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ABSTRACT
Phase-change memory (PCM) devices have multiple banks to serve
memory requests in parallel. Unfortunately, if two requests go to
the same bank, they have to be served one after another, leading to
lower system performance. We observe that a modern PCM bank is
implemented as a collection of partitions that operate mostly inde-
pendently while sharing a few global peripheral structures, which
include the sense amplifiers (to read) and the write drivers (to write).
Based on this observation, we propose PALP, a new mechanism
that enables partition-level parallelism within each PCM bank, and
exploits such parallelism by using the memory controller’s access
scheduling decisions. PALP consists of three new contributions.
First, we introduce new PCM commands to enable parallelism in a
bank’s partitions in order to resolve the read-write bank conflicts,
with no changes needed to PCM logic or its interface. Second, we
propose simple circuit modifications that introduce a new operat-
ing mode for the write drivers, in addition to their default mode
of serving write requests. When configured in this new mode, the
write drivers can resolve the read-read bank conflicts, working
jointly with the sense amplifiers. Finally, we propose a new access
scheduling mechanism in PCM that improves performance by pri-
oritizing those requests that exploit partition-level parallelism over
other requests, including the long outstanding ones. While doing
so, the memory controller also guarantees starvation-freedom and
the PCM’s running-average-power-limit (RAPL).

We evaluate PALP with workloads from the MiBench and SPEC
CPU2017 Benchmark suites. Our results show that PALP reduces
average PCM access latency by 23%, and improves average system
performance by 28% compared to the state-of-the-art approaches.

CCS CONCEPTS
• Computer systems organization → Architectures; • Hard-
ware→ Memory and dense storage.
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1 INTRODUCTION
Modern phase change memory (PCM) devices [9, 17, 30, 37, 41,
59] can serve multiple requests in parallel using different PCM
banks [37]. Unfortunately, when two requests go to the same bank,

This article appears as part of the ESWEEK-TECS special issue and was presented in
the International Conference on Compilers, Architecture, and Synthesis for Embedded
Systems (CASES) 2019.

they have to be served serially. This is known as bank conflict.
Bank conflicts reduce system performance by lowering the PCM
bandwidth utilization, causing CPU cores to stall. To estimate the
impact of bank conflicts on performance, we plot the distribution
of read-read, read-write, and write-write bank conflicts in 15 8-core
workloads for a PCM memory of 8GB capacity and with eight 1GB
banks (see our evaluation methodology in Section 5). We make the
following two observations.
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Figure 1: Distribution of PCM bank conflicts for our 15 eval-
uated 8-core workloads (see Table 6).

First, on average, 43% of PCM requests in these workloads gen-
erate bank conflicts. This is due to the high temporal and spatial
access locality in these workloads that lead to repeated accesss to
multiple rows that map to the same bank. Second, read-read bank
conflicts outnumber read-write and write-write bank conflicts for
all workloads, averaging to 34% of all PCM requests (79% of all bank
conflicts). The read-write and write-write bank conflicts are fewer
than read-read bank conflicts because write requests are fewer to
begin with as they go through an extra level of cache implemented
as eDRAM. The read requests, on the other hand, go directly to
PCM, bypassing the eDRAM cache. We conclude that by resolv-
ing both read-read and read-write bank conflicts in PCM, system
performance can be improved significantly. We demonstrate 28%
average performance improvement in Section 6.1 for our evaluated
workloads. As core count increases, bank conflicts also increase
and become a bigger performance bottleneck [22, 23, 28].

Our goal is to improve performance by resolving bank conflicts
in PCM devices. To this end, we analyze the internal architecture
of a PCM bank (see Figure 2 for details). We observe that a PCM
bank is implemented as a collection of partitions [37] that operate
mostly independently while sharing a few global peripheral struc-
tures, which include the sense amplifiers (to read) and the write
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drivers (to write). A peripheral structure has high area overhead
primarily due to the write driver logic [11, 15, 52], which needs
to generate high current profiles for the SET (100µA) and RESET
(300µA) programming of the PCM cells. Due to this high area over-
head, PCM manufacturers integrate only a small number of these
structures per bank to improve PCM density [59]. For instance, in
the recent PCM prototypes [37, 59], there are only 128 peripheral
structures per bank, which are shared across all 16 partitions in the
bank.

