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Cloud computing providers face the problem of matching heterogeneous customer workloads to resources that will serve them. This is

particularly challenging if customers, who are already running a job on a cluster, scale their resource usage up and down over time.

The provider therefore has to continuously decide whether she can add additional workloads to a given cluster or if doing so would

impact existing workloads’ ability to scale. Currently, this is often done using simple threshold policies to reserve large parts of each

cluster, which leads to low efficiency (i.e., low average utilization of the cluster). We propose more sophisticated policies for controlling

admission to a cluster and demonstrate that they significantly increase cluster utilization. We first introduce the cluster admission

problem and formalize it as a constrained Partially Observable Markov Decision Process (POMDP). As it is infeasible to solve the

POMDP optimally, we then systematically design admission policies that estimate moments of each workload’s distribution of future

resource usage. Via extensive simulations grounded in a trace from Microsoft Azure, we show that our admission policies lead to a

substantial improvement over the simple threshold policy. We then show that substantial further gains are possible if high-quality

information is available about arriving workloads. Based on this, we propose an information elicitation approach to incentivize users

to provide this information and simulate its effects.

1 INTRODUCTION

Cloud computing is a fast expanding market with high competition where small efficiency gains translate to multi-billion

dollar profits.
1
Like many other markets (e.g., ridesharing platforms, kidney exchanges, online labor markets, and

display advertising), the efficiency of this market relies on the performance of a matching algorithm [Ashlagi et al. 2019;

Assadi et al. 2017; Behnezhad and Reyhani 2018; Ma and Simchi-Levi 2019]. In the cloud computing case, the matching

algorithm matches incoming requests for virtual machines to the hardware that will be used to satisfy them.

Despite the importance of this matching, most cloud clusters currently run at low efficiency. In the cloud domain, low

efficiency means low average utilization of the cluster (i.e., only a relatively small fraction of resources are actually used

by customers at any given time). There are many reasons for this [Yan et al. 2016]. These include technical limitations

(such as the need to reserve capacity for node failures or maintenance), inefficiencies in scheduling procedures (especially

if virtual machines (VMs) might change size or do not use all of their requested capacity), as well as factors that are

external to the cluster (such as fluctuations in overall demand). Another important cause is the nature of many modern

workloads: highly connected tasks running on different VMs that should be run on one cluster to minimize latency and

bandwidth use [Cortez et al. 2017]. In practice, this means that different VMs from one user are bundled together into a

deployment of interdependent workload. When the workload of a user changes, his deployment can request a scale out

in the form of additional VMs or shut some of its active VMs down.

In this paper, we pay special attention to these size changes. Changing deployment sizes mean that providers face

the difficult problem of deciding to which cluster to assign a deployment, as a deployment which is small today may,

without warning, see a dramatic increase in size that must be accommodated. To get a sense of the difficulty of this

∗
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problem, consider that, over time, the number of VMs needed by a specific deployment could vary by a factor 10 or

even 100, and a request to scale out should almost always be accepted on the same cluster, as denying it would impair

the quality of the service, possibly alienating customers. Furthermore, once a deployment is running in one cluster, it

would be error prone to move it to a different cluster, making such migrations only feasible as a last resort (e.g., because

of hardware failure). Providers consequently hold large parts of each cluster as idle reserves to guarantee that only a

very low percentage of these scale out requests is ever denied, leading to relatively low average utilization.

1.1 Cluster Admission Control

We reduce the problem of determining to which cluster to assign a new deployment to the problem of determining, for

a particular cluster, whether it is safe to admit a deployment, or if doing so would risk running out of capacity if some

deployments scale [Cortez et al. 2017].While a lot of research has been done on scheduling inside the cluster [Schwarzkopf

et al. 2013; Tumanov et al. 2016; Verma et al. 2015; Zhao et al. 2016], the admission problem has not been well studied

before. Consequently, cloud providers are often still using simple policies like rejecting all new deployments once a

cluster passes a fixed utilization threshold, effectively reserving a percentage of the cluster only for scale-outs.These may

seem reasonable at first glance, as the law of large numbers might seem to suggest that with many jobs in a large cluster

the current utilization would be a good guide to future utilization. But as Cortez et al. (2017) have shown, a relatively

small number of deployments account for most of the utilization. This suggests that the types of deployments (i.e.,

small/large, fast/slow scaling, short/long lived etc.) currently in a cluster have a larger impact on the failure probability

than is apparent, and policies that only take the current utilization into account are suboptimal.

1.2 Overview of Contributions

We formalize the cluster admission problem as a constrained Partially Observable Markov Decision Process (POMDP)

[Smallwood and Sondik 1973] where each deployment behaves according to some stochastic process and the cluster tries

to maximize the number of active compute cores without exceeding its capacity. Since the exact stochastic processes of

individual arriving deployments are not known to the cluster, it has to reason about the observed behavior. The large

scale of the problem as well as the highly complicated underlying stochastic processes make finding optimal policies

infeasible, even for the underlying (fully observable) Markov Decision Process and with limited look-ahead horizon.

Since optimally solving this POMDP is not feasible, we next propose a strategy for constructing heuristic policies via

a series of simplifying assumptions. These assumptions reduce the highly branching look-ahead space down to the

approximation of a random variable using its moments. We then present the currently used threshold policy that does

not take probabilistic information into account as well as two new policies that take successively higher moments into

account. We fit our model to data from a real-world cloud computing center (Microsoft Azure internal jobs [Cortez et al.

2017]) and, via simulations, show that our higher moment policies produce a 30% improvement over current practice,

which would translate to hundreds of millions of dollars a year in savings for large cloud providers.

In our basic model, relatively little is known about arriving deployments, so the performance gains we observe

from our more sophisticated policies are driven by being able to better condition admission decisions on the current

state of the cluster. We next examine how the utilization of the cluster can be further increased if more precise prior

information about arriving deployments is available. Prior work has explored similar opportunities in the context of

resource planning and scheduling in analytics clusters [Jyothi et al. 2016; Rajan et al. 2016]. To study the value of prior

information, we introduce a simple framework which captures a notion of the quality of information available. Through
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additional simulations, we quantify how our policies benefit from this additional information. Depending on the quality

of information available, the resulting gains increase to 50% − 65% relative to current practice.

Finally, given the importance of the quality of this information, we design a new information elicitation mechanism,

with the goal of simultaneously improving the cluster’s utilization as well as the customers’ utility. This requires

care to find a design that allows meaningful information to be elicited in an incentive compatible way while being

simple for customers to use. To this end, we propose that rather than explicitly asking users to describe the behavior

of their deployments, cloud providers instead provide them with the opportunity to group their deployments into

customer-defined categories with similar characteristics. The cloud provider can then set a small portion of the fee for a

deployment using a pricing rule based on the variance of resource demands of deployments in a category. We show

that such variance-based pricing provides users with the right incentives to (a) label their deployments properly (into,

e.g., high and low variance deployments) and (b) structure their workloads in a way that helps the cluster run more

efficiently. We provide additional simulations to quantify the benefits of an accurate labeling.

In practice, the magnitude of the gains from our approach will depend on many details our simulations elide. However,

we believe that our simulations provide a persuasive case that (a) there are substantial economic gains available from

using our new admission policies for the process of matching deployments to clusters and (b) there are substantial further

improvements possible by using our information elicitation approach to elicit relevant information from customers.

While our work focuses on a specific problem faced by cloud providers, our overall approach is fundamentally about

managing the tail risks of a stochastic process. In our case, these are the rare events where the cluster runs out of

capacity. Thus, our approach may also be of interest in other domains where the management of tail risks is important,

for example in finance.

1.3 Related work

There is a large literature on cluster scheduling and load balancing [Schwarzkopf et al. 2013; Tumanov et al. 2016; Verma

et al. 2015; Wolke et al. 2015]. In addition, some work addresses a different notion of admission control to a cluster,

namely how to manage queues for workloads which will ultimately be deployed to that cluster [Delimitrou et al. 2013].

In our work, however, while studying which deployments to admit to a cluster, we abstract away from the question

of exactly which resources should be used, so our research is orthogonal to this prior work on scheduling and load

balancing.

There is also a literature that views scheduling through the lens of stochastic online bin packing [Cohen et al. 2019;

Song et al. 2014]. This literature also deals with issues of changing workloads on possibly overcommitted resources.

However, the models in these papers operate at smaller scales and shorter time horizons. At these scales, the key

phenomena we study are not present.

One of the core characteristics of the cluster admission problem is that the arrival of a new deployment into the

cluster causes an increase in scale-outs in the future (i.e., until the deployment dies). This effect of “work creating

more work” is also broadly reminiscent of mutually-exciting (Hawkes) processes (see [Hawkes 2018] for a recent

survey). These have also been studied in the context of queuing systems [Daw and Pender 2018], though there are

some important differences (e.g., in our problem only accepted deployments cause scale outs and the rate of additional

scale-outs varies greatly for different types of deployments).

There is a large literature on market design challenges in the context of the cloud [Kash and Key 2016]. Existing work

has studied both queueing models where decisions are made online with no consideration of the future [Abhishek et al.

2012; Dierks and Seuken 2019] and reservation models which assume very strong information about the future [Azar
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et al. 2015; Babaioff et al. 2017]. Our work sits in an interesting intermediate position where users may have rough

information about the types of their deployments. Furthermore, this literature focuses on using prices to determine

which jobs should be served and which should not. While our problem is similarly about accepting or rejecting

deployments, we do not want to ration through price discrimination. This is because (nearly) every request is ultimately

served by the cloud computing provider and whether it goes into this or another cluster is of little consequence for the

user.

Other market design work has looked at how multidimensional resources can be fairly divided among deployments.

For example, Dominant Resource Fairness [Ghodsi et al. 2011] is an approach that has proven useful in practice [Hindman

et al. 2011] and has inspired follow-up work more broadly in the literature on fair division [Dolev et al. 2012; Gutman

and Nisan 2012; Kash et al. 2014; Parkes et al. 2015]. In our work, we assume that compute cores are the resource

bottleneck and we do not model multi-dimensional resource requirements. Therefore, the considerations studied in the

above papers are not present in our work.

