∨ . . .∨T (Cm) such that there existsi ∈ [1..m], g ∈ Ci ⊆M .

4 Goal Rewrite Systems with Computed Rules

We first use two examples to illustrate the main technical results of this paper.

Example 4.1 Given a rewrite systemR0, suppose we have a rewrite sequence¬q → a →

a → F . The failure is due to a positive loop ona. We may recycle the computed answer by

replacing the rewrite rule for¬q by the new rule,¬q → F . We thus get a new system, say

R1. Suppose in trying to proveg we have

g → a→ ¬q → F

8



where the last step makes use of the computed answer for¬q. The question arises as whether

this way of using previously computed results guarantees the soundness and completeness.

Theorem 4.7 to be proved later in this paper answers this question positively. To see it for

this example, assume we have the following, successful proof in R0

g → a→ ¬q → a→ T ({g, a,¬q})

where the termination is due the even loop ona. Had such a sequence existed, recycling

would have produced a wrong result. However, one can see thatthe existence of the rewrite

stepa→ ¬q implies the existence of a different way to prove¬q:

¬q → a→ ¬q ∨ . . .→ T ({¬q, a}) ∨ . . .

contradicting that¬q was rewritten toF in R0. ✷

Before giving the next example, we introduce a different wayto understand rewrite se-

quences. Since any goal formula can always be transformed toa DNF using the distributive

rules SR5 and SR5’, and the order of rewriting does not matter, we can view rewriting as

generating a sequence of DNFs. Thus, a rewrite sequence in DNF from an initial goalg,

g →∗ N1 ∨ ... ∨Nn

can be conveniently represented byderivation trees, or d-trees, one for eachNi representing

one possible way of provingg. For anyi, the d-tree forNi hasg as its root node, wherein a

branch fromg to a leaf node corresponds to a rewrite chain fromg that eventually ends with

anF or someT (C). As such a disjunct is a conjunction, a successful proof requires each

branch to succeed and the union of all resulting contexts to be consistent.

The next example is carefully constructed to illustrate that recycling may not yield the

same answers as if no recycling were carried out. In particular, one can sometimes get

additional answers.

Example 4.2 Consider the program:

g ← a. a← not b. a← e.

b← b. e← p. p← a.

In Fig. 1, each d-tree consists of a single branch. The left two d-trees are expanded from
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a

e

p

F

p

a

¬b

¬b

T ({p, a,¬b})

g

a

e

p

a

F

g

a

¬b

¬b

T ({g, a,¬b})

g

a

e

p

T ({g, a, e, p,¬b})

Figure 1: Recycling may generate extra proofs

goalp corresponding to the following rewrite sequence:

p→ a→ e ∨ ¬b→ p ∨ ¬b→ F ∨ ¬b→ ¬b→ ¬b→ T ({p, a,¬b})

The next two d-trees are for goalg, corresponding to the rewrite sequence:

g → a→ e ∨ ¬b→ p ∨ ¬b→ a ∨ ¬b

→ F ∨ ¬b→ ¬b→ ¬b→ T ({g, a,¬b})

Now, we recycle the proof forp in the proof forg and compare it with the one without

recycling. Clearly, the successful d-tree forg (the fourth from the left) will still succeed as it

doesn’t involve anyp. The focus is then on the d-tree in the middle, in particular,the nodep

in it; this d-tree fails when no recycling was performed.

Sincep is previously proved with context{g, a,¬b}, recycling of this proof amounts to

terminatingp with a context which is the union of this context with the rewrite chain leading

to p (see the d-tree on the right). But this results in a successful proof that fails without

recycling.

Though recycling appears to have generated a wrong result, one can verify that both

generated contexts,{g, a,¬b} and{g, a, e, p,¬b}, belong to the same partial stable model.

Thus, recycling in this example didn’t lead to an incorrect answer but generated a redundant

one. Theorem 4.7 shows that this is not incidental. Indeed, if p is true in a partial stable

model, by derivation (look at the d-tree in the middle), so must bee, a, andg. ✷

4.1 Rewrite systems with computed rules

Given a goal rewrite systemR, we may denote a rewrite sequence from a literalg by g →R

E.

Definition 4.3 (Computed rule)

LetR be a goal rewrite system in which literalp is rewritten to its normal form. Thecom-

puted rule forp is defined as: Ifp →R F , the computed rule forp is the rewrite rule

10



p → F ; if p →R T (C1) ∨ ... ∨ T (Cn), then the computed rule forp is the rewrite rule

p→ T (C1) ∨ ... ∨ T (Cn).