Based on our key observation, we propose PALP, a new mecha-
nism that enables partition-level parallelism in a PCM bank, and
exploits such parallelism bymodifying only the memory controller’s
access scheduling decisions. We make the following three novel
contributions.
Contribution 1: We propose a new mechanism to enable read-
write parallelism in a PCM bank’s partition using the bank’s pe-
ripheral structures to resolve the read-write bank conflicts. To this
end, we introduce a new PCM command called READ-WITH-WRITE
(RWW), and provide its detailed timing requirements.
Contribution 2: We propose simple circuit modifications to in-
troduce a new operating mode for the write drivers, with which
they can also serve read requests. When configured in this new
mode, the write drivers can resolve the read-read bank conflicts,
working jointly with the sense amplifiers. To this end, we introduce
a new PCM command called READ-WITH-READ (RWR), and provide
its detailed timing requirements.
Contribution 3: We propose a new memory access scheduling
mechanism that prioritizes those PCM requests that exploit a PCM
bank’s partition-level parallelism, over other requests, including the
long outstanding ones. This straightforward and greedy performance-
oriented policy is controlled in two ways. First, the memory con-
troller ensures that no request is starved, i.e., backlogged excessively,
forcefully serving the outstanding request otherwise, to guarantee
starvation-freedom [27]. Second, the memory controller ensures
that the power consumption of the active partitions within the bank
is not too high, forcefully serializing requests to the bank otherwise,
to guarantee the running average power limit (RAPL) [13].

We implement PALP for DRAM-PCM hybrid main memory sys-
tems [7, 14, 21, 34–36, 38, 39, 50, 64, 66, 70], which use DRAM as
a cache to PCM. Given the still speculative state of the PCM tech-
nology, we describe PALP based on the architecture and memory
timings of IBM’s 20nm PCM prototype [37]. We evaluate PALP with
workloads from the MiBench [20] and SPEC CPU2017 [8] bench-
mark suites. Our results show that PALP reduces average PCM
access latency by 23%, and improves average system performance
by 28% compared to the state-of-the-art approaches. As PALP ex-
ploits the PCM bank’s partition-level parallelism using the memory
controller’s access scheduling decision, it can be easily combined
with orthogonal mechanisms: (1) those aiming to reduce the num-
ber of write accesses to PCM [7, 14, 34], and (2) those aiming to
improve PCM’s cell endurance [1, 54].

Although our work is inspired by the notion of subarray-level
parallelism (SALP) in DRAM [28], exploiting parallelism within
PCM banks is unique in the following two aspects. First, while
many subarrays can be active simultaneously in a DRAM, PCM’s

peripheral structures allow only two partitions to be active simul-
taneously in a PCM bank [5]. Second, while subarray-level par-
allelism in DRAM can resolve any bank conflict, partition-level
parallelism in PCM can resolve only the read-read or read-write
bank conflicts. These unique properties of PALP lead to different
performance trade-offs, which we present in Section 6.

The closest state-of-the-art PCM mechanisms, such as [68, 71],
have only addressed the read-write bank conflicts in PCM, assuming
a simple first-come-first-serve (FCFS) scheduling policy [51]. We
demonstrate in Section 4.3 that the FCFS policy cannot efficiently
exploit each PCM bank’s partition-level parallelism. We not only
resolve both the read-read and read-write bank conflicts in PCM,
but also develop a new performance-oriented scheduling policy
to better exploit such partition-level parallelism. Our PALP design
is based on IBM’s PCM chip interfaced with ARMv8-A (aarch64)
processor using the DDR4 protocol. In Table 1, we summarize the
state-of-the-art mechanisms and highlight the contributions of this
paper.

