
Opportunities and pitfalls of multi-core scaling using

Hardware Transaction Memory∗

Zhaoguo Wang†, Hao Qian‡, Haibo Chen‡, Jinyang Li§

† School of Computer Science, Fudan University

‡ Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University

§ Department of Computer Science, New York University

Abstract

Hardware transactional memory, which holds the

promise to simplify and scale up multicore synchro-

nization, has recently become available in main stream

processors in the form of Intel’s restricted transactional

memory (RTM). Will RTM be a panacea for multi-

core scaling? This paper tries to shed some light on

this question by studying the performance scalability

of a concurrent skip list using competing synchroniza-

tion techniques, including fine-grained locking, lock-free

and RTM (using both Intel’s RTM emulator and a real

RTM machine). Our experience suggests that RTM in-

deed simplifies the implementation, however, a lot of

care must be taken to get good performance. Specif-

ically, to avoid excessive aborts due to RTM capacity

miss or conflicts, programmers should move memory al-

location/deallocation out of RTM region, tuning fallback

functions, and use compiler optimization.

1 Introduction

The increasing number of cores in a commodity machine

has made multicore scaling a grand challenge to many

software applications. To improve performance and scal-

ing, programmers have to resort to a fined-grained lock

scheme, which is often difficult to design and implement.

Furthermore, prior experiences show that even a small

∗This work was supported by China National Natural Science Foun-

dation under grant numbered 61003002.

contention on a cache line due to locking may collapse

whole application performance [4].

Hardware transactional memory (HTM) has been pro-

posed by Herlihy and Moss two decades ago to simplify

multicore synchronization with good performance [14].

Recently, Intel’s Haswell processor shipped with HTM

support, a landmark event signalling the mass availabil-

ity of HTM. Intel’s HTM mechanism, called Restricted

Transaction Memory (RTM), is a best-effort transaction

memory in two aspects. First, a transaction’s working

set must fit in the per-core private cache. Otherwise, the

transaction will be aborted. Second, a transaction is also

aborted when encountering exceptions and faults, such

as a syscall instruction or page fault.

Can Intel’s RTM simplify systems applications and

enable them to scale to many cores? This paper tries

to provide some insights on this question by studying

the performance scalability of a concurrent skiplist. We

choose skiplist [16] as it is a key data structure in many

important systems applications such as in-memory sorted

key/value stores and databases. The scalability of the

skiplist often limits the scalability of the entire database

or key-value systems. Specifically, we derive our skiplist

implementation from the one in LevelDB [3], a popular

key-value store from Google. The current implementa-

tion of LevelDB updates the skiplist serially, which be-

comes its main scalability bottleneck.

We implemented both fine-grained locking and lock-

free skiplists and our experiments on a 40-core machine

show that both can achieve scalable performance. How-

ever, the correctness reasonings for both implementa-

tions are non-trivial. By comparison, our RTM-based

skiplist is simple to implement and prove correct. How-

ever, our experiments using Intel’s official RTM emula-

tor and a 4-core Haswell machine show that a lot of care

must be taken to avoid excessive transaction aborts.

Based on our experience with scaling an RTM-based

skiplist, we make several observations and suggestions.

(1) Move memory allocation outside a transaction re-

gion. Doing so avoids page faults and system calls (e.g.,

mmap) that will abort the transaction; (2) Use well-tuned

fallback functions according to workload behavior; (3)

Employ compiler optimizations. Compiler optimizations

can significantly reduce memory accesses in a transac-

tion and result in fewer conflicts. (4) the real Haswell

processor can accomodate a larger working set for reads

than for writes, a bahavior different from Intel’s RTM

emulator.

2 Background and Related Work

Transactional Memory Transactional memory

(TM) [14] allows a group of instructions to execute in

an atomic way and be completely isolated among cores

in a multi-processor system. Here, we only consider

hardware transactional memory (HTM) as it has low

overhead and has recently been widely available in

commodity processors. HTM implementations on

real hardware have always been best-effort with no

guaranteed forward progress. Examples include Sun’s

Rock processor [5], AMD advanced synchronization

family [7], Intel transitional synchronization extensions

(TSX) [1] and IBM Blue Gene/Q [17]. Among these

proposals and implementations, the recent release of

Haswell processor with Intel TSX marks the wide

availability of HTM on the mass market.