For the purpose of recycling, a computed rulep → E is meant to replace the existing

literal rewrite rule forp. If a computed rulep→ F representing a failed derivation, it can be

used directly as the literal rewrite rule forp. Otherwise, we must combine the contexts inE

with the rewrite chain leading top, and keep only consistent ones.

Recycling Rule:
Let g1 ≺+ gn be a rewrite chain wheregn is a non-loop literal. LetG = {g1, ..., gn}, and

gn → T (D1) ∨ ... ∨ T (Dk) be the computed rule forgn. Further, let{D′

1, ..., D
′

k′} be the

subset of{D1, ..., Dk} containing anyDi such thatDi ∪G is consistent. Then, therecycling

rule for gn is defined as:

RC. gn → T (G ∪D′

1) ∨ ... ∨ T (G ∪D′

k′) ✷

Example 4.4 Consider the following program:

g ← a. a← p. p← not a.

a← not p. p← not b. b← not a.

and the proof:
p→ ¬a ∨ ¬b→ p ∨ ¬b→ T ({p,¬a}) ∨ ¬b

→ T ({p,¬a}) ∨ p→ T ({p,¬a}) ∨ T ({p,¬b})

We therefore have a computed rule forp:

p→ T ({p,¬a}) ∨ T ({p,¬b})

Now, in the course of provingg we can recycle the computed rule forp:

g → a→ p ∨ ¬p→ T ({g, a, p,¬b}) ∨ p→ ...

In the sequel, a rewrite system includes the recycling rule as well as zero or more com-

puted rules. We note that the termination and confluence properties remain to hold for the

extended systems.

We are interested in the soundness and completeness of a series of rewrite systems, each

of which recycles computed answers generated on the previous one. For this purpose, given

a programP we useR0
P to denote the original goal rewrite system where literal rewrite rules

are defined by the Clark completion ofP . For all i ≥ 0, Ri+1

P is defined in terms ofRi
P
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a ¬b

Figure 2: Loop rotation

as follows: Let∆i be the set of computed rules (generated) onRi
P for the set of literals

L∆i
Then,Ri+1

P is the rewrite system obtained fromRi
P by replacing the rewrite rules for

the literals inL∆i
by those in∆i. In the rest of this sectin, we will always refer to a fixed

programP . Thus we may drop the subscriptP and writeRi.

Definition 4.5 A rewrite systemRi is soundiff, for any literalg and rewrite sequenceg →Ri

T (C1) ∨ ... ∨ T (Cn), and for eachCj, j ∈ [1..n], there exists a partial stable modelM of P

such thatg ∈ Cj ⊆ M . Ri is completeiff, for any literalg such thatg ∈M for some partial

stable modelM of P , there is a rewrite sequenceg →Ri T (C1) ∨ ... ∨ T (Cn) such that for

someCj, j ∈ [1..n], g ∈ Cj ⊆M .

An important property of provability by rewriting is the so-calledloop rotation, which is

needed in order to prove the completeness of recycling; namely, a proof (a successful branch

in a d-tree) terminated by a loop rule can be captured in rotated forms.

To describe this property, we need the following notation about rewrite chains: Any

direct dependency relationl ≺ l′ may be denoted byl · l′, and we allow a segment (which

may be empty) of a rewrite chain to be denoted by a Greek lettersuch asδ, θ, andξ. Thus,

we may writex · δ · y to denote a rewrite chain fromx to y via δ, or x · δ to mean a rewrite

chain that begins withx followed by the segment denoted byδ. A rewrite chain may also be

used to denote the set of the literals on it.

Lemma 4.6 (loop rotation)

Let R0 be a rewrite system without computed rules. LetTr be a d-tree for literalg that

succeeds with contextC. Suppose a branch ofTr ends with a loop,g ·θ ·g, for someθ. Then,

for any literal l ∈ θ, there is a proof ofl that succeeds with the same contextC.

Proof. A loop,π = g · l1 · l2 · . . . · ln · g, whereg andli are literals, can always be rotated as

l1 · l2 · . . . · ln · g · l1,

l2 · . . . · ln · g · l1 · l2,

......

12



and so on, so that ifπ is a negative loop (or an even loop, resp.) so is its rotated loop.

Rotation over a d-tree can be performed as follows: remove the top noden, and for any link

from the top node,n · q, attach the linkn · q to any occurrence ofn. The assumption of

the existence of loopg · θ · g ensures that in every round of rotation there is at least one

occurrence of the top node. (See Fig 2 for an illustration where rotation proceeds from left

to right.) It can be seen that the type of a loop is always preserved and the set of literals on

the tree remains unchanged. ✷

4.2 Soundness and completeness of recycling

Below, given a literall, by a proof ofl we mean a rewrite sequence froml to T (C1) ∨ . . . ∨

T (Cn), where anyCi can be referred to as a proof ofl.