Mechanism
Read-Write Read-Read

Scheduling
Memory Memory Memory

Bank Conflicts Bank Conflicts Interface Technology Power

Baseline [2] × × FCFS DDR2 PCM not controlled

[68, 71]
√ × FCFS not considered PCM not controlled

SALP [28]
√ √

FR-FCFS DDRx DRAM not controlled

PALP
√ √

new DDRx PCM RAPL

Table 1: Comparison of PALP with state-of-the-art PCM and
DRAMmechanisms.

2 BACKGROUND ON PCM
This section provides a brief background on PCM organization
and operation required to understand PALP. PCM, like DRAM, is
organized hierarchically [37]. An example PCM memory of 128GB

capacity has 4 channels, with 4 ranks per channel, and 8 banks per
rank. A PCM bank has 8 partitions, each of which is an arrays of
4096 wordlines and 256K bitlines. A PCM bank has 128 peripheral
structures, which include the sense amplifiers (to read) and the
write drivers (to write). The peripheral structures in PCM banks
allow to read and program 128 PCM cells in parallel. Therefore, the
read and write granularity is 128 bits (the size of a memory line).

A PCM cell is built with the chalcogenide alloy (e.g., Ge2Sb2Te5
[43]), and is connected to a bitline and a wordline using an access
device. The amorphous phase (RESET) in this alloy has higher re-
sistance than the crystalline phase (SET). To RESET a PCM cell, a
high current pulse of short duration is applied and quickly termi-
nated. To SET a PCM cell, the chalcogenide alloy is heated above
its crystallization temperature, but below its melting point for a
long duration. Finally, to read the content of a PCM cell, a small
electrical pulse is applied without inducing any phase change in
the material. To serve a memory request that accesses data at a
particular row and column address within a partition, a memory
controller issues three commands to a PCM bank.

• ACTIVATE(A): activate the wordline and enable the access
device for the PCM cells to be accessed.
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• READ(R)/WRITE(W): drive read or write current through the
PCM cell. After this command executes, the data stored in
the PCM cell is available at the output terminal of the sense
amplifier, or the write data is programmed to the PCM cell.

• PRECHARGE(P): deactivate the wordline and bitline, and pre-
pare the bank for the next access.

The A-A interval (tRC) for the same bank is 47 cycles for a write
request, and 19 cycles for a read request; A-W/R (tRCD) is 1 cycle; the
read latency (RL) is 10 cycles; the write latency (WL) is 3 cycles; and
the write recovery time (tWR) is 35 cycles. These timing parameters
are based on a 266MHz memory clock and a DDR2 interface [37]
(see also Table 5 for our simulation parameters).

3 ENABLING PARTITION-LEVEL
PARALLELISM IN PCM

Figure 2 illustrates a PCM bank’s peripheral structures in detail
[17, 19, 37, 41, 59, 60]. There are 128 peripheral structures, which
are shared across all bitlines in the bank. Each peripheral structure
is connected to all the partitions in the bank. To simplify our discus-
sion, we illustrate only one peripheral structure, which is connected
to the two partitions i and j . The peripheral structure contains the
sense amplifier (to read) and the write driver (to write), which are
connected to the two partitions using the NMOS transistors M0,
M1, M2, and M3. These transistors are turned ON or OFF, based on
the partition that needs to be accessed. The bitline and wordline
decoders are used to connect the PCM cell at a particular row and
column address to the peripheral structure.
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Figure 2: Architecture of the new peripheral structure,
which include a write driver and a sense amplifier.

3.1 Resolving read-write bank conflicts in PCM
Table 2 reports how the transistors M0, M1, M2, and M3 are con-
figured to serve read and write requests. Observe that only one
transistor is ON in the baseline PCM design (e.g., [2]) to serve a read
or write request from the bank.