Many have reported their experience with using HTM.

Dice et al. [11, 10] use HTM of Sun’s Rock prototype

processor to implement concurrent data structures such

as hash table and red-black tree. Others have used HTM

to build synchronization primitives such as read-writer

lock [9] and software transactional memory [8], as well

as scientific applications [6, 17].

Our work differs from prior performance studies of

HTM in two ways. First, ours is the first published study

targeting at the Intel RTM. Existing studies used differ-

ent hardware [17, 5] and their conclusions may not ap-

ply to Intel RTM due to the hardware differences. For

example, while Dice et al. [11] observed that deferred

instructions due to excessive cache misses were the ma-

jor reason of transaction aborts, our experiences with

Intel RTM show that the major reason are from capac-

ity and conflict misses. Second, existing studies focus

on compute-intensive scientific applications such as the

STAMP benchmark suite [15] or different data struc-

tures. Instead, we focus on skip list from a real world

key/value store. The asymmetric working set for read

and write in Intel RTM leads to different performance

characteristics for skip list.

Intel’s Restricted Transactional Memory. Intel’s

RTM introduces three new instructions called xbegin,

xend and xabort. The first two marks the start and end of

a transaction and the third one explicitly aborts an trans-

action. Intel’s RTM uses the private CPU caches (e.g., L1

and/or L2 caches) to track read and write set of transac-

tions. The conflict detection is handled through existing

coherence protocol and a transaction whose memory ac-

cesses exceed the capacity of the cache will be aborted.

A number of hardware and software events such as con-

text/mode switches, interrupt and I/O instructions will

cause a transaction to abort. Intel’s RTM does not guar-

antee forward progress. To ensure good performance,

programmers should optimize transactions such that they

succeed most of the time in practice. This consideration

motivates our study on opportunities and pitfalls of mul-

ticore scaling using RTM.

3 Scaling Up Skiplist

A skiplist is a probabilistic data structure commonly used

in databases and key/value stores. It is essentially a

multi-level sorted linked list, of which the bottom level

list includes all nodes and the upper levels contain ex-

press links that skip some nodes to ensure O(n) search.

An insertion first finds the location to insert and then adds

a node of random height with links to forward and back-

ward nodes.

Our performance study uses the skiplist implementa-

tion in Google’s popular key-value store LevelDB. Lev-

elDB uses skiplists to store its recently written key/values

pairs in memory before writing them back to persistent

storage. The skiplist in LevelDB treats deletion as a spe-

cial insertion operation that inserts a key with an empty

value.

3.1 Performance of Traditional Techniques

In the current LevelDB implementation, updates to the

skiplist are completely serialized, resulting in a signif-

icant scalability bottleneck. We implemented a design

with fine-grained locking [13]. In this design, we first

finds an insertion location and then lock the predeces-

sors of the location and then check if the successors have

been changed. If any successor has been changed since

the insertion, we release all locks and then retry from the

beginning. Otherwise, we insert the key/value pair and

release all locks. Both the original skiplist and our fine-

grained version are shown in Figure 1.

The fine-grained locking design requires holding all

predecessors’ locks before insertion. Thus, nodes cannot

be inserted into the same position at different levels in

the skiplist, even though doing so can be correctly done

in parallel. Our lock-free implementation [12] unleashes

such parallelism. As shown in Figure 1, the lock-free

version leverages the fact that each layer of skiplist is

2

Search

FindPosition(key):

 x ← head

 level ← MaxHeight -1

 repeat

 next ← x.next[level]

 if key > next.key then

 x ← next

 else

 preds[level] ← x

 succs[level] ← next

 if level = 0 then

 return <next, preds, succs>

 else level - -

 until false

Insert(key):

 lock()

 < x, preds , succs> ← FindPosition(key)

 height ← RandomHeight()

 n ← NewNode(key, height)

 for i = 0 to height -1 do

 n.next[i] ← preds[i].next[i]

 preds[i].next[i] ← n

 unlock()

LF-Insert(key):

 < x, preds , succs> ← FindPosition(key)

 height ← RandomHeight()

 n ← NewNode(key)

 for i = 0 to height -1 do

 repeat

 succs[i] ← preds[i].next[i]

 while key > succs[i].key do

 preds[i] ← succs[i]

 succs[i] ← preds[i].next[i]

 n.next[i] ← preds[i].next[i]

 succ ←CAS(preds[i].next[i],succs[i],n)

 if succ = succs[i] then

 break

 until false

Origin Insert Lock free

RL-Insert(key):

 height ← RandomHeight()

 n ← NewNode(key, height)

 beginTX()

 <x, preds, succs> ← FindPosition(key)

 for i = 0 to height -1 do

 succs[i] ← preds[i].next[i]

 while key > succs[i].key do

 preds[i] ← succs[i]

 succs[i] ← preds[i].next[i]

 n.next[i] ← preds[i].next[i]

 preds[i].next[i] ← n

 endTX()

RTM-Large

RS-Insert(key):

 height ← RandomHeight()

 n ← NewNode(key, height)

 <x, preds, succs> ← FindPosition(key)

 beginTX()

 for i = 0 to height -1 do

 succs[i] ← preds[i].next[i]

 while key > succs[i].key do

 preds[i] ← succs[i]

 succs[i] ← preds[i].next[i]

 n.next[i] ← preds[i].next[i]

 preds[i].next[i] ← n

 endTX()

RTM-Small

RT-Insert(key):

 height ← RandomHeight()

 n ← NewNode(key, height)

 <x, preds, succs> ← FindPosition(key)

 for i = 0 to height -1 do

 beginTX()

 succs[i] ← preds[i].next[i]

 while key > succs[i].key do

 preds[i] ← succs[i]

 succs[i] ← preds[i].next[i]

 n.next[i] ← preds[i].next[i]

 preds[i].next[i] ← n

 endTX()

RTM-Tiny

RLEST-Insert(key):

 beginTX()

 height ← RandomHeight()

 n ← NewNode(key, height)

 <x, preds, succs> ← FindPosition(key)

 for i = 0 to height -1 do

 succs[i] ← preds[i].next[i]

 while key > succs[i].key do

 preds[i] ← succs[i]

 succs[i] ← preds[i].next[i]

 n.next[i] ← preds[i].next[i]

 preds[i].next[i] ← n

 endTX()

RTM-Largest

Fine-grained Lock

LOCK-Insert(key):

 height ← RandomHeight()

 repeat

 <x, preds, succs> ←FindPosition(key)

 lockedpreds ←

 for i = 0 to height -1 do

 pred ← preds[i]

 succ ← succs[i]

 if pred lockedpredd then

 lock(pred)

 lockedpreds← lockedpreds {pred}

 valid ← (succ = pred.next[i])

 if !valid then break

 if !valid then

 for all p lockedpreds do

 unlock(p)

 continue

 n ← NewNode(key)

 for i = 0 to height -1 do

 n.next[i] ← preds[i].next[i]

 preds[i].next[i] ← n

 for all p lockedpreds do

 unlock(p)

FindPosition: Find the position of a key in the skiplist (Original version).

Origin Insert: Original skiplist insertion by using a global lock protection.

Fine-grained Lock: Concurrent skiplist insertion by using fine grained lock.

Lock-free: Non-blocking skiplist insertion by using CAS.

RTM-Largest: Include the entire write process in the TX.

RTM-Large: Move the node creation out of the TX.

RTM-Read: Read function paired with the RTM-Large.

RTM-Small: RTM version paired with the Fine-grained lock.

RTM-Large: RTM version paired with the Lock-free.

RT-Read(key):

 beginTX()

 <x, preds, succs>←FindPosition(key)

 if x.key = key then return x.value

 else return false

 endTX()

RTM-Read

Figure 1: Skiplist implementation: original, fine-grained locking, lock-free and the corresponding TM versions.

 400

 800

 1200

 1600

 2000

 1 4 8 12 16 20 24 28 32 36 40

R
u

n
T

im
e

 (
m

s
)

Thread Number

Spinlock
Fine Grain Lock

Lock Free

Figure 2: The Skiplist Performance Evaluation

an independent linked list and uses multiple layers of

lock-free linked list to construct the skiplist. However,

the lock-free version gets only a small amount of benefit

compared with the fine-grained locking version. The rea-

son is that the average height of every node is about 1.3,

and thus per layer parallelism does not get much more

benefit.

Figure 2 shows the performance of different skiplist

implementations on a 40-core machine. Our workload is-

sues a total of 1 million key/value pairs to the skiplist. As

expected, the performance of the original skiplist drops

with more cores, while the fine-grained locking and lock-

free versions scale reasonably well on the 40-core ma-

chine.

Although we are able to scale the skiplist on multicore

using traditional techniques, our experiences show that it

is usually not easy to construct correct fine-grained lock-

ing and lock-free implementations as they usually re-

quires non-trivial ordering and atomicity semantic guar-

antees. Further, our current skiplist implementation is

a simplified one without real deletion which is much

harder to guarantee and reason about correctness.

3.2 Performance of RTM with Emulator

We first study RTM-based skiplists using the official In-

tel SDE [2]. Compared to the real hardware, the SDE

can emulate many more cores for collecting statistics re-

garding transactional aborts. We use GCC-4.8.0 and the

SDE version is 5.38.0. The SDE is configured using L1

cache to track the read/write set for transactions, like that

in the real hardware [1]. The L1 cache is 32 KB and 8-

way set associativity as in a typical Intel processor. In

the default implementation, we simply retry if a transac-

tion aborts. We will discuss the situation if we acquire

a global lock upon transaction aborts in the fallback rou-

tine in next section.

3

 0.001

 0.01

 0.1

 1

 4 8 12 16 20 24 28 32 36 40

 25

 30

 35

 40

A
b
o
rt

 R
a
te

 (
#
A

b
o
rt

/#
S

u
c
c
e
s
s
)

A
c
c
e
s
s
 N

o
d
e
s
 N

u
m

b
e
r

Thread Number

10K nodes Abort Rate
100K Abort Rate

10K nodes Access Nodes
100K Access Nodes

Figure 3: The Working Set Evaluation

of Large TX

 0.0001

 0.001

 0.01

 0.1

 1

 1 4 8 12 16 20 24 28 32 36 40

A
b
o
rt

 R
a
te

 (
#
A

b
o
rt

/#
S

u
c
c
e
s
s
)

Thread Number

Large TX
Small TX

Tiny TX

Figure 4: 100K Nodes Workload

 0.001

 0.01

 0.1

 1

 1 4 8 12 16 20 24 28 32

A
b
o
rt

 R
a
te

 (
#
A

b
o
rt

/#
S

u
c
c
e
s
s
)

Thread Number

O0
O1
O2
O3

Figure 5: Different Compile Optimiza-

tion Options

The most straightforward approach is to enclose the

entire insertion process of the skiplist between xbegin

and xend, such that the RTM can ensure the atomic-

ity and isolation of multiple writers, as shown in RTM-

largest in Figure 1. For this method, there are a large

number of transaction aborts due to page faults. This

is because, creating a new node may experience a page

fault since the constructor will write the newly allocated

memory, or ultimately make a system call (e.g., mmap)

in the memory allocator to extend the heap. For a page

fault, a TX will abort and a simple retry will again cause

an abort due to faulting on the same address such that

no forward progress can be made. Similarly, retrying a

TX due to system calls will experience persistent aborts1.

To reduce transaction aborts due to page faults and sys-

tem calls, we should move the creation (and deletion) of

nodes out of the transactions, forming the skiplist im-

plementation in RTM-large in Figure 1. After this, the

transaction aborts due to page faults and system calls are

mostly eliminated.

For RTM-large, we vary the working set by increas-

ing the amount of nodes from 10K, 100K to 1M. We

also calculate the number of nodes read in a transaction

on average. As the complexity for the search operation

is O(log(n)), the working set does not increase notably

when the skiplist size increases dramatically. We mea-

sure the abort rate by dividing the number of abort op-

erations by the number of success ones. As shown in

Figure 3, the abort rate increases with both the num-

ber of cores and the workload size. Further, our evalu-

ation shows that the skiplist incurs too many transaction

aborts so that it cannot make forward progress when in-

serting 1M nodes. This is due to conflict aborts where

a TX conflicts with others due to conflict memory ac-

cesses, as well as capacity misses such that a cache line

in the read/write set will be evicted out of the L1 cache.

Both cache capacity miss and cache set conflict miss will

1As Intel’s RTM emulator is a user-level one, we currently can only

observe transaction aborts due to mmaps.

 0

 100

 200

 300

 400

 500

 600

 700

O0 O1 O2 O3

In
s
tr

u
c
ti
o

n
 n

u
m

b
e

r

Compile Option

Memory
Non-Memory

Figure 6: Instruction Generated In the TX Body

cause the cache line eviction. In this case, as the working

set of the TM region still fit into the L1 cache, the major

reason is due to the cache set conflict miss.

Though the code size for the TM region is not huge,

the working set of the TM region may be dynamic ac-

cording to the workload. When there are a large number

of threads, even a small increase in the working set can

cause large abort events. For RTM-large, when insert-

ing 1M nodes, although the working set is smaller than

L1 cache size, the application incurs extremely frequent

aborts. The abort is caused by the cache set conflict. As

the working set increases, the probability of cache set

conflict increases as well.

The main reason for the cache set conflict misses is

that many nodes in the skiplist are allocated with the

same page offset by multiple writers. Hence, when a

writer searches the skiplist, it will fetch multiple nodes

with the same page offset, which unfortunately maps to

the same cache set, where only 8 cache lines could be

held at a time. Hence, some victims are inevitably being

evicted out, causing transaction aborts.

We also conduct a simple evaluation to study how

compiler optimization affects efficiency in RTM. We

compile the application using different compile opti-

mization options. As shown in the Figure 5, our

4

skiplist implementation experiences an excessive amount

of transaction aborts and cannot execute beyond 8 cores

with “-O0”. With other compile flags, due to the sig-

nificantly reduced memory accesses, transaction aborts

reduces as well and can execute up to 32 cores. Fur-

ther, according to Figure 6, the “-O1” is with the small-

est amount of memory instructions and thus can outper-

form others options after 16 cores. This means that us-

ing compiler optimization towards less memory accesses

may benefit transactional execution.

After applying the above observations, we find that

even using a conservative way of defining transactions,

we can still get reasonably good performance with only

a few amount of transaction aborts. This indicates that

transaction memory may indeed help simply multicore

scaling with reasonable performance.

In the following, we further apply RTM to the above

fine-grained locking and lock-free versions and collect

the performance statistics. RTM-small and RTM-tiny in

Figure 1 show the corresponding code. Figure 4 shows

the performance for different algorithms when inserting

100K nodes. We can see that, the tiny TX algorithm has

lower abort rate than large TX and the small TX gets the

best performance. This again may require some efforts

as the the case of using fine-grained and lock-free efforts,

though the code is less complex and may be easier to

reason about.

3.3 Performance of RTM on Real Hard-

ware

This section describes our experiments on an Intel

Haswell 4770 CPU chip (4 core) with 32GB memory.

Comparing the real hardware with the emulator.

Haswell uses L1-cache to track read set and write set [1].