Theorem 4.7 For anyi ≥ 0, Ri is sound and complete.

Proof. We prove the claim by induction oni. R0, the system without computed rules, is

sound and complete [12]. Now assume for allj with 0 ≤ j ≤ i, Rj are sound and complete,

and show thatRi+1 is also sound and complete.

We only need to consider the situations where rewriting inRi+1 differs from that ofRi.

Let L∆i
be the set of literals whose computed rules are generated onRi. We can first carry

out rewriting without rewriting the literals that are inL∆i
. In this case, rewriting fromg

in both Ri andRi+1 terminate at the same expression, which is eitherF or a DNF, say

N1 ∨ ... ∨Nm. EachNi can be represented by a d-tree.

Soundness:Supposeg →Ri+1 T (D1) ∨ ... ∨ T (Ds). For anyD ∈ {D1, ..., Ds} we need to

show that there is a partial stable modelM such thatD ⊆ M . Consider the d-treeTr that

generatesD and supposeg is its root node. We show inductively in a bottom-up fashion that

all the literals onTr must be in the same partial stable model. For any leaf nodep that is

terminated by its computed rule

p→ ... ∨ T (C) ∨ ...

supposeTr is the one that succeeded with contextC. By the inductive hypothesis onRj, we

know thatRj is sound for allj ≤ i, thus there is a partial stable modelM such thatC ⊆

D ⊆ M . If a leaf nodeq is terminated by a loop, by the loop rotation lemma (lemma 4.1),

there is a proof ofq in Ri using rotated loops. Otherwise we have an obvious case wherea

leaf node is rewritten toTrue by its Clark completion.
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In the inductive step, letl1, ..., ln be the child nodes of some nodel and assume eachli
is proved inRi hence in some partial stable model. We first show that they belong to the

same partial stable modelM . Then, we show thatl can also be proved inRi thus belonging

to M as well. Without loss of generality, assume there are only two child nodes:l1 →Ri

T (Q1) ∨ ... ∨ T (Qm), l2 →Ri T (W1) ∨ ... ∨ T (Wn). SinceD is constructed inRi+1 using

computed rules, by definitions of computed rule and the recycling rule, there areQi andWj

such thatQi ∪Wj ⊆ D, and henceQi ∪Wj is consistent. Then inRi, the two contexts are

merged by using simplification rule SR3, i.e.,

l1 ∧ l2 →Ri ... ∨ [T (Qi) ∧ T (Wj)] ∨ ...→Ri ... ∨ T (Qi ∪Wj) ∨ ...

SinceRi is sound, there is a partial stable modelM such that{l1, l2} ⊆ Qi ∪Wj ⊆ M . But

l is derivable froml1 andl2. Using the definition of partial stable models, it can be shown

thatl must also be inM .

The induction allows us to conclude that for the top goalg and its proofD in Ri+1, we

must haveg ∈ D ⊆M , for the same partial stable modelM .

Completeness:We show that for any context generated inRi, the same context will be

generated inRi+1. Then,Ri+1 is complete simply becauseRi is complete.

Let p ∈ L∆i
, and consider a proof ofg via p and its d-tree. Since each branch of this

d-tree can be expanded and eventually terminated independent of others, for simplicity, we

consider a proof ofg simply by (an extension of) a branchg · ξ ·p. InRi+1 the computed rule

for p is used while inRi it is not. We only need to consider two cases of proof inRi: either

g is proved viap and a previously computed rule, or the proof is terminated due to a loop.

(i) The case of loops. In expanding the rewrite chaing · ξ · p in Ri, we may form a loop, say

g · ξ · p · ξ′. If the loop is inξ′, exactly the same loop occurs in rewritingp as the top goal in

Ri, so it is part of the computed rule forp. Otherwise it is a loop thatcrosses over p, in the

general form

π = g · θ1 · l · θ2 · p · θ3 · l

wherel is the loop literal. As a special case of loop rotation over a branch (cf. Lemma 4.1),

the same way of terminating a rewrite chain presents itself in provingp as the top goal inRi,

which is

π′ = p · θ3 · l · θ2 · p.