Operation M0 M1 M2 M3

write to partition i ON OFF OFF OFF
read from partition i OFF ON OFF OFF
write to partition j OFF OFF ON OFF
read from partition j OFF OFF OFF ON

Table 2: Transistor configurations in the Baseline design for
reading from or writing to a single partition.

To investigate what is actually needed to resolve the read-write
bank conflicts in PCM, we take a closer look at the connections of
M0, M1, M2, and M3. Observe that if transistors M0 and M3 (or M1
and M2) are simultaneously enabled, the sense amplifier can read a
PCM cell from partition j , while the write driver is programming
a PCM cell in partition i (or vice versa). Table 3 summarizes our
findings. Some transistor configurations can lead to data corruption.
For example, if M0 = OFF, M1 = ON, M2 = OFF, M3 = ON, (the last
entry in the table), then the data from two different partitions (i.e.,
two different PCM cells) will be connected to the sense amplifier.
This compromises the integrity of the data to be read at the output
of the sense amplifier. We mark all such table entries as invalid.

Operation M0 M1 M2 M3

write to partition i, read from partition j ON OFF OFF ON
read from partition i, write to partition j OFF ON ON OFF
invalid ON ON OFF OFF
invalid OFF OFF ON ON
invalid ON OFF ON OFF
invalid OFF ON OFF ON

Table 3: Transistor configurations to resolve the read-write
bank conflicts in PCM.

This is precisely the parallelismwe seek in PCM banks, which can
resolve read-write bank conflicts, only when the two conflicting
requests are to two different partitions within the bank. To this end,
we propose the following two architectural enhancements.

• First, the memory controller must issue two back-to-back
ACTIVATE commands to the PCMbank to decode thewordline
and bitline addresses in the two partitions.

• Second, the memory controller must configure the transis-
tors to connect the two partitions, one to the write drivers,
and the other to the sense amplifiers.

To accomplish these actions, we introduce a new PCM command:

• READ-WITH-WRITE (RWW): connect the PCM bank’s sense
amplifiers and write drivers to the two decoded partitions.

Figure 3 compares how a write and read request is scheduled in
baseline PCM (❶) with our proposed PCM (❷) in which the mem-
ory controller exploits the PCM bank’s partition-level parallelism.
Following are the respective command sequences.
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Baseline PCM:
• ACTIVATE address in i
• WRITE
• PRECHARGE
• ACTIVATE address in j
• READ
• PRECHARGE
– Service time = 47 + 19

= 66 cycles

Proposed PCM:
• ACTIVATE address in i
• ACTIVATE address in j
• READ-WITH-WRITE
• PRECHARGE
– Service time = 1 + 47

= 48 cycles

tWR

S RL

Setup
(1)

Read Latency
(10)

Data readout on 
memory channel

(8)

S tWR

Setup
(4)

Write Data on 
memory channel

(8)

Write Latency
(35)

serving a write and read request in the 
baseline PCM design (66 cycles)

1

SS
RL

serving a write and read request in our 
PCM design (48 cycles)

1

Saved cycles = 18

Figure 3: Performance in the baseline (❶) and our PCM de-
sign (❷) when scheduling a write and a read request to dif-
ferent partitions in the same bank.

In the baseline PCM design, A-W-P takes 47 cycles and A-R-P
takes 19 cycles (see Figure 3), contributing to a total of 66 cycles
to serve these two requests. In our PCM design, A-RWW-P takes
47 cycles, during which the write recovery time (tWR) partially
overlaps with the read latency (RL). The extra 1 cycle is due to the
second ACTIVATE command. The total service latency is 48 cycles
for serving a read and write request mostly in parallel, a reduction
of 18 cycles (27%) over the baseline.

3.2 Resolving read-read bank conflicts in PCM
From the write driver’s internal circuit diagram shown in Figure 2,
we observe that the write driver can be viewed as a collection of
two components – thewrite pulse shaper logic, which generates
the current pulses necessary for the PCM cell’s SET and RESET
operations, and the verify logic, which verifies the correctness
of these operations. These two circuit components together serve
write requests from the bank using a PCM write scheme known
as program-and-verify (P&V) [19, 42]. The verify logic essentially
consists of two cross-coupled inverters, which can be configured
as a sense amplifier, similar to the one that is already part of the
peripheral circuit. Based on this observation, we propose simple
circuit modifications to introduce the decoupling transistor M4 (see
Fig. 2), which can be configured when needed, to decouple the
verify logic from the write pulse shaper logic. As a result of this
modification, we introduce two operating modes for the write driver.
In the decoupled mode, the verify logic can serve read requests
concurrently with those served by the sense amplifiers. In the write
mode, the verify logic, together with the write pulse shaper logic,
can serve P&V-based write operations. Table 4 summarizes our
findings.

This is precisely the read-read parallelism we seek in a PCM bank
to resolve a read-read bank conflict, where the two conflicting
requests are to two different partitions within the bank. To enable
this parallelism, we introduce two new PCM commands:

Operating Write driver circuit
Sense Amplifier

Operations
Modes Pulse shaper logic Verify logic Enabled

write
√ √ × one write request

decoupled × √ √
two read requests

Table 4: Two operating modes of the write driver circuit in-
troduced using our circuit modifications.

• DECOUPLE (D): set M4 = OFF.
• READ-WITH-READ (RWR): connect the sense amplifiers and
verify logic of the write drivers to the two decoded partitions.

To facilitate arbitration of the data bus for transferring two sets
of read data back to the memory controller, we introduce two more
transistors M5 and M6. In the write mode, M5 = OFF and M6 = ON.
In the decoupled mode, the memory controller first retrieves the
sense amplifiers’ data in 8 cycles. It then sets M5 = ON and M6 =
OFF in the next cycle, which enables the verify logic’s data to be
retrieved in the following 8 cycles. The data transfer latency from
PCM to the memory controller is therefore 8 + 1 + 8 = 17 cycles. For
this purpose, we introduce our final new PCM command:

• TRANSFER (T): sets M5 = ON and M6 = OFF.
Figure 4 compares how two read requests are scheduled in the

baseline PCM design (❶) with our PCM design (❷), where the mem-
ory controller exploits the PCM bank’s partition-level parallelism.
Following are the respective command sequences.

Baseline PCM:
• ACTIVATE address in i
• READ
• PRECHARGE
• ACTIVATE address in j
• READ
• PRECHARGE
– Service time = 19 + 19

= 38 cycles

Proposed PCM:
• ACTIVATE address in i
• ACTIVATE address in j
• DECOUPLE
• READ-WITH-READ
• TRANSFER
• PRECHARGE
– Service time = 1 + 1 + 1 + 10 +

8 + 1 + 8 = 30 cycles

serving two read requests in the baseline 
PCM design (38 cycles)

1

RL

S

3

10
17

RL

S RL

Setup
(1)

Read Latency
(10)

Data readout on 
memory channel

(8)

S RL

serving two read requests in the new 
PCM design (30 cycles)

2

Saved cycles = 
8

T

1 88

Figure 4: Performance in the baseline (❶) and our PCM de-
sign (❷) when scheduling two read requests to different par-
titions in the same bank.

In the baseline PCM design, each A−R−P takes 19 cycles. The total
service latency is therefore, 38 cycles to serve two read requests
serially from partitions i and j . In our PCM design, the memory
controller issues the following commands: A− A− D− RWR− T− P. In our
new design, RWR takes 10 cycles, during which the read latency (RL)
of the two read requests are overlapped. The total service latency is
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therefore 1 + 1 + 1 + 10 + 17 = 30 cycles, considering 8+1+8 = 17 cycles
for the data transfer from PCM to the memory controller as shown
in Figure 4 (❷).

4 EXPLOITING PARTITION-LEVEL
PARALLELISM IN PCM

This section describes our new memory access scheduling policy
to exploit each PCM bank’s partition-level parallelism, which we
describe how to enable in Section 3.

4.1 High-level overview
The key idea of our scheduling policy is to maximize partition-level
parallelism as long as the running average power limit (RAPL) is
not violated and a request does not become delayed too much.

At a high level, the memory controller maintains a read-write
queue (rwQ) to store PCM requests. We implement rwQ as a FIFO.
After scheduling a request from the rwQ, the memory controller
checks to see if there is any outstanding request that can be sched-
uled exploiting the PCM bank’s partition-level parallelism. If so, the
request is scheduled along with the ongoing request, and the mem-
ory timing parameters are set accordingly. Otherwise, the memory
controller selects the oldest request in the rwQ to be scheduled
after completing the ongoing one.

Figure 5 summarizes the flowchart of our new memory access
scheduling policy.

request 
critical?

Yes No

serve these 
two requests  

in parallel
Is power 
critical?

serve the older of the 
two requests to 
schedule alone Yes No

is 
requst 

outstanding
for longer 

than starvation 
threshold 

?

select 
oldest 

request

next-to-serve

Yes

Does this request 
have bank conflict 

with other re

select 
oldest 

request

select two 
outstanding 
requests in 

rwQ that have 
a bank conflict

select another 
outstanding request 

in rwQ that has a 
bank conflict with 
the oldest request

(to prevent starvation) (to exploit PALP)

Figure 5: Flowchart describing our new memory access
scheduling policy.

4.2 Detailed design
To explain our new memory access scheduling policy, we introduce
the following notation
r
p
l (w

p
l ): PCM read (write) access to wordline l in partition p

thb : starvation threshold
o(x): number of memory clock cycles for which

request x is outstanding in rwQ

PSA: power consumption of all sense amplifiers in a bank
PWD: power consumption of all write drivers in a bank

N : total number of memory clock cycles elapsed
P : running average power consumption

RAPL: running average power limit [13] for the PCM device

Algorithm 1: Our new memory access scheduling policy.
1 next-request = max

x∈rwQ
o(x ) ; /* select the oldest request in the rwQ */

2 if o(next-request) < thb then /* if the request next-request is not critical,
i.e., the number of clock cycles for which it is outstanding in the rwQ
is within the backlogging threshold thb */

3 next-request = select the oldest request in the rwQ that has bank conflict
4 end

5 Let next-request = apl ;
6 W p = set of nw write requests in rwQ to partition p ;
7 Rp = set of nr read requests in rwQ to partition p ;

; /* Find a request that can be concurrently scheduled with apl */

8 if apw is a write request then
9 concurrently-scheduled-request = max

i=1, . . .nr
o(rpi ) | rpi ∈ Rp ; /* select

the oldest request in the set Rp */

10 P = PR-West ; /* calculate power for concurrent request scheduling PR-West
using Equation 1 */

11 else /* apw is a read request */
; /* prioritize scheduling the write request because resolving
read-write bank conflicts achieves more performance improvement
compared to resolving read-read bank conflicts (determined
emperically). */

12 concurrently-scheduled-request = max
i=1, . . .nw

o(wp
i ) | wp

i ∈W p ; /* select

the oldest request in the set W p */

13 P = PR-West ; /* calculate power for concurrent request scheduling PR-West
using Equation 1 */

14 ifW p = ∅ then /* there are no write requests to partition p that can

be concurrently scheduled with apl */

; /* select a read request that can be concurrently scheduled and

calculate the power overhead */

15 concurrently-scheduled-request = max
i=1, . . .nr

o(rpi ) | rpi ∈ Rp ;

/* select the oldest request in the set Rp */

16 P = PR-Rest ; /* calculate power for concurrent request scheduling

PR-Rest using Equation 1 */

17 end
18 end
19 if P ≤ RAPL then /* estimated power consumption of concurrent schedule is

within the RAPL limit */

20 next-request-to-schedule = {apl ,concurrently-scheduled-request}
21 else
22 next-request-to-schedule = {apl }; /* select the oldest request to schedule

alone */

23 end

We estimate the power consumed to resolve a read-read (R-R) and
read-write (R-W) bank conflict as follows:

PR-Rest =
N ∗ P + 30 ∗ PSA + 30 ∗ PWD

N + 30 , PR-West =
N ∗ P + 48 ∗ PSA + 48 ∗ PWD

N + 48 (1)

The timing parameters are as follows: 30 cycles for resolving the
read-read (R-R) conflict, and 48 cycles for the read-write (R-W)
conflict (see also Table 5).