Solving POMDPs is a well-studied problem [Roy et al. 2005; Russell and Norvig 2016; Smith and Simmons 2005].

Unfortunately, finding an optimal policy is known to be PSPACE-complete even for finite-horizon problems [Papadim-

itriou and Tsitsiklis 1987]. Even finding ϵ-optimal policies is NP-hard for any fixed ϵ [Lusena et al. 2001]. In our case,

the problem is further exacerbated by the existence of side constraints. Constrained POMDPS are far less well studied

than unconstrained POMDPS. General (approximation) strategies proposed in the past include linear programming

[Poupart et al. 2015; Walraven and Spaan 2018], point-based value iteration [Kim et al. 2011], a mix of online-look

ahead and offline risk evaluation [Undurti and How 2010], and forward search with pruning [Santana et al. 2016]. None

of these approaches is efficiently applicable when the state space of the underlying MDP is large or, as in our case,

partly continuous. Khonji et al. (2019) recently proposed a fully polynomial time approximation scheme (FPTAS) for

constant horizon constrained POMDPs. While their algorithm is polynomial in the size of the observation and action

spaces, it is exponential in the number of time steps. This makes it not applicable in domains with long time horizons

like cluster admission control. While some work has addressed continuous state space POMDPs [Brooks et al. 2006;

Duff and Barto 2002; Porta et al. 2006], none of this prior work is directly applicable to a constrained problem of the

size we study in this paper.

2 PRELIMINARIES

In this section, we formally model the cluster admission problem and then introduce a POMDP formulation to solve the

provider’s control problem.

2.1 Formal Model

We consider a single cluster in a cloud computing center. A cluster consists of c cores that are available to perform work,

also called the cluster’s capacity. These cores are used by deployments, i.e., interdependent workloads that use one or

more cores. The set of deployments currently in the cluster is denoted by X , and each deployment x ∈ X is assigned a

number of cores Cx
. Any core that is assigned to a deployment is called active, while the remainder are called inactive.2

We do not model the exact placement of cores inside the cluster and in consequence we also do not model the grouping

of cores into VMs.

2
We assume that inactive cores can become active at any time. This means that features such as hardware failure or capacity reserved for maintenance

are not modeled. This is a reasonable simplification, as they do not significantly affect the relative utilization of policies.
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A deployment can request to scale out, i.e., increase its number of active cores. Each such request is for one or more

additional cores and must be accepted whenever activating the requested number of cores would not make the cluster

run over capacity. Following current practice, scale out requests must be granted entirely or not at all. Deployments

may shut down some of their cores over time and these cores then become inactive. A deployment dies when its number

of active cores becomes zero. This can happen in two ways. First, it can die by successively shutting down one core

after another until reaching zero active cores. Second, it can die spontaneously by shutting down all of its cores at once;

intuitively this models a decision by a user to kill the deployment.
3

A deployment x is described by 4 deployment parameters (Cx , µx , λx ,σx ). We have already introduced the size of a

deployment Cx
. The remaining three parameters are drawn independently from population-wide distributions with

PDFs fλ , fµ , fσ . We now explain how these parameters govern the behavior of the deployment.

At a high level, we assume that the deployments are memoryless (i.e., the basic processes governing a deployment’s

behavior only depend on the current state, which results in all processes following Poisson/exponential distributions).

This is common in the literature whenever arrival and departure processes are modelled (e.g., in queuing theory), and

has been used in previous models of cloud computing [Abhishek et al. 2012; Dierks and Seuken 2019]. Memorylessness

is reasonable at cloud scale and simplifies some calculations, but it is not essential for our approach and policies.

Specifically, we assume that each core’s lifetime is distributed according to an exponential distribution with parameter

µx . The maximum lifetime of a deployment (i.e., the time between arrival and it spontaneously shutting down all

of its remaining cores) is distributed according to an exponential distribution with parameter ∆µx , where ∆ is a

(population-wide) multiplicative factor. This effectively leads to an average maximum lifetime for the deployment of

1

∆ average core lifetimes. The number of scale outs per time unit for the deployment x is distributed according to a

Poisson distribution with rate parameter λx µ
ν
x , where ν is a population-wide parameter. This form of the rate parameter

captures the empirical fact that deployments with longer-lived cores scale slower than those with short lived cores.

The size of a scale out is distributed according to one plus a Poisson distribution with parameter σx . While this is an

approximation on an individual level (VM sizes usually come in powers of 2), it is reasonable at the level of a cluster.

New deployment requests arrive over time and are accepted or rejected according to an admission policy.4 The policy

must limit the admission of new deployments to ensure that the cluster is not forced to reject a higher percentage

of scale out requests than is specified by an internal service level agreement (SLA) τ .5 If a scale out request cannot be

accepted because the cluster is already at capacity, one failure for the purpose of meeting the SLA is logged. An optimal

policy therefore maximizes the utilization of the cluster, i.e., the average number of active cores, while making sure the

SLA is observed in expectation.

2.2 The Provider’s Control Problem: POMDP Formulation

The problem the provider is facing when deciding whether to admit a deployment is that the decision must be made

under uncertainty regarding future arrivals and the future behavior of deployments. In addition, the provider cannot

directly observe the parameters of each deployment’s processes. To understand how a provider can find a policy given

this uncertainty, we model the problem as a Partially Observable Markov Decision Process (POMDP)(S,A,R,T,Ω,O)
whose policy is constrained to meet the SLA τ .

3
We model death as permanent because with no active cores any future request could be assigned to a different cluster.

4
A rejected deployment is only rejected from this cluster, not from the cloud computing center as a whole. While outside of our model, in practice it then

simply gets sent to the next cluster.

5
This is a cluster-level SLA and not a deployment-level SLA, as in practice, the probability of tail-events such as scale out failures cannot feasibly be

evaluated for a single deployment.
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For the POMDP formulation, we assume that time is discrete
6
and that the problem has a finite time horizon

7

denoted N. The state space, denoted S, describes the space of all possible states of the cluster. A state s ∈ S contains all
information about the cluster’s active deployments X (s) (including, for each deployment x both its current size Cx

and its scaling process parameters λx , µx and σx ) as well as the deployments that arrived during the current time step.

The action set A consists of individually accepting or rejecting each of the deployments that arrived this time step.

The reward function R(s) = ∑
x ∈X (s)C

x
is the number of active cores in a state s . The transition probability function

is denoted T(s ′ |s,a)∀s ′s ∈ S,∀a ∈ A. Given a state of the cluster and admission decisions, this function captures the

distribution over scale outs, core deaths, and arrivals of new deployments that occur during the next time step. Ω is

the set of possible observations and O : Ω × S→ [0, 1] an observation model. In our case, the observation model O is

deterministic, but many states share the same observation. For state s , we always observe ω ∈ Ω equal to the sizes of all

deployments that are in the cluster and those that arrived with the last state transition.

As is standard, we further denote the cluster’s current knowledge about which state s it is in via a belief state b ∈ B,
i.e., a probability distribution over states. Specifically, a belief state b specifies, for each deployment x that is in the

cluster or arrived with the last state transition, its current size Cx
and (posterior) distributions f xλ , f

x
µ , f

x
σ over its

scaling process parameters. For a given x , we let x̃ = (Cx , f xλ , f
x
µ , f

x
σ ), i.e., the provider’s belief about the deployment x .

A policy π can now be defined as a mapping from belief states to actions.

Whenever the cluster obtains a new observation ω ∈ Ω in time step n + 1, the belief state is updated according to the

observation and transition models, i.e.,

bn+1(s ′ |bn ,a,ω) ∝ O(ω |s ′)
∑
s
T(s ′ |s,a)bn (s). (1)

Given this, we can now define two auxiliary functions. We let дn,π ,b denote the probability density function of the

distribution over the states sn and belief states bn of the system n time steps in the future, given policy π and starting

belief b. Furthermore, we let h(sn ,π (bn )) denote the expected percentage of scale-outs that fail with the next state

transition from a given state-action pair. We can now formulate the provider’s control problem as finding an optimal

policy given an SLA.

Problem 1 (Cluster Admission Problem). The cluster admission problem is to find an optimal policy π for the

POMDP (S,A,R,T,Ω,O) subject to the following two constraints:∫
(sn,bn )

дn,π ,b (sn ,bn )h(sn ,π (bn ))d(sn ,bn ) ≤ τ ∀ safe b ∀0 ≤ n < N (2)

π (b) = reject all arrivals ∀ unsafe b (3)

Here, we call belief state b safe if the policy π0 which always rejects newly arriving deployments satisfies∫
(sn,bn )

дn,π0,b (sn ,bn )h(sn ,π0(bn ))d(sn ,bn ) ≤ τ ∀0 ≤ n < N (4)

and unsafe otherwise.

Intuitively, we would like our SLA constraint (2) to hold in every belief state. However, even if we follow an optimal

policy, we can reach belief states where (in retrospect) too many deployments have been admitted, such that, even if no

new deployments are admitted ever again, the constraint (2) would be violated. Thus, if we would require Equation (2)

6
While deployments can arrive at arbitrary times, it takes time to make the acceptance decision. Thus, there is little loss in discretizing time.

7
Our approach works for any choice of horizon (or even an infinite horizon with average or discounted rewards).
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to hold in all belief states, we would have an infeasible problem. To address this, we do not enforce Equation (2) in

unsafe belief states (as defined in Problem 1). We instead require the policy to reject all arriving deployments until it

reaches a safe belief state.8

Note that the current time step is not referenced in Equation (2) or (4). This is intentional to avoid horizon effects: a

cluster should not aggressively start to accept new deployments close to the end of its lifetime.

3 A TRACTABLE PROBLEM FORMULATION

Optimal policies for the cluster admission problem (i.e., Problem 1) cannot be calculated in practice for three reasons.

First, there is no simple closed form for the state transition probabilities. Second, the state space of the the POMDP is

very large: consider a cluster with 20,000 cores. It usually has hundreds of deployments, each described by 4 parameters,

some of which are continuous. Even discretized, this results in a state space exponential in the size of the cluster. Third,

even disregarding unlikely state transitions, the branching factor is large. This renders standard methods that rely on

optimizing limited lookaheads infeasible. Therefore, we now present three carefully chosen simplifying assumptions

under which we characterize an optimal policy. In Section 4, we use this characterization to design practical admission

control policies.

Assumption 1 (No Future Arrivals). No further deployments arrive after the current timestep.

This assumption ensures that a policy does not reject deployments simply because better behaved deployments might

arrive in the future. In the cloud domain, this behavior is desirable, as even customers with high demand variability

must be served by some cluster in the data center.

Assumption 2 (Relaxed Capacity Constraints). Deployments can scale out even if doing so exceeds the cluster

capacity c . For the purpose of defining h, a scale out is considered to fail only if the cluster has already exceeded its capacity.

With no future arrivals, the cluster’s future state only depends on how the sizes of the currently active deployments

change. However, if a cluster is full, further scale out requests by deployments are denied, introducing correlations

between the future sizes of different deployments. Assumption 2 removes this correlation. In particular, let Lxn denote

the random variable that is the number of active cores of deployment x in time step n. With the first two assumptions,

Lxn is independent of Lx
′

n′ for all x , x ′ and all n,n′. The same holds for the random variable Lx̃n for the provider’s belief.

This is reasonable because the cluster being full should be rare if the SLA is being met.

Assumption 3 (At Most one Event per Timestep). In any timestep, at most one event occurs (i.e., at most one

deployment scales out, shuts down cores, or arrives to the cluster).

Since the probability that more than one event occurs in a single time step approaches zero with increased granularity

of the time discretization, it is reasonable to assume this.

Using these three assumptions, we can now simplify the problem of determining when the SLA constraint is met.

Recall that x̃ = (Cx , f xλ , f
x
µ , f

x
σ ) specifies the provider’s belief over a deployment x . In the following, we denote by

Aπ (b) the set of beliefs x̃ over the active deployments in belief state b and the deployments that are accepted with

policy π in belief state b.

8
The requirement to reject all deployments is a design decision we revisit in Section 6.
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Proposition 3.1. For all policies π , under Assumptions 1, 2 and 3, the following holds:∫
(sn,bn )

дn,π ,b (sn ,bn )h(sn ,π (bn ))d(sn ,bn ) = Pr (
∑

x̃ ∈Aπ (b)
Lx̃n > c) ∀b ∀0 ≤ n < N . (5)

Proof. To see the that Equation (5) holds, note the following: By Assumption 1, it suffices to consider only the

deployments that are currently in the cluster or arrive in the current time step, i.e., x̃ ∈ Aπ (b). By Assumption 3, at most

one scale out can fail per time step. Thus the left hand side of Equation (5) captures the following: if a scale out occurs

in time step n, what is the probability that it fails. By Assumption 2, a scale out fails exactly when

∑
x̃ ∈Aπ (b) L

x̃
n > c . □

Using this result, it is straightforward to characterize an optimal policy for the simplified problem.

Corollary 3.2. Under Assumptions 1, 2 and 3, an optimal policy π accepts an arriving deployment in belief state b if

and only if

Pr (
∑

x̃ ∈Aπ (b)
Lx̃n > c) ≤ τ ∀0 ≤ n < N . (6)

Proof. By Assumption 3, it suffices to consider one arrival. By Assumption 1, if an arrival could be accepted without

violating the constraint, doing so is optimal. By Proposition 3.1, the constraint is equal to Inequality (6). □

Proposition 3.1 and Corollary 3.2 show that to implement an optimal policy for the simplified problem it suffices to

evaluate the probability that a sum of independent random variables exceeds a threshold. The remaining question now

is how to compute or approximate this probability for our complex processes fast enough to allow rapid responses to

customer requests.

4 DESIGNING NEW ADMISSION CONTROL POLICIES

In this section, we first define the complex random variables Lx̃n in terms of simpler random variables that directly arise

from the processes. The essence of our approach is to take this definition of Ln and use it to compute approximate

moments of Ln (i.e., approximate summary statistics of the behavior of the random variable). We then use these

approximate moments to design new policies.

We can describe Lx̃n using the following random variables (which have a superscript x̃ which we generally omit for

brevity):

• C is the variable denoting the number of active cores at time step 0.

• Yi is the random variable denoting the number of scale outs that occur between time step i − 1 and time step i ,

assuming the deployment has not died.

• Si,l is the size the l ’th scale out request would have, assuming at least l scale out requests occur between time

step i − 1 and time step i .

• Zn,i,k is the binary random variable denoting whether the k’th core activated between time steps i − 1 and i

would still be active in time step n, assuming at least k cores were activated and the deployment has not died.

For i = 0, this instead refers to whether the k’th core that is active at timestep 0 is still active at time step n.

• Di is the random variable which is 1 if x would not have died due to a lack of active cores before time step i . It

can be defined recursively as

Di = Di−1(1 − ΠCk=1(1 − Zi,0,k )Πi−1
j=1Π

∑Yi
l=0 Si,l

k=1 (1 − Zi, j,k )) (7)

D1 = 1 − ΠCk=1(1 − Z
1,0,k ) (8)
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• Bn is the random variable denoting the number of cores that were active at time step 0 and are still active in

time step n, which can be calculated as

Bn =

C∑
k=1

Zn,0,k . (9)

• Qn is the random variable denoting the number of cores activated between time step 0 and time step n that are

still active assuming no service termination, i.e.

Qn =

n∑
i=1

∑Yi
l=0 Si,l∑
k=1

Zn,i,k . (10)

• Mi is the random variable which is 1 if the maximum lifetime of the deployment is at least i and 0 otherwise.

• Finally, Ln can be calculated as Ln = MnDn (Qn + Bn ).

We now turn to the design of our approximate policies.

4.1 Baseline (Zeroth Moment Policy )

Before introducing our new policies, we state the baseline admission control policy that is widely used in practice. It is

a myopic policy that simply compares the current number of active cores to a threshold. This policy does not use any

information about the set of deployments besides the total number of active cores. It can be we viewed as a degenerate

case of our approach, as it does not take any probabilistic information about the random variables into account. We

therefore also call it a Zeroth Moment Policy. Because it uses a limited amount of information, it must be conservative in

how many deployments it accepts, since it does not know how often or fast they will scale out.

Definition 4.1 (Zeroth Moment Policy (Baseline)). Under a zeroth moment policy π with threshold t , a newly arriving

deployment is accepted if, after accepting the deployment, there would be less than t cores active.

4.2 First Moment Policy

Our first policy approximates the probability of scale out failures (i.e., Equation (5)) by utilizing the first moments, i.e.

the expected value of the deployment processes. By Markovs’s Inequality, for a non-negative random variable L and

c ≥ 0, it holds that

Pr (L ≥ c) ≤ E[L]
c
. (11)

Such a policy that utilizes Markov’s Inequality therefore rejects an arriving deployment when the expected utilization

lies above a chosen threshold and otherwise accept.

Definition 4.2 (First Moment Policy). Under a first moment policy π with threshold t , a newly arriving deployment in

belief state b is accepted if, after accepting the deployment, the expected number of active cores would be less than t in

all future time steps, i.e. ∑
x̃ ∈Aπ (b)

E[Lx̃n ] ≤ t ∀0 ≤ n < N , (12)

where E[Lx̃n ] is approximated, for example using the approach described in Proposition 4.3.
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Proposition 4.3. Assuming all Mn , Di , Qn , and Bn are uncorrelated and Zi, j,k , Yi , and Si,l are uncorrelated as
constituents of Di , it holds:

E[Ln ] = E[Mn ]E[Dn ](E[Qn ] + E[Bn ]) (13)

E[Qn ] =

n∑
i=1

E[E[Y1 |λ, µ]E[S1,1 |σ ]E[Zn,i,1 |µ]] (14)

E[Bn ] = CE[Zn,i,k ] (15)

E[Di ] ≤ E[Di−1](1 − (1 − E[Zi,0,1])(C )Πi−1j=1(1 − E[Zi, j,1])E[Y1]E[S1,1]) (16)

E[D1] = (1 − (1 − E[Z1,0,1])(C )) (17)

The proof is provided in Appendix A. It works by direct calculation and applying Jensen’s Inequality to Di . While

ignoring some correlations introduces a nontrivial error into the approximation, this is done to ensure that the

expectation can be evaluated in linear time. Additionally, the tail bounds from Markov’s Inequality are relatively

loose. This makes it necessary to calibrate t , as simply setting t = τc would yield excessively conservative policies.

Nevertheless, as we will see in Section 5, this approximation still carries enough information for our policies to work

well once tuned.
9

4.3 Second Moment Policy

First moment policies do not take much information about the structure of deployments into account. In a sense they

have to always assume the worst possible population mix and run the risk of accepting deployments with low expected

size but high variance when close to the threshold. One way around this is to also take the second moment, i.e., the

variance of Ln , into account. To address this, we propose to use Cantelli’s inequality, a single-tailed generalization

of Chebyshev’s inequality, to approximate the probability of scale out failures (i.e., Equality (5)). Cantelli’s inequality

states that, for a real-valued random variable L and ϵ ≥ 0, it holds that

Pr (L − E[L] ≥ ϵ) ≤ Var [L]
Var [L] + ϵ2

. (18)

If we now set ϵ = (c − ∑
x ∈X E[Lxn ]), we obtain a bound for the probability of running over capacity that takes more

information into account than a first moment policy.

Definition 4.4 (SecondMoment Policy). Under a secondmoment policy π with threshold ρ, a newly arriving deployment

in belief state b is accepted if, after accepting the deployment, the estimated probability of running over capacity would

be less than ρ in all further time steps, i.e. ∑
x̃ ∈Aπ (b)

E[Lx̃n ] ≤c ∀0 ≤ n < N (19)

∑
x̃ ∈Aπ (b)Var [L

x̃
n ]∑

x̃ ∈Aπ (b)Var [L
x̃
n ] + (c −

∑
x̃ ∈Aπ (b) E[L

x̃
n ])2

≤ρ ∀0 ≤ n < N (20)

where E[Lx̃n ] is approximated using the approach described in Proposition 4.3 and Var [Lx̃n ] is approximated using the

approach described in Proposition 4.5.

9
Similar observations have been made in the literature on the use of effective bandwidth for admission control in queueing settings [Berger and Whitt

1998; Kelly 1991].
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Proposition 4.5. Assuming allMn , Di , Qn , and Bn are uncorrelated, it holds:

V [Ln ] = E[Mn ]2V [Dn (Qn + Bn )] +V [Mn ]E[Dn (Qn + Bn )]2 (21)

+V [Mn ]V [Dn (Qn + Bn )] (22)

V [Dn (Qn + Bn )] = E[Dn ]2(V [Qn ] +V [Bn ]) + (E[Qn ] + E[Bn ])2V [Dn ] (23)

+V [Dn ](V [Qn ] +V [Bn ]) (24)

V [Qn ] = E[V [Qn |λ,σ , µ]] +V [E[Qn |λ,σ , µ]] (25)

V [Qn |λ,σ , µ] =

n∑
i=1

((
V [Yi |λ, µ]E[Si,l |σ ]2 +E[Yi |λ, µ]V [Si,l |σ ]

)
E[Zn,i,1 |µ]2 (26)

+E[Yi |λ, µ]E[Si,l |σ ]V [Zn,i,1 |µ]
)

(27)

V [Bn ] = CE[V [Zn,i,k |µ]] +C2V [E[Zn,i,k |µ]] (28)

V [Dn ] = E[Dn ] − E[Dn ]2 (29)

The proof is provided in Appendix A. It works by direct calculation. Note that, since the expectation is approximated

as given in Proposition 4.3, V [Dn ] carries over any approximation errors from E[Dn ]. As with first moment policies,

the bound given by the inequality is again not tight enough to simply set it to ρ = τ and ρ has to be tuned.

Computational overhead. The computational overhead of the second moment policy depends on the number of future

time steps it evaluates and the chosen prior distributions for the provider’s belief state. As long as well-behaved priors

are used (e.g., the Gamma priors we use in our simulations), each single rule application is fast. For such priors, updating

the estimate for the second moment policy for a single deployment can be done in O(n) where n is the number of

evaluated time steps. Whenever a new deployment arrives, the estimate is updated for every active deployment. This

leads to a worst case runtime of O(|X |n) where |X | ≤ c is the number of active deployments. For multiple clusters

this is fully parallelizable at the cluster level because each cluster has its own policy evaluation. Updating the prior

of a deployment during runtime has negligible complexity (O(1)). A cloud computing center consisting of clusters of

capacity c with an arrival rate of L new deployment requests per hour therefore has a computation overhead of at most

O(Lcn) each hour, parallelizable into jobs of size O(n).10 This means that even relatively large look-ahead horizons n

can easily be implemented in practice.

5 EMPIRICAL EVALUATION

In this section, we evaluate the performance of our admission policies using a model fitted to the real-world data trace

of Cortez et al. (2017).

5.1 Data Trace and Fitted Model

Cortez et al. (2017) published a data trace consisting of all deployments that populated a Microsoft Azure datacenter in

one month. Since the data set is of limited size and only covers one month, we cannot directly evaluate the policies on

the historical deployments. One month is too short to fully evaluate cluster admission policies as many effects only

show up after months of usage. Instead, we fit processes to the data we do have, to simulate longer time periods (3

years, in our simulations). We defer evaluations against real deployments to future work.

10
If further ML is (optionally) employed to obtain an individual prior for arriving deployments (as discussed in Section 6), that computation time would

need to be added and depends on the algorithm in question.
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Priors

µ ≈ Gamma(0.3107, 0.5778)
λ ≈ Gamma(0.4907, 0.4496)
σ ≈ Gamma(0.2616, 0.0552)

Global Parameters

∆ = 0.119

ν = 0.673

Table 1. Fitted processes

Policy Threshold Utilization
Zeroth Moment t = 8, 864 50.45% (48.2, 52.7)

First Moment t = 14, 223 66.19% (63.41, 68.94)

Second Moment ρ = 0.112 67.32% (64.35, 70.26)
Table 2. Simulation results showing the performance of the three policies. 95% bootstrap confidence intervals are shown in parentheses.

An in-depth discussion of our fitting procedure can be found in Appendix B. The resulting model utilizes Gamma

priors, which are a very general distribution (containing the Chi-squared, Erlang and Exponential distributions as

special cases) and fit the data well. The fitted parameters are shown in Table 1. The moment approximation resulting

from combining Propositions 4.3 and 4.5 with these priors is given in Appendix C. In the following we present the

results of our simulations.

5.2 Simulation Setup

We simulate clusters with capacity c = 20, 000 for a 3-year period with all three policies. An average of 1 new deployment

per hour arrives according to a Poisson process. The parameters of each arriving deployment are drawn from the fitted

distributions presented in Table 1. We tune the threshold for each policy via binary search, subject to meeting an SLA

of 0.01%.11 We verify that the SLA is satisfied on average (over runs and months).

Evaluating our first and second moment policies with a three year time horizon and fine-grained time steps is fast

enough to be done in real time. However, doing so would take too much computation power to simulate the thousands

of years of cluster operation required for our experiments. Therefore, we use the following approach to simulate clusters

with a three-year lifespan with a reasonable number of core-hours. We divide the first and second moment policies into

5 subpolicies and only accept a deployment if all subpolicies accept it. The subpolicies have increasingly fine-grained

time steps, but each only evaluates a limited look-ahead horizon: 3 years, 1 year, 1 month, 1 week, and 24 hours. Each

subpolicy discretizes its time into 600 timesteps. We performed 500 runs and report the average utilization across all

runs. Since failures to scale out are focused in the tail of the runs (e.g., with the tuned zeroth moment parameter only

about 1% of runs contain any failures), we employ importance sampling to obtain sufficient samples from the tail to

guarantee SLA satisfaction with high confidence. Details about the importance sampling can be found in Appendix D.

To avoid misestimating confidence intervals with biased data, we report 95% bias-corrected and accelerated bootstrap

confidence intervals (following [Efron 1987], 100000 re-samples) instead of standard errors.

11
This SLA is somewhat stricter than is typically used in practice, which helps counterbalance our model abstracting away complexities such as

fragmentation and node failure.
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5.3 Results

Wenow compare the utilization of our policies to the industry baseline zerothmoment policy. The results are summarized

in Table 2. The zeroth moment policy obtains its best result with a threshold of t = 8, 864, i.e., new deployments are

accepted whenever less than 8, 864 would be active in case of acceptance. This results in an average utilization of 50.45%

over the lifetime of the cluster. The first moment policy with threshold t = 14, 223 increases the utilization by 15.74

percentage points to 66.19%. This constitutes a relative increase in utilization of 31.2% over the zeroth moment policy.

Similarly, the second moment policy with threshold ρ = 0.112 achieves a utilization of 67.32%, a relative improvement

of 33.44%.

At first sight, it may be surprising that the first and second moment policies achieve similar utilization. However,

this can be explained as follows. Under both policies, the overwhelming number of simulated clusters never reject a

scale out request. However, in a few runs, too many large, long-lived deployments are accepted in the beginning of

a cluster’s lifetime. This leads to many rejections months or even years in the future. Since this happens early in a

cluster’s lifetime when not much is known about deployments, the difference between the first and second moment

policies is relatively small. This highlights the value of obtaining additional (probabilistic) information about arriving

deployments. We study this in the next section.

6 THE VALUE OF DEPLOYMENT-SPECIFIC PRIORS

So far, we have assumed that the cluster does not have any information about arriving deployments, except for the

initial number of cores. The acceptance decision therefore had to primarily depend on the state of the deployments that

are already in the cluster.

Intuitively, a policy could more precisely control whether accepting a deployment would risk violating the SLA if the

policy had more information about the future behavior of the specific deployment. One way to obtain such information

would be to use machine learning (ML) based on features of the arriving deployment and past deployment patterns of

the submitting user [Cortez et al. 2017]. While evaluating particular ML algorithms is beyond the scope of this paper,

we evaluate the effect that different levels of available information have. To do this, we need to parameterize the level

of knowledge. For this we assume that the cluster simply gets passed some number of observations from each true

scaling process distribution of each arriving deployment.
12

6.1 Improving the Handling of Short-lived Deployments

Our moment policies as defined so far cannot yet make optimal use of this additional prior information. While an

optimal policy with good prior information would balance the admission of long-lived and short-lived deployments

to keep the utilization more stable over time, the moment policies always accept new deployments on a first-come

first-served basis until their constraints are violated. This means that if many very long-lived, slow-scaling deployments

arrive in the beginning, the cluster sometimes quickly reaches unsafe belief states in which it stops accepting any new

deployments, but for which the critical event lies months or even years in the future. While stopping the admission of

new deployments in such a situation is reasonable when no prior information about arriving deployments is available,

with prior information the policy might know that some arriving deployments will almost surely be dead by the time

the cluster has filled up. To make use of this, we now present a heuristic modification of our moment policies such that

the resulting policy is allowed to accept deployments that only have a marginal impact on the possible SLA violation,

12
As we have used conjugate prior distributions in our model, this approach matches the standard interpretation of parameters of the posterior distribution

in terms of “pseudo observations.”
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even in unsafe states. As a simple condition for this, we call a deployment marginal in timestep n if its expected size is

smaller than 10
−5
, i.e., E[Lxn ] < 10

−5
.

Definition 6.1 (Marginal Heuristic). Under a first or second moment policy π with the marginal heuristic, a newly

arriving deployment x in belief state b is accepted if in each future time step n < N , after accepting the deployment,

either the underlying moment policy’s condition is satisfied or the arriving deployment x is marginal, i.e., E[Lxn ] < 10
−5
.

Going forward, we use the marginal heuristic, unless explicitly noted. It should be pointed out that this heuristic

does not have any effect when the cluster does not have good prior information about arriving deployments. With only

the global prior, no deployment is marginal for any future timestep n < N .

6.2 Simulation Results

In this section, we present simulation results to demonstrate the value of deployment-specific priors. We simulate the

first and second moment policies (with marginal heuristic), now with four different levels of prior information: 0, 1, 5,

and 50 observations. Otherwise, we use the same simulation setup as in Section 5. The results are shown in Figure 1.
13

We see that having prior knowledge equivalent to even a single observation improves utilization significantly, resulting

in a utilization of 75% and 79.5% for the first and second moment policies, respectively. Better priors lead to even better

utilization, with the second moment policy reaching a utilization of 83.8% with 50 observations.

While it is infeasible to calculate the utilization corresponding to an optimal solution of the POMDP, we have derived

an upper bound of 92.1% by analyzing policies that do not have to satisfy any SLA. Thus, the second moment policy

with good prior information achieves more than 90% of the theoretically achievable as given by this (unreachable) upper

bound, while delivering a relative increase in utilization of 24.48% above the same policy without prior information and

a 66.1% increase over the baseline (i.e., zeroth moment) policy. This shows both the power of our policies and the great

importance of taking all available prior information about arriving deployments into account.

7 AN ELICITATION MECHANISM TO IMPROVE PRIORS

Given the importance of the quality of prior information that we established in the last section, in this section, we use

techniques from mechanism design to improve this quality. Our approach assumes that users do not typically submit

deployments with arbitrary parameters. Instead, they may have a small number of different types of deployments.

However, the typical mechanism design approach of using a direct revelation mechanism, where customers reveal their

full type, seems problematic. First, it may be very cumbersome from a user interface perspective. Second, customers

may not have such a detailed understanding of their deployments and thus would run the risk of being penalized for a

“misreport.” Instead, we seek a design that allows meaningful information to be elicited in an incentive compatible way

while being simple for customers to use. To this end, we propose that rather than explicitly asking users to describe

the behavior of their deployments, cloud providers instead provide them with the opportunity to group them into

customer-defined categories of roughly similar deployments. Learning priors for each individual category then results

in more precise priors and higher utilization. To incentivize such grouping, the cloud provider can set a small portion of

the fee for a deployment using a pricing rule based on the variance of resource demands of deployments in a category.

We now first present and analyze such a variance-based pricing mechanism and then evaluate the potential utilization

gains this mechanism may produce via additional simulations.

13
We also simulated our policies without the marginal heuristic (see Appendix E), and we observe the same general patterns. As one would expect,

without the marginal heuristic, the achieved utilization is somewhat smaller (especially with good priors).
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Fig. 1. Performance of different policies depending on prior information (error bars indicate 95% bootstrap confidence intervals)

7.1 Variance-based Payment Rule

Typically, users are charged a fixed payment per hour for each core their deployment uses. With a variance-based

payment rule, we add a small additional charge based on the variance of the estimate for the deployment’s scaling

process and allow users to label the type of their deployments, resulting in an hourly variance-based payment rule q(x)
of the form:

q(x) = κ1Cx + κ2Var (x), (30)

where κ1 and κ2 are price constants and Var (x) is an estimate of the variance of the deployment. A payment rule of

this form incentivizes users to assign similar labels to similar deployments to minimize the estimated variance.

To see this, consider a user who has two types of deployment, x and y, with true variances Var (x) and Var (y).
He could now simply submit the deployments under a single label. For the provider, this means that each submitted

deployment is of either type with a certain probability, which increases the variance of her prediction. But if the user

would label each deployment appropriately with either “x” or “y,” then the provider would know for each arriving

deployment which type it is, reducing variance and therefore the need to reserve capacity. The following proposition,

which is immediate from the law of total variance, shows that, at least in the long run, labeling his deployments also

reduces a user’s payments.

Proposition 7.1. Let z be the mixture that results from submitting one of two types of deployments x , y chosen by a

Bernoulli random variable α ∼ Bernoulli(pα ), i.e., such that z is of type x with probability pα and of type y with probability

1 − pα . Then it holds that

pαVar (x) + (1 − pα )Var (y) ≤ Var (z) (31)
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Proof. Since z has finite variance, the law of total variance states:

Var (z) = E[Var (z |α)] +Var (E[z |α]) (32)

≥ E[Var (z |α)] (33)

= pαVar (x) + (1 − pα )Var (y) (34)

□

Proposition 7.1 shows that the user would be better off by splitting the mixture and submitting the deployments

under separate labels, directly resulting in the following corollary.

Corollary 7.2. Under any variance-based payment rule q(x) of the form given in Equation (30) with κ2 > 0, it is a

dominant strategy for users with multiple deployment types to label deployments by type.

Note that this corollary abstracts away issues of learning and non-stationary strategic behavior; but for reasonable

learning procedures we expect a consistent labeling to lead to lower variance than a mixture while learning. Further,

this approach not only gives the user correct incentives to reveal the desired information, but actually incentivizes him

to improve the performance of the system. In particular, another way he can lower his payment under this scheme

(outside the scope of our model) is to design his deployments in such a way that they have lower variance in their

resource use. Since more predictable deployments would allow the policy to maintain a smaller buffer, this provides an

additional benefit to the system’s utilization.

Remark. The per core-hour payments of a user can be based on a-priori or a-posteriori estimates of a deployment’s

variance. With an a-priori estimate, the user knows his payment (per core-hour) before he starts his deployment, which can

be very important for certain users. On the other hand, such a payment rule invites strategic deployment submissions: a

user could submit a number of small low-variance deployments before submitting a large high-variance deployment, with

the goal of reducing the provider’s estimate and thus his payment for the large deployment. The provider could mitigate

the potential gain of such a manipulation by carefully choosing the estimation procedure, so it is unclear how frequent

and successful such manipulations would be in practice. With an a-posteriori estimate (i.e., the user’s hourly payment is

based on the variance estimate of the deployment at the end of the hour), such strategic deployment submissions could be

made unprofitable. However, now users do not know their exact payments in advance. To cater to users that require a fixed

price before submitting a deployment, the provider might want to set an upper limit on prices and advertise lower prices as

discounts. Thus, which type of estimate is optimal for a given provider depends on the requirements of her user base.

How much any given user could ultimately save by labeling his deployments mostly depends how different his

deployment types are and on how high the provider sets the charge for variance. A user whose deployments are quite

uniform will not save much, while a user with some deployments which never scale and some that scale a lot can

potentially save a lot. Note that how much the provider should charge is not immediately clear. While she would want

to set a high price to put a strong incentive on users, she also has to keep the competition from other providers in mind.

At what point the loss of market share outweighs the gain in utilization is an intriguing problem we leave for future

work.

7.2 Simulation Results

To illustrate the potential gains in utilization of such a variance-based payment rule, we consider a setting where all

users have two deployment types, drawn independently from the same population distribution as in Section 5. We
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Fig. 2. Performance of the second moment policy with two deployment types per user and 5 observations (error bars indicate 95%
bootstrap confidence intervals)

assume that each user only submits a single deployment and then departs, but that the provider has 5 prior observations

each from every user’s two deployment types. Otherwise, the simulation setup is again the same as in Section 5. In this

setting, we contrast the utilization of a provider employing a second moment policy with and without employing a

variance-based payment rule. With the variance-based payment rule (and users consequently declaring their type), the

setting becomes equivalent to the one presented in Section 6 with 5 observation. When the variance-based payment

rule is not used (and users consequently do not label their deployments), we assume that the provider updates her belief

for both types independently and evaluates her second moment policy on the mixture.

As we can see in Figure 2, when users do not label their deployments, this yields a utilization of 77%. In contrast,

when users do label their deployments, then (as expected) the utilization increases to 83%. This shows that, from a

cluster point of view, employing a variance-based payment rule leads to a sizable increase in utilization.

8 CONCLUSION

We have studied the problem of cluster admission control for cloud computing, where accepting demand now causes

unrejectable demand in the future. The optimal policy is given as the solution to a very large constrained POMDP,

which is infeasible to solve. In practice, simple threshold policies are employed for admission control. In contrast, we

have proposed multiple more sophisticated policies. Our results demonstrate that the utilization can be increased by

approximately 30% just from learning about deployments while they are active in the cluster. Furthermore, we have

shown that this can be improved to a 50 − 65% gain if better prior information about arriving deployments is available,

for example through learning or elicitation techniques. Even though the realized gains in practice are likely to be

somewhat lower due to practical engineering constraints (e.g., the need to handle node outages), they should still be
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sizable. At cloud scale, even savings of a few percent translate to many hundreds of millions of dollars, and any dollar

saved directly translates to a gross profit increase for the cluster provider.

Our work points to a number of interesting future research directions. We have only looked at cluster admission

policies at the level of a single cluster, abstracting away the question of which cluster should be chosen, implicitly

assuming a first-fit or random-fit heuristic. Future research should look at the question whether filling all clusters with

the same mixture of deployments is reasonable or if dedicating different clusters to different types of deployments

could be used to further increase utilization. A related direction is that our model and policies assume that deployment

behavior does not change during runtime. While this is a reasonable approximation for many deployments, some long

running deployments might exhibit more involved life cycles in practice. One way for policies to account for this is to

discount past observations.

There are also open questions regarding mechanism design in the cloud domain. In subsequent work, Dierks and

Seuken (2020) have already analyzed the competitive effects of employing the variance-based payment rule we proposed

in this paper in a duopoly model. They find that, in equilibrium, while using a variance-based payment rule weakly

increases welfare, the effects on the providers’ profits are ambiguous. However, their analysis does not take into account

that a variance-based payment rule can yield better priors about submitted deployments and thus improve the efficiency

of the provider’s admission policy. Future work could explore an alternative economic design, where the provider

offers a menu of two alternatives to her users: the standard alternative, where deployments can always scale out; and a

cheaper alternative, where deployments are not allowed to scale out (or can scale only with a “best effort” guarantee).

Such an approach could be viewed as implicitly selling finance-style options on the ability to scale out.
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A OMITTED PROOFS

Proof of Proposition 4.3. • IfMn , Dn , Qn and Bn are uncorrelated, it holds by linearity and multiplicativity

of the expected value for uncorrelated random variables:

E[Ln ] = E[Mn ]E[Dn ](E[Qn ] + E[Bn ]) (35)

• Qn : For the expectation of Qn it holds:

E[Qn ] = E[
n∑
i=1

∑Yi
l=0 Si,l∑
k=1

Zn,i,k ] (36)

=

n∑
i=1

E[

∑Yi
l=0 Si,l∑
k=1

Zn,i,k ] (37)

=

n∑
i=1

E[E[

∑Y
l=0 Si,l∑
k=1

Zn,i,k |λ,σ , µ]] (38)

E[

∑Y
l=0 Si,l∑
k=1

Zn,i,k |λ,σ , µ] = E[E[

∑Y
l=0 Si,l∑
k=1

Zn,i,k |
Yi∑
l=0

Si,l ]|λ,σ , µ] (39)

= E[
Yi∑
l=0

Si,l |λ,σ , µ]E[Zn,i,1 |λ,σ , µ] (40)

= E[Y1 |λ, µ]E[S1,1 |σ ]E[Zn,i,1 |µ] (41)

• Bn : By definition, it holds

E[Bn ] = E[
C∑
j=1

Zn,0,k ] = CE[Zn,0,k ] (42)

• Di : If all Zi, j,k , Y1 and Si,l are uncorrelated, it holds

E[Di ] = E[Di−1(1 − Πi−1
j=0Π

∑Yj
l=0 Sj,l

k=0 (1 − Zi, j,k ))] (43)

= E[Di−1](1 − E[Πi−1
j=0Π

∑Yj
l=0 Sj,l

k=0 (1 − Zi, j,k )]) (44)

= E[Di−1](1 − E[E[Πi−1
j=0Π

∑Yj
l=0 Sj,l

k=0 (1 − Zi, j,k )|Y , S]]) (45)

= E[Di−1](1 − E[Πi−1
j=0Π

∑Yj
l=0 Sj,l

k=0 (1 − E[Zi, j,k ])]) (46)

= E[Di−1](1 − E[Πi−1
j=0(1 − E[Zi, j,k ])

∑Yj
l=0 Sj,l ]) (47)

≤ E[Di−1](1 − Πi−1
j=0(1 − E[Zi, j,k ])E[

∑Yj
l=0 Sj,l ]) (48)

= E[Di−1](1 − Πi−1
j=0(1 − E[Zi, j,k ])E[Y1]E[S1,1]) (49)

E[D1] = (1 − (1 − E[Z1,0,1])C ) (50)

where the third line follows by the law of total probability and the 6’th by Jensens Inequality.

□
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Proof of Proposition 4.5. WithMn ,Dn ,Qn and Bn uncorrelated, it holds for the variance of Ln :

V [Ln ] = V [MnDn (Qn + Bn )] (51)

= E[Mn ]2V [Dn (Qn + Bn )] +V [Mn ]E[Dn (Qn + Bn )]2 (52)

+V [Mn ]V [Dn (Qn + Bn )] (53)

(54)

and further:

V [Dn (Qn + Bn )] = E[Dn ]2(V [Qn ] +V [Bn ]) + (E[Qn ] + E[Bn ])2V [Dn ] (55)

+V [Dn ](V [Qn ] +V [Bn ]) (56)

(57)

For the variance of Qn it holds:

V [Qn ] = E[V [Qn |λ,σ , µ]] +V [E[Qn |λ,σ , µ]] (58)

and

V [Qn |λ,σ , µ] =
n∑
i=1

(
V [

Yi∑
l=0

Si,l |λ, µ,σ ]E[Zn,i,1 |µ]2 + E[
Yi∑
l=0

Si,l |λ, µ,σ ]V [Zn,i,1 |µ]
)

(59)

=

n∑
i=1

(
(V [Yi ]E[Si,l ]2 + E[Yi ]V [Si,l ])E[Zn,i,1]2 + E[Yi ]E[Si,l ]V [Zn,i,1]

)
(60)

by the law of total variance.

For Bn we can now use the law of total variance to obtain:

V [Bn ] = V [
C∑
j=1

Zn,i,k ] (61)

= E[V [
C∑
j=1

Zn,i,k |µ]] +V [E[
C∑
j=1

Zn,i,k |µ]] (62)

= E[CV [Zn,i,k |µ]] +V [CE[Zn,i,k |µ]] (63)

= CE[V [Zn,i,k |µ]] +C2V [E[Zn,i,k |µ]] (64)

Lastly, for Dn , note that E[D2

n ] = E[Dn ] because Dn ∈ {0, 1}. It follows

V [Dn ] = E[Dn ] − E[Dn ]2 (65)

□

B DATA TRACE

To have a better understanding of the scaling behavior of real deployments and to create a model suitable for simulating

clusters, we fitted the behavior of deployments to a real-world data trace. The particular data trace we use was published
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by Cortez et al. 2017. This dataset consists of one month of data of internal Microsoft Azure jobs. It contains 35,576

deployments,
14

though only 29,757 of these deployments arrived during the observed time period. Since we want to fit

distributions with the goal of simulating arriving deployments, only these 29,757 deployments can be used for most of

our fitting. The deployments that arrived before the beginning of the observed period of time cannot be used when

making maximum likelihood estimations, because for start times before the observed period of time, only longer lived

deployments survived to be observed. Including them would strongly skew the fit. The 29,757 deployments activated

4,317,961 cores, out of which 4,211,926 became inactive again during the observed month. The exact lifetime of the

remaining cores (i.e., the length of time between becoming active and then inactive again) is not known; instead we

only have a lower bound on it (i.e., our observation is Type I censored: see for example [NIST 2012]). Thus, for cores

where we only have a lower bound on the lifetime we use the cdf in our likelihood function while for cores whose

lifetime is known we use the pdf.

B.1 Fitting on the Deployment Level

We first fit arrival and departure processes for each individual deployment. In keeping with the Markov assumption, we

fit a Poisson distribution to the scale out rate of each deployment, while we fit an exponential distribution to the lifetime

of cores for each deployment for which at least one core became inactive during the observed time period. Note that

while we model the cluster admission problem as a discrete-time POMDP, the processes are fit in continuous time. This

is more general and avoids imprecisions introduced by time discretization. To fit the size of a scale out, we also used a

Poisson distribution (plus 1, as scale outs must have at least one core).
15

We further assume that each deployment, had

it lived forever, at some point would have made a scale out request for more than 1 core. Since we did not observe these

scale-outs and therefore cannot make a direct likelihood fit, we introduce two parameters P1 and P2 to represent them.

We assume that the scale out rate of deployments that never scaled out (some because they died, but many simply

because the observation period of the dataset ended) is equal to the value for which not observing a scale out has

probability P1. We equivalently set the scale out size for deployments that never increase their size by more than 1

core during one scale out event according to P2. We calibrated P1 and P2 by minimizing the (discrete) Cramér-von

Mises distance of the size of deployments between samples drawn from our fitted model and the data set. The optimal

distance is 0.1585 and an overlay of both cumulative distribution functions can be seen in Figure 3. Note that most of

the remaining distance does not seem to be caused by limitations of our model or fitting procedure, but by limitations

of the dataset. The dataset, while relatively large, still does contain a somewhat small selection of deployments from the

tail. More importantly, it only contains internal Azure deployments, so the types of workloads are limited. As such, it

contains few deployments of sizes between 100 and 1500, but a relatively large number of deployments of sizes between

1500 and 2000. This effect is visualized in Figure 4, which shows the CDF over the percentage of utilization in the cluster

coming from deployments of different sizes for both our model and the dataset.

B.2 Fitting on the Population Level

With the distributions for each deployment in place, we now fit Gamma distributions for the population. The parameters

of the processes for each arriving deployment are drawn from these populations. As the data was skewed, positive,

14
In contrast to [Cortez et al. 2017] we did not consolidate all deployments a single user runs on a certain day into one. This is because cores that get

requested as a new deployment do not need to be accepted on the same cluster.

15
As the Poisson distribution is single-parameter and its variance cannot be set independent of the average size, this is not a particularly good fit for users

with large but consistent scale out sizes. However, its simplicity avoids overfitting on the often low number of samples per deployment and it results in a

good fit on the population level.
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from deployments of all sizes

and not really heavy tailed, a Gamma distribution is a natural and very general candidate (containing the Chi-squared,

Erlang and Exponential distributions as special cases), with the added benefit of being conjugate prior to the deployment

processes. The resulting model and parameters from our fits are shown in Table 3. While the scale out size is fit directly

to the samples, scale out rate and core lifetime are highly correlated. The longer a deployment’s cores live, the lower

the rate at which new cores arrive, as can be seen in Figure 5. This shows that deployments with long lived cores do

not necessarily have more active cores. To account for this, we fit the power law relationship ν between scale out rate

and lifetime, i.e., we fitted the prior distribution on scale out rates multiplied by the respective core lifetimes taken

to the power of ν . We have chosen ν such that the mean absolute distance between normalized scale out rate of each

deployment and the average (normalized) scale out rate is minimized.

To visualize the fitted distributions, Figure 6 shows the CDF of the Gamma distribution for the lifetime parameter,

overlaid over the normalized cumulative histogram of the fitted rates of the sample deployments.

Figure 7 shows the CDF for the normalized scale out rates over the relevant cumulative histogram. The actual scale

out rate of a sampled deployment is now simply the normalized scale out rate multiplied by the average core lifetime.

Figure 8 shows the fitted CDF for the scale out size parameter over its cumulative histogram.

Deployment Shutdown. While most deployments in the dataset die because they have zero active cores, 5,980 of the

22,241 deployments that both arrive and die during the observed period seem to get actively shut down. By this we

mean that they had at least 3 VMs that all shut down simultaneously. This would be highly unlikely if deployments only

die when cores or VMs become inactive independently. To capture such behavior we fit an exponential distribution

over the number of expected core lifetime deployments lived. The maximal lifetime of deployments that did not get

shut down was assumed to be censored to their realized lifetime.

Priors

µ ≈ Gamma(0.3107, 0.5778)
λ ≈ Gamma(0.4907, 0.4496)
σ ≈ Gamma(0.2616, 0.0552)

Global Parameters

∆ = 0.119

ν = 0.673

Table 3. Fitted processes
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C MOMENT APPROXIMATIONWITH GAMMA PRIORS

PropositionC.1. WhenYi ∼ Pois(λµν ), λ ∼ Gamma(a,b), Si,l ∼ Pois(σ ),σ ∼ Gamma(α , β),Zn,i, j ∼ Bernoulli(e(i−n)µ )
(Bernoulli over complementary CDF of an exponential distribution), µ ∼ Gamma(a, b) and Mi ∼ Bernoulli(e(i−n)∆µ ) it
holds:

E[Qn ] =
a

b

α + β

β

Γ(a + ν )
Γ(a)

n∑
i=1

ba

(n + b − i)a+ν (66)

E[Di ] ≤ E[Di−1](1 − Πi−1
j=0(1 − (1 + i − j

b
)−(a))

a
b
α
β ) (67)

E[Zn,i,1] =
ba

(n + b − i)a (68)

E[Mn ] =
ba

(∆n + b)a (69)
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and

V [Qn ] = b
a Γ(a + ν )

Γ(a)

[(
a

b
( α
β2
+
α + β

β

2

− 1)
)

(70)

n∑
i=1

1

(2n + b − 2i)a+ν +
a

b

α + β

β

n∑
i=1

1

(n + b − i)a+ν

]
(71)

+

(
a

b

2 α + β

β

2

+ (a
b

2 α

β2
+

a

b2
α + β

β

2

+
a

b2
α

β2
)
)

(72)ba
Γ(a + 2ν )

Γ(a)
∑

1≤i≤j≤n

1

(2n + b − i − j)a+2ν
(73)

−(ba Γ(a + ν )
Γ(a) )2

∑
1≤i≤j≤n

1

(n + b − i)a+ν
1

(n + b − j)a+ν

 (74)

+(a
b

2 α

β2
+

a

b2
α + β

β

2

+
a

b2
α

β2
)
[
Γ(a + ν )
Γ(a)

n∑
i=1

ba

(n + b − i)a+ν

]
2

(75)

V [Zn,i,1] =
ba

(n + b − i)a (1 −
ba

(n + b − i)a ) (76)

CE[V [Zn,i,k |µ]] +C2V [E[Zn,i,k |µ]] = C
ba

(n + b − i)a (1 −C
ba

(n + b − i)a ) (77)

+(C2 −C) ba

(2n + b − 2i)a (78)

V [Mn ] =
ba

(∆n + b)a (1 −
ba

(∆n + b)a ) (79)

Proof. • For Qn it holds

E[Qn ] =

n∑
i=1

E[E[Y1 |λ, µ]E[S1,1 |σ ]E[Zn,i,1 |µ]] (80)

=

n∑
i=1

E[Y1 |λ, µ]E[S1,1 |σ ]E[Zn,i,1 |µ] (81)

=

n∑
i=1

λµν (σ + 1)e(i−n)µ (82)

E[λ] =
a

b
(83)

V [λ] =
a

b2
(84)

E[σ + 1] =
α + β

β
(85)

V [σ + 1] =
α

β2
(86)

E[µν e(i−n)µ ] =

∫ ∞

0

µν e(i−n)µ
baµa−1e−bµ

Γ(a) dµ (87)
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=
ba

Γ(a)

∫ ∞

0

µa−1+ν e(i−n−b)µdµ (88)

=
ba

Γ(a) (n + b − i)−a−ν Γ(a + ν ) (89)

=
ba

(n + b − i)a+ν
Γ(a + ν )
Γ(a) (90)

It immediately follows:

E[Qn ] =
a

b

α + β

β

Γ(a + ν )
Γ(a)

n∑
i=1

ba

(n + b − i)a+ν (91)

Next we will calculate

V [Qn ] = E[V [Qn |λ,σ , µ]] (92)

+V [E[Qn |λ,σ , µ]] (93)

(94)

Before we can do so, we need to collect a few easy supporting results:

V [Y1 |λ, µ] = λµν (95)

V [S1,1 |σ ] = σ (96)

E[Zn,i,1 |µ]2 = e((i−n)µ)
2

(97)

= e(2i−2n)µ (98)

= E[Z2n,2i,1 |µ] (99)

V [Zn,i,1 |µ] = e((i−n)µ)(1 − e((i−n)µ)) (100)

= e((i−n)µ) − e2((i−n)µ) (101)

= E[Zn,i,1 |µ] − E[Z2n,2i,1 |µ] (102)

(103)

We also need

E[λ2] = V [λ] + E[λ]2 (104)

=
a

b2
+
a

b

2

(105)

E[(σ + 1)2] = V [σ + 1] + E[σ + 1]2 (106)

=
α

β2
+
α + β

β

2

(107)

E[µ2ν e(2i−2n)µ ] =

∫ ∞

0

µ2ν e(2i−2n)µ
baµa−1e−bµ

Γ(a) dµ (108)

=
ba

Γ(a)

∫ ∞

0

µa−1+2ν e(2i−2n−b)µdµ (109)

=
ba

Γ(a) (2n + b − 2i)−a−2ν Γ(a + 2ν ) (110)
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=
Γ(a + 2ν )

Γ(a)
ba

(2n + b − 2i)a+2ν
(111)

This now allows us to calculate everything that is needed for the first half of the variance ofQn , i.e.,E[V [Qn |λ,σ , µ]].
First note that

V [Qn |λ,σ , µ] =

n∑
i=1

(
(
V [Yi |λ, µ]E[Si,l |σ ]2 (112)

+E[Yi |λ, µ]V [Si,l |µ]
)
E[Zn,i,1 |µ]2 (113)

+E[Yi |λ]E[Si,l |σ ]V [Zn,i,1 |µ]) (114)

and

E[(V [Yi |λ, µ]E[Si,l |σ ]2E[Zn,i,1 |µ]2] =E[(λ)(σ + 1)2µν e(2i−2n)µ ] (115)

=E[λ]E[(σ + 1)2]E[µν e(2i−2n)µ ] (116)

=
a

b
( α
β2
+
α + β

β

2

) Γ(a + ν )
Γ(a)

ba

(2n + b − 2i)a+ν (117)

E[E[Yi |λ, µ]V [Si,l |µ])E[Zn,i,1 |µ]2] = E[λµνσe(2i−2n)µ ] (118)

= E[λ]E[σ ]E[µν e(2i−2n)µ ] (119)

=
a

b

α

β

Γ(a + ν )
Γ(a)

ba

(2n + b − 2i)a+ν (120)

and

E[E[Yi |λ, µ]E[Si,l |σ ]V [Zn,i,1 |µ]] =E[λµν (σ + 1)(E[Zn,i,1 |µ] − E[Z2n,2i,1 |µ])] (121)

=E[λµν (σ + 1)(e(i−n)µ − e(2i−2n)µ )] (122)

=E[λ]E[σ + 1](µνE[e(i−n)µ ] − E[µν e(2i−2n)µ ]) (123)

=
a

b

α + β

β

Γ(a + ν )
Γ(a)

(
ba

(n + b − i)a+ν − ba

(2n + b − 2i)a+ν

)
(124)

It follows:

E[(V [Yi |λ, µ]E[Si,l |σ ]2E[Zn,i,1 |µ]2] =ba
Γ(a + ν )
Γ(a)

[(
a

b
( α
β2
+
α + β

β

2

) + a

b

α

β
− a

b

α + β

β

)
(125)

1

(2n + b − 2i)a+ν +
a

b

α + β

β

1

(n + b − i)a+ν

]
(126)

=ba
Γ(a + ν )
Γ(a)

[(
a

b
( α
β2
+
α + β

β

2

− 1)
)

(127)

1

(2n + b − 2i)a+ν +
a

b

α + β

β

1

(n + b − i)a+ν

]
(128)

Finally for the second part of the variance, i.e., V [E[Qn |λ,σ , µ]], we need:

V [
n∑
i=1

µν e(i−n)µ ] =
∑

1≤i≤j≤n
Cov[µν e(i−n)µ , µν e(j−n)µ ] (129)
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=
∑

1≤i≤j≤n
E[µν e(i−n)µ µν e(j−n)µ ] − E[µν e(i−n)µ ]E[µν e(j−n)µ ] (130)

=
∑

1≤i≤j≤n
E[µ2ν e(i+j−2n)µ ] − E[µν e(i−n)µ ]E[µν e(j−n)µ ] (131)

=
∑

1≤i≤j≤n
( ba

(2n + b − i − j)a+2ν
Γ(a + 2ν )

Γ(a) (132)

− (Γ(a + ν )
Γ(a) )2 ba

(n + b − i)a+ν
ba

(n + b − j)a+ν ) (133)

=ba
Γ(a + 2ν )

Γ(a)
∑

1≤i≤j≤n

1

(2n + b − i − j)a+2ν
(134)

− (ba Γ(a + ν )
Γ(a) )2

∑
1≤i≤j≤n

1

(n + b − i)a+ν
1

(n + b − j)a+ν (135)

V [λ(σ + 1)] = E[λ]2V [σ + 1] +V [λ]E[σ + 1]2 +V [λ]V [σ + 1] (136)

=
a

b

2 α

β2
+

a

b2
α + β

β

2

+
a

b2
α

β2
(137)

Now we can write:

V [E[Qn |λ,σ , µ]] =V [
n∑
i=1

E[

∑Y
l=0 Si,l∑
k=1

Zn,i,k |λ,σ , µ]] (138)

=V [
n∑
i=1

λµν (σ + 1)e(i−n)µ ] (139)

=V [λ(σ + 1)
n∑
i=1

µν e(i−n)µ ] (140)

=E[λ(σ + 1)]2V [
n∑
i=1

µν e(i−n)µ ] +V [λ(σ + 1)]V [
n∑
i=1

µν e(i−n)µ ] (141)

+V [λ(σ + 1)]E[
n∑
i=1

µν e(i−n)µ ]2 (142)

=

(
a

b

2 α + β

β

2

+ (a
b

2 α

β2
+

a

b2
α + β

β

2

+
a

b2
α

β2
)
)

(143)

©­«ba Γ(a + 2ν )Γ(a)
∑

1≤i≤j≤n

1

(2n + b − i − j)a+2ν
(144)

−(ba Γ(a + ν )
Γ(a) )2

∑
1≤i≤j≤n

1

(n + b − i)a+ν
1

(n + b − j)a+ν
ª®¬ (145)

+ (a
b

2 α

β2
+

a

b2
α + β

β

2

+
a

b2
α

β2
)
(
Γ(a + ν )
Γ(a)

n∑
i=1

ba

(n + b − i)a+ν

)
2

(146)

Inserting into Propositions 1 and 2 now yields the result.
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• For Di note the following: As an exponential distribution whose rate is drawn from a Gamma distribution with

shape a and rate b is equal to a Lomax distribution with scale b and shape a, a single Zi, j,k is equal to a Bernoulli

trial over the complementary CDF of the Lomax distribution.

E[Zi, j,k ] = (1 + i − j

b
)−(a) (147)

(148)

It therefore holds

E[Di ] ≤ E[Di−1](1 − Πi−1
j=0(1 − (1 + i − j

b
)−(a))

a
b
α
β ) (149)

E[D1] = (1 − (1 − (1 + 1

b
)−(a))C ) (150)

• It now directly follows

V [Zn,i,1] = E[V [Zn,i,1 |µ]] +V [E[Zn,i,1 |µ]] (151)

= E[E[Zn,i,1 |µ]] − E[E[Z2n,2i,1 |µ]] +V [e(i−n)µ ] (152)

=
ba

(n + b − i)a −
ba

(2n + b − 2i)a (153)

+
ba

(2n + b − 2i)a −
ba

(n + b − i)a
ba

(n + b − i)a (154)

=
ba

(n + b − i)a (1 −
ba

(n + b − i)a ) (155)

CE[V [Zn,i,k |µ]] +C2V [E[Zn,i,k |µ]] (156)

=C(E[E[Zn,i,1 |µ]] − E[E[Z2n,2i,1 |µ]]) +C2V [e(i−n)µ ] (157)

=C( ba

(n + b − i)a −
ba

(2n + b − 2i)a ) +C
2( ba

(2n + b − 2i)a − ( ba

(n + b − i)a )
2) (158)

=C
ba

(n + b − i)a (1 −C
ba

(n + b − i)a ) + (C
2 −C) ba

(2n + b − 2i)a (159)

• ForMi it holds by the same argument,

E[Mn ] =
ba

(∆n + b)a (160)

V [Mn ] =
ba

(∆n + b)a (1 −
ba

(∆n + b)a ) (161)

□

D IMPORTANCE SAMPLING

Importance sampling is a technique that, instead of drawing samples r from the nominal sampling distribution p in order

to estimate the expected value of some feature of the samples f , it draws the samples from an importance distribution

q. These samples are then weighted according to the ratio between both distributions in order to obtain an estimate

of E[f ] with a lower variance. This can vastly reduce the number of samples required to make statements with high
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confidence. It is well known (see Kahn and Marshall 1953) that the optimal importance density satisfies

q(r ) = f (r )p(r )
E[f (r )] (162)

While calculating this exactly would require knowledge about the very value we want to estimate, it can often be

approximated reasonably well. In our case, where each simulation run r depends on tens of thousands of random

variables, we define a heuristic measure that roughly indicates how likely a run is to fail and partition the set of all

possible runs into buckets using this measure. We then approximate the optimal q on the level of buckets.

As a first step, we now define the heuristic measure we use:

Definition D.1. For a deployment x , denote by

ix = E[Lxn ] +
√
(1 − 0.01)/0.01 ∗Var [Lxn ] (163)

the upper bound of the 99% confidence interval of a deployment’s size in timestep n as given by Cantelli’s inequality. For

a given run r , pre-draw the parameters of all deployments that might arrive during the simulation run. Then consider

the following extremely simplified simulation:

(1) On the first of each month, 730 new deployments arrive.

(2) Deployments only die at the end of the month after their maximum lifetime is reached. They do not die when

they reach zero cores.

(3) The cluster knows each deployment’s exact type.

(4) Deployment always take exactly their expected size.

(5) Deployments are accepted into the cluster whenever

∑
x̃ ∈Aπ (b) i

x < 22000.

Denote by X (n), n ∈ [1, 36] the set of deployments in the cluster at the beginning of each month during this simplified

simulation. Then the badness measure BM of a run r is defined as

BM(r ) =maxn
∑

x̃ ∈X (n)
ix . (164)

This is a reasonable (though highly heuristic) predictor of whether a run might produce a very large number failures.

Most importantly, because it assumes away all randomness that occurs during the simulation run, it can be evaluated

very quickly (< 1 second).

To properly utilize importance sampling, we now sort any simulation run r into one of three buckets based on their

BM value: I1 = {r : BM(r ) ≤ 25000},
I2 = {r : 25000 ≤ BM(r ) ≤ 30000}, I3 = {r : 30000 ≤ BM(r )}. Before we can apply importance sampling, we calculate

the probability for a given run to be in each of the buckets. For this, we calculate BM for 100, 000 runs. The resulting

probabilities can be found in Table 4.

To sample runs from the different buckets with different weights, we employ a type of rejection sampling: Before

starting a simulation run r , we evaluate BM(r ). Depending on the bucket Ii the run would result in, we then redraw

with some probability pr (Ii ) (i.e., all deployment parameters are discarded and redrawn) and block off all lower buckets

(i.e., automatically rejecting any further redraws that would result in Ij , j < i). The highest bucket (in our case I3) never

gets redrawn, i.e., pr (I3) = 0. This scheme continues iteratively until we accept a run. This results in the following

importance distribution.
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Probabilities I1 I2 I3

p(Ii ) 0.5699 0.4121 0.018

p(Ii | ∩k≥i Ik ) 0.88319 0.9582 1

pr (Ii | ∩k≥i Ik ) 0.5369 0.8816 0

Table 4. Estimation of BM probabilities

Proposition D.2. For a run r with nominal probability p(r ) and BM such that r ∈ Ii , the above rejection scheme results

in importance distribution q with

q(r ) = p(r |Ii )
p(Ii | ∩k≥i Ik )(1 − pr (Ii | ∩k≥i Ik ))
1 − p(Ii | ∩k≥i Ik )pr (Ii | ∩k≥i Ik )

Πj<i
p(∩k>j Ik | ∩k≥j Ik )

1 − p(Ij | ∩k≥j Ik )pr (Ij | ∩k≥j Ik )
(165)

Proof. We first show this for two buckets I1 and I2. With only two buckets, since I2 is the highest bucket, it has an

acceptance probability of 1.

It follows that for a run that would be in I1, we redraw with probability pr (I1) and otherwise accept. It thus holds

q(I1) = p(I1)((1 − pr (I1)) + pr (I1)q(I1). (166)

This is a geometric series and therefore

q(I1) =
∞∑
k=0

p(I1)(1 − pr (I1))(p(I1)pr (I1))k (167)

=
p(I1)(1 − pr (I1))
1 − p(I1)pr (I1)

(168)

Similarly, it holds

q(I2) =
∞∑
i=0

p(I2)(p(I1)pr (I1))i (169)

=
p(I2)

1 − p(I1)pr (I1)
(170)

Iteratively applying this argument to more than two buckets by dividing the top bucket into two buckets then yields

q(Ii ) =
p(Ii | ∩k≥i Ik )(1 − pr (Ii | ∩k≥i Ik ))
1 − p(Ii | ∩k≥i Ik )pr (Ii | ∩k≥i Ik )

Πj<i
p(∩k>j Ik | ∩k≥j Ik )

1 − p(Ij | ∩k≥j Ik )pr (Ij | ∩k≥j Ik )
(171)

Finally, by Bayes’ theorem it holds that q(r ) = q(r |Ii )q(Ii ) and since it further holds that q(r |Ii ) = p(r |Ii ), the statement

of the proposition follows. □

To find good rejection probabilities pr that result in low sample variance, we did 500 runs for each bucket under the

second moment policy with threshold 15000 to get a very rough estimate of f (i.e. the scale out failure probability) for

each bucket. The rejection probabilities pr are then calculated by combining Equation (162) and Equation (165). The

resulting values can also be found in Table 4.
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Fig. 9. Ablation of policies with and without marginal heuristic (error bars indicate 95% bootstrap confidence intervals)

E ABLATION OF POLICIES WITHOUT MARGINAL HEURISTIC

In this section, we ablate the simulation results for our policies with marginal heuristic with the same policies without

these heuristic. Note again that without individual prior observations, no arriving deployment is ever marginal in the

policy horizon. Thus, without prior observations, the marginal policies are equivalent to the policies without marginal

heuristic.

We have simulated the policies without marginal heuristic for 1, 5, and 50 observations, with the same setup as in

Section 5. In Figure 9, we contrast those results with the results for the marginal policies. We see that with just a few

observations, the policies with and without marginal heuristic have a very similar performance (though the marginal

heuristic still enables slightly higher utilization). This is not surprising, since relatively few arriving deployments are

marginal at this level of prior information. Consequently, the utilization gap increases with more information. Both

with 5 and 50 observations, the marginal second moment policy obtains a sizable utilization increase of more than 3%

compared to the second moment policy without the heuristic.


	Abstract
	1 Introduction
	1.1 Cluster Admission Control
	1.2 Overview of Contributions
	1.3 Related work

	2 Preliminaries
	2.1  Formal Model
	2.2 The Provider's Control Problem: POMDP Formulation

	3 A Tractable Problem Formulation
	4 Designing new Admission Control Policies
	4.1 Baseline (Zeroth Moment Policy )
	4.2 First Moment Policy
	4.3 Second Moment Policy

	5 Empirical Evaluation
	5.1 Data Trace and Fitted Model
	5.2 Simulation Setup
	5.3 Results

	6 The Value of Deployment-specific Priors
	6.1 Improving the Handling of Short-lived Deployments
	6.2 Simulation Results

	7 An Elicitation Mechanism to Improve Priors
	7.1 Variance-based Payment Rule
	7.2 Simulation Results

	8 Conclusion
	References
	A Omitted Proofs
	B Data Trace
	B.1 Fitting on the Deployment Level
	B.2 Fitting on the Population Level

	C Moment Approximation with Gamma Priors
	D Importance Sampling
	E Ablation of Policies Without Marginal Heuristic