If the loop onπ is a negative loop (or an even loop, resp.), so isπ′. Thus the same context

will be generated inRi+1.
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(ii) g is proved viap and a previously computed rule. That is,Ri gives a rewrite chain of the

form g · ξ ·p · δ · q whereq → E is a computed rule generated onRj for somej < i. Suppose

the context generated this way isC. Because of the existence ofp · δ · q, exactly the same

computed ruleq → E must be used in generating the computed rule forp in Ri. It can be

seen that the context generated inRi+1 by recycling the computed answers forp (which is

computed viaq) is exactly the same as the one that uses the computed answersfor q but not

those forp. So, for any context generated this way inRi, the same context will be generated

in Ri+1 as well. ✷

As given in the corollary below, if we only recycle failed proofs then exactly the same

contexts will be generated.

Corollary 4.8 LetRi be a rewrite system where each computed rule is of the formp → F .

Let g be a literal andE be a normal form. Then, for anyi ≥ 0, g →R0 E iff g →Ri E.

Proof. Let ∆ be the set of literals whose rewrite rules are computed rulesin Ri. Consider

rewriting without rewriting on the literals in∆. Then, rewriting fromg terminates at the

same expressionE ′, which is either anF or T (C1) ∨ ... ∨ T (Cn), in bothR0 andRi. The

claim then follows from the theorem above that for anyq ∈ ∆, q →R0 F iff q →Ri F . That

is, if q →R0 F , thenq is not in any partial stable model. The soundness ofRi ensures that

if q →Ri Q whereQ 6= F , then there is a partial stable model containingq, resulting in a

contradiction. The converse is similar. ✷

5 Recycling in Abductive Rewrite Systems

As shown in [12], the rewriting framework can be extended to abduction in a straightforward

way: the only difference in the extended framework is that wedo not apply the Clark com-

pletion to abducibles. That is, once an abducible appears ina goal, it will remain there unless

it is eliminated by the simplification ruleSR2 or SR2′. In a similar way, the goal rewrite

systems with computed rules in the previous section can be extended to abduction as well.

Definition 5.1 (Computed rule for abduction)

LetR be an extended goal rewrite system for abduction. Thecomputed rule forp is defined

as: If p→R F , the computed rule forp is the rewrite rulep→ F ; if

p→R [l11(C11) ∧ · · · ∧ l1k1(C1k1)] ∨ . . . ∨

[lm1(Cm1) ∧ · · · ∧ lmkm(Cmkm)]
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such that eachlij is eitherT or an abducible literal, andCi1 ∪ · · · ∪ Ciki is consistent for

eachi, then the computed rule forp is the rewrite rule

p→ [l11(C11) ∧ · · · ∧ l1k1(C1k1)] ∨ . . . ∨

[lm1(Cm1) ∧ · · · ∧ lmkm(Cmkm)] (2)

Recycling Rule:
Let g1 ≺+ gn ≺ p be a rewrite chain wherep is a non-loop literal. LetG = {g1, ..., gn, p},

and (2) be the computed rule forp. Then, therecycling rulefor p is defined as:

RC’.

p→ [l11(C11 ∪G) ∧ · · · ∧ l1k1(C1k1 ∪G)] ∨ . . . ∨

[lm1(Cm1 ∪G) ∧ · · · ∧ lmkm(Cmkm ∪G)]

6 A Recycling Strategy

We have shown that in theory, one can reuse the previously computed answers in our rewrite

systems for abduction. To put the theory into practice, we need some effective strategies on

how to recycle these computations.

If we want to compute the abduction of all goals in a set, without the framework of

recycling introduced here, the only way is to compute them one by one independently. With

the idea of recycling, we can try to recycle previously computed answers. The question is

then which goals to compute first. This question arises even if we just want to compute

the abduction of a single goal: instead of computing it usingthe original program, it may

sometimes be better if we first compute the abduction of some other goals and recycle the

results.

Assuming that goals are literals, a simple strategy for deciding the order of goals to be

computed is to find out the dependency relations among the goals.

Definition 6.1 A literal l is said to be depending on a literall′ if the atom inl depends on

the atom inl′. An atomp is said to be depending on an atomq if either q is in the body of a

rule whose head isp or inductively, there is another atomr such thatp depends onr, andq

is in the body of a rule whose head isr.

It is easy to see that ifl depends onl′, but l′ does not depend onl, thenl′ will never be

sub-goaled tol during rewriting, butl could be sub-goaled tol′. Thus if we need to compute

the abduction of bothl andl′, we should do it forl′ first.
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7 Experiments

We have implemented a depth-first search rewrite procedure with branch and bound. The

procedure can be used to compute explanations using a nonground program, under the con-

dition that in each rule a variable that appears in the body must also appear in the head. When

this condition is not satisfied, one only needs to instantiate those variables that only appear

in the body of a rule. This is a significant departure from the approaches that are based on

ground computation where a function-free program is first instantiated to a ground program

with which the intended models are then computed.