The pseudo-code of our new memory access scheduling policy
is shown in Algorithm 1.

4.3 Significance of PALP’s scheduling policy
We provide some intuition, via an example, as to why (1) enabling
each PCM bank’s partition-level parallelism is not sufficient to
significantly improve performance, unless there is a scheduling
policy that explicitly exploits such parallelism, and (2) why PALP’s
scheduling policy outperforms the standard FCFS policy [51], which
is commonly used by many PCM memory controllers.

Figure 6 illustrates an example showing how the memory con-
troller schedules six PCM requests to the same bank. In (❶) we
illustrate the FCFS policy of the Baseline [2], where no more than
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one partition is active at any time. Using the timing parameters
listed at the bottom of this figure, the total PCM service latency is
170 cycles.
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different partitions in the same bank
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Figure 6: Example request schedules using❶ the FCFS sched-
ule of the Baseline [2], ❷ FCFS schedule exploiting PCM
bank’s partition-level parallelism, and ❸ PALP’s new mem-
ory access scheduling policy.

In (❷) we illustrate the FCFS policy with partition-level paral-
lelism in PCM banks. The PCM request R1

127 is scheduled withW 3
120

by issuing the new PCM command RWW using partitions 1 and 3.
This resolves the read-write bank conflict. The PCM request R4

12 is
scheduled with R3

7 by issuing the new PCM command RWR using
partitions 4 and 3. This resolves the read-read bank conflict. We
note that requestsW 1

89 and R1
22 are both to partition 1, and therefore

scheduled serially. In this example, more than one partition can be
active, which enables the total PCM service latency to go down to
144 cycles, a reduction of 15.3% over the baseline.

Finally, in (❸) we illustrate one example schedule obtained using
PALP’s new memory access scheduling policy. The memory con-
troller re-orders PCM requests in the read-write queue to maximize
partition-level parallelism. We observe 1) request R1

127 is scheduled
withW 3

120, and request R4
12 is scheduled withW 1

89 by issuing two RWW
PCM commands and 2) request R3

7 is scheduled with R1
22 by issuing

a RWR PCM command. This reduces the total PCM service latency
to 126 cycles, a further savings of 12.5% compared to ❸.

Overall, PALP improves performance by 25.8% over the baseline
❷ in this example. In Section 6, we report PALP’s application-level
performance improvement for all our evaluated workloads.

5 EVALUATION METHODOLOGY
To evaluate PALP, we develop a full-system simulator with the
following components.

• Gem5 [6] simulator frontend to simulate anARMv8-A (aarch64)
system [3] with 8 cores.

• We use a hybrid DRAM-PCM memory system. DRAMPower
[10] is used to estimate its power consumption.

• In-house cycle-level PCM simulator for 8GB, 16GB, and 32GB
PCM with DDR4 interface. This is based on Ramulator [29],
a cycle-accurate main memory simulator. Power and latency
parameters are based on IBM’s 20nm PCM [37], with DDR4
interface parameters [4]. Our simulator is available for down-
load at [57].

Table 5 shows our simulation parameters.

Processor 8 cores, 3 GHz, out-of-order
L1-I/D cache Private 64KB per core, 4-way
L2 cache Private 512KB per core, 8-way
L3 cache Shared 4MB, 16-way
eDRAM cache Shared, writes-only, and on-chip

4MB (default), 8MB, 16MB, 32MB, and 64MB