When running the application on the emulator, any evic-

tion for read or write set cache line from L1 cache will

abort the transaction. For the current hardware imple-

mentation, an eviction of write cache line will abort the

transaction. But an eviction of a read set cache line does

not always abort the transaction, because Haswell may

use an implementation-specific second-level structure to

track these lines. As a result, on our Haswell processor,

the read set is much larger than that for the write set (ap-

proximately 270KB vs. 26KB).

We also find that we can run larger workload sizes on

the hardware than those on an emulator. We use 10M

nodes as default workload size for the following eval-

uations. To evaluate the working set effect, we vary

the workload sizes from 10K to 100M. Figure 7 shows

the abort rate when running a single thread: the abort

rate increases with the workload not only because larger

working set incurs more cache line eviction that aborts

the transaction, but also because longer execution time

means more system events (etc. timer interrupt) that

abort the transaction. Figure 7 also shows the abort rate

when run two and four threads, they both have a turning

point at which there is a lowest abort rate. The reason

is because when the workload grows, although the abort

caused by cache line eviction and system event increases,

the abort event caused by shared data conflict decreases

as the size of skiplist grows.

We also evaluat the RTM-Large algorithm with dif-

ferent compiler options on the real hardware, although

workload sizes are different, we still get similar results

with those on the emulator.“O1” has the lowest abort

rate compared with other options, but O2 and O3 have

slightly better performance.

For the evaluation to compare with RTM-Small and

RTM-Tiny, the evaluation result is also similar with re-

sult on the emulator. RTM-Large has highest abort rate

for it has the largest RTM region, RTM-Large has abort

rate from 5% to 17% when run different threads, but the

RTM-Tiny’s abort rate range from 0.4% to 0.9%. We

also evaluate the execution time, it seems that although

RTM-Large has higher abort rate, it incurs only a lit-

tle performance overhead on a small number of cores

(0.35% to 4.7% compared with RTM-Tiny). To illustrate

this, we also evaluate how many CPU cycles wasted due

to transaction abort, the abort cycles range from 2.42% to

6.86% of the total execution time. This means although

RTM-Large has higher abort rate, it does not hurt the per-

formance significantly in a small scale processor.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0.01 0.1 1 10 100

A
b

o
rt

 R
a

te
 (

#
A

b
o

rt
/#

S
u

c
c
e

s
s
)

Node Number (Million)

1 thread
2 threads
4 threads

Figure 7: Abort rate of different workload on real hard-

ware

Fallback Functions When a transaction aborts, the

CPU will resume the execution from a fallback handler

specified by the xbegin instruction. The default imple-

mentation just simply retries from the xbegin instruction.

However, since the transaction may never make forward

5

 0.01

 0.1

 1

1 2 4

A
b

o
rt

 R
a

te
 (

#
A

b
o

rt
/#

S
u

c
c
e

s
s
)

Thread Number

SimplyRetry(Default)
LockWhenRetry

Smart
Smart-padding

Figure 8: Abort rate of the different fallback handler im-

plementations

 2000

 4000

 6000

 8000

 10000

 12000

1 2 4

R
u

n
 T

im
e

 (
m

s
)

Thread Number

SimplyRetry(Default)
LockWhenRetry

Smart
Smart-padding
GlobalSpinlock

Figure 9: Run time of different fallback handler imple-

mentations

progress, programmers may need to combine the usage

of RTM with a global spinlock (i.e., transactional lock

elision) to ensure forward progress. The simplest scheme

is when a transaction starts, the lock is read to check if

it has been held to put it into read set. If a transaction

aborts because the lock is acquired or other abort events

happen, it will try to acquire the lock in the fallback func-

tion immediately.

Figure 8 and Figure 9 shows the runtime and abort rate

of different fallback algorithms with the default imple-

mentation (simply retry). The figures also show the im-

plementation using a global spinlock to protect the en-

tire insertion routine. When simply acquiring a lock in

the fallback handler, it performs better than directly us-

ing a global spinlock to protect the insertion code for

one thread. The reason is that, holding a lock instead

of simply retry, avoids the abort events caused by cache

eviction or system events happened in the transaction re-

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 2 4

R
u

n
 T

im
e

 (
m

s
)

Thread Number

RTM-Large
RTM-Small

FineGrainedLock
RTM-Tiny
LockFree

Figure 10: Run time of different skiplist algorithms

gion. However, when running 2 or 4 threads, it has higher

abort rate and thus lower performance. The reason is that

a thread trying to acquire lock will abort all concurrent

transactions. In our workload, most of the time is spent

in the transaction body, as a result it incur notable waste

of CPU cycles and heavy contention.