To check the effectiveness of the idea of recycling, we tested our system on the logistics

problem in [12]. This is a domain in which there is a truck and apackage. A package can be

in or outside a truck, and a truck can be moved from one location to another. The problem

is that given state constraints such as that the truck and thepackage can each be at only one

location at any given time, and that if the package is in the truck, then when the truck moves

to a new location, so does the package, how we can derive a complete specification of the

effects of the action of moving a truck from one location to another. Suppose that we have the

following propositions: ta(x) (pa(x)) – the truck (package) is at locationx initially; in – the

package is in the truck initially; ta(x, y, z) (pa(x, y, z)) – the truck (package) is at locationx

after performing the action of moving it fromy to z; in(y, z) – the package is in the truck after

performing the action of moving the truck fromy to z. Then in [12], the problem is solved

by computing the abduction of successor state propositions{ta(x, y, z), pa(x, y, z), in(y, z)}

in terms of initial state propositions{ta(x), pa(x), in} (abducibles) using the following logic

program:

ta(X,X1, X). (3)

pa(X,X1, X2)← ta(X,X1, X2), in(X1, X2). (4)

ta(X,X1, X2)← X 6= X2, ta(X), not taol(X,X1, X2). (5)

taol(X,X1, X2)← Y 6= X, ta(Y,X1, X2). (6)

pa(X,X1, X2)← pa(X), notpaol(X,X1, X2). (7)

paol(X,X1, X2)← Y 6= X, pa(Y,X1, X2). (8)

in(X, Y )← in. (9)

Here the variables are to be instantiated over a domain of locations. For instance, given query

pa(3, 2, 3), our system would compute its abduction as pa(3) ∨ in, meaning that for it to be

true, either the package was initially at3 or it was inside the truck.
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Query 9 locations 10 locations

NR WR NR WR

pa(1,2,3) 0.71 0.41 1.50 0.89

-pa(1,2,3) 75.89 2.28 342.96 5.65

pa(3,2,3) 137.05 0.89 630.69 1.98

-pa(3,2,3) 2.97 1.98 7.64 5.03

pa(1,5,7) 122.87 0.75 278.07 1.31

-pa(1,5,7) 727.6 7.07 2534.09 19.08

pa(7,5,1) 108.66 17.82 188.50 30.72

-pa(7,5,1) 74.43 2.26 340.51 5.64

pa(7,1,7) 7619.72 20.78 29140.69 35.65

-pa(7,1,7) 2.98 2.01 7.71 5.05

Table 1: Recycling in logistics domain. Legends: NR - no recycling; WR - recycling

ta(X, Y, Z) goals. All times are in CPU seconds.

According to the definition in the last section, literals that contain pa(X, Y, Z) depend on

those that contain in(X, Y ) and ta(X, Y, Z). But literals that contain in(X, Y ) and those that

contain ta(X, Y, Z) do not depend on each other. So we should compute first the abduction

of in(X, Y ) and ta(X, Y, Z). Now in(X, Y ) is solved by rule (9), ta(X, Y,X) by rule (3), and

as it turned out, whenX 6= Z, ta(X, Y, Z) is always false, and its computation is relatively

easy. For instance, for the domain with 9 locations, query ta(7, 1, 6) took only 2.6 seconds.

In comparison, query pa(7, 1, 7) took more than 7000 seconds without recycling.

Table 1 contains run time data for some representative queries.1 For comparison pur-

pose, each query is given two entries: the one under “NR” refers to regular rewriting system

without using recycling, and the one under “WR” refers to rewriting system using computed

rules about ta(X, Y, Z). As one can see, especially for hard queries like pa(7, 1, 7), recycling

in this case significantly speeds up the computation.
1Our implementation was written in Sicstus Prolog, and the experiments were done on a PIII 1GHz note-

book with 512 MB memory. For generating explanations for regular rewriting system, our implementation is

a significant improvement over the one in [12]. For instance,for a domain with 7 locations query pa(3, 2, 3)

took more than 20 minutes for the implementation reported in[12], but required less than 1 second under our

implementation running on a comparable machine.
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8 Concluding remarks and future work

We have considered the problem of how to reuse previously computed results for answering

other queries in the abductive rewriting system of Lin and You [12] for logic programs with

negation, and showed that this can indeed be done. We have also described a methodology

of using the recycling system in practice by analysing the dependency relationship among

propositions in a logic programs. We applied this methodology to the problem of computing

the effect of actions in a logistics domain, the same one considered in [12], and our exper-

imental results showed that recycling in this domain can indeed result in good performance

gain.

For future work we are looking for more domains to try our system on and to implement

a system that can automatically analyse a program and decidehow best to recycle previous

computations.
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