For a single thread, the main reasons for abort are sys-

tem events and cache line eviction. For 2 or 4 threads,

the main reasons are conflicts caused by shared data ac-

cesses. To this end, we design a smart algorithm in the

fallback function to reduce abort rate. First, we classify

the abort events into conflict aborts caused by shared data

access, capacity abort caused by the internal buffer over-

flow and other aborts caused by some system events like

timer interrupt. We set independent threshold for each

abort reason and acquire the lock when a single thresh-

old is reached. The thresholds for capacity abort, conflict

abort and all remaining reasons are 4, 8 and 32 accord-

ingly, according to our tuning.

With these heuristics in the fall back function, our

evaluation confirms that the abort rate has been de-

creased. However, it still has higher abort rate than the

simply retry version. This is because the global spin-

lock shares the same cache line with other global shared

data. To avoid false conflict, we add the padding to let the

spinlock occupy a cache line exclusively. After padding,

the performance and abort rate are both similar with the

simply retry version. As the transaction execution time

is about 97% - 98% of the total time, acquiring a lock

will not only avoid the future local abort, but also aborts

in concurrently executing transactions.

Comparing with traditional techniques. We com-

pare the performance of RTM-Large with that of global

fine-grained lock and lock free implementations. Fig-

ure 10 shows that RTM-Large has comparable perfor-

mance scalability in a 4-core machine. For this case,

6

RTM can get comparable performance with the lock-free

algorithm, but it makes programming much more easier

and easy to prove the correctness.

3.4 Lessons Learned

Lessons 1: Avoiding memory allocation/deallocation in

a TM region. In practice, we should try best to avoid cre-

ating new objects in a TM region. This may avoid system

calls as well as page faults inside a TM. Further, if a TM

region may touch a memory region that may experience

page faults, it would be better to move the page fault in-

struction out of the transaction. If the instruction cannot

be moved out, it might be a good idea to pre-touch the

memory outside transactions. Otherwise, it is necessary

to touch the faulting address in the programmer-specified

fallback routine.

Lessons 2: Compiler optimization is important for

transaction execution. Code quality may significantly af-

fect the transaction execution efficiency. As all memory

accesses inside a TM region will be tracked by the pro-

cessor, using compiler optimization that reduces memory

accesses inside a TM region may reduce transactional

abort due to cache set conflict misses. For some cases,

we speculate that using a biased compile ration scheme

that trades code quality in a non-TM region for that in the

TM region may be beneficial. For example, allocating

more registers for a TM region code might be beneficial.

Lessons 3: RTM prefer read than write. Although L1

cache is used to track the read/write set. It seems a pro-

gram can read more than L1 cache in the RTM region.

A code region that has more read than write would be an

ideal case for RTM (e.g., skiplist insertion). However,

the read set is depending on the micro-architecture im-

plementation and access pattern.

Lessons 4: When using RTM for lock elision, fallback

handler should be tuned according to workload. Ac-

quire a global lock in the fallback handler will abort any

concurrent transactions and may incur heavy contention.

Instead of simply acquiring a lock, the fallback handler

should be tuned with the workload. The abort reasons,

the workload execution behavior and the performance

goal (fairness, real time, scalability) all will affect the

policy used in the fallback handler.

4 Conclusion and Future Work

This paper described our preliminary study in leveraging

the recent Intel’s restricted transactional memory (RTM)

to scale up a skiplist implementation. Our study led to

several lessons regarding RTM. In our future work, we

will validate these lessons on other concurrent data struc-

tures and apply such findings to scale up real, large appli-
cations. Further, we will study how other configurations

such as hyperthreading affect our observations.

References

[1] Intel 64 and ia-32 architectures optimiza-

tion reference manual. https://www-

ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-

ia-32-architectures-optimization-manual.pdf.

[2] Intel software development emulator.

http://software.intel.com/en-us/articles/intel-software-

development-emulator.

[3] Leveldb: A fast and lightweight key/value database library by

google. http://code.google.com/p/leveldb/, 2013.

[4] BOYD-WICKIZER, S., KAASHOEK, M. F., MORRIS, R., AND

ZELDOVICH, N. Non-scalable locks are dangerous. In Linux

Symposium (2012).

[5] CHAUDHRY, S., CYPHER, R., EKMAN, M., KARLSSON, M.,

LANDIN, A., YIP, S., ZEFFER, H., AND TREMBLAY, M. Rock:

A high-performance sparc cmt processor. Micro, IEEE 29, 2

(2009), 6–16.

[6] CHRISTIE, D., CHUNG, J.-W., DIESTELHORST, S.,

HOHMUTH, M., POHLACK, M., FETZER, C., NOWACK,

M., RIEGEL, T., FELBER, P., MARLIER, P., ET AL. Evaluation

of amd’s advanced synchronization facility within a complete

transactional memory stack. In Proc. EuroSys (2010), ACM,

pp. 27–40.

[7] CHUNG, J., YEN, L., DIESTELHORST, S., POHLACK, M.,

HOHMUTH, M., CHRISTIE, D., AND GROSSMAN, D. Asf:

Amd64 extension for lock-free data structures and transactional

memory. In Proc. MICRO (2010), IEEE, pp. 39–50.

[8] DALESSANDRO, L., CAROUGE, F., WHITE, S., LEV, Y.,

MOIR, M., SCOTT, M. L., AND SPEAR, M. F. Hybrid norec:

A case study in the effectiveness of best effort hardware transac-

tional memory. ACM SIGARCH Computer Architecture News 39,

1 (2011), 39–52.

[9] DICE, D., LEV, Y., LIU, Y., LUCHANGCO, V., AND MOIR,

M. Using hardware transactional memory to correct and simplify

and readers-writer lock algorithm. In Proceedings of the 18th

ACM SIGPLAN symposium on Principles and practice of parallel

programming (2013), pp. 261–270.

[10] DICE, D., LEV, Y., MARATHE, V. J., MOIR, M., NUSSBAUM,

D., AND OLSZEWSKI, M. Simplifying concurrent algorithms by

exploiting hardware transactional memory. In Proc. SPAA (2010),

ACM, pp. 325–334.

[11] DICE, D., LEV, Y., MOIR, M., NUSSBAUM, D., AND OL-

SZEWSKI, M. Early experience with a commercial hardware

transactional memory implementation. In Proc. ASPLOS (2009).

[12] FOMITCHEV, M., AND RUPPERT, E. Lock-free linked lists and

skip lists. In Proc. PODC (2004).

[13] HERLIHY, M., LEV, Y., LUCHANGCO, V., AND SHAVIT, N. A

provably correct scalable concurrent skip list. In Proc. Confer-

ence On Principles of Distributed Systems (OPODIS) (2006).

[14] HERLIHY, M., AND MOSS, J. E. B. Transactional memory:

Architectural support for lock-free data structures. In Proc. ISCA

(1993).

[15] MINH, C., CHUNG, J., KOZYRAKIS, C., AND OLUKOTUN,

K. STAMP: Stanford transactional applications for multi-

processing. In Proc. IISWC (2008).

[16] PUGH, W. Skip lists: a probabilistic alternative to balanced trees.

Communications of the ACM 33, 6 (1990), 668–676.

[17] WANG, A., GAUDET, M., WU, P., AMARAL, J. N., OHMACHT,

M., BARTON, C., SILVERA, R., AND MICHAEL, M. Evaluation

of blue gene/q hardware support for transactional memories. In

Proc. PACT (2012).

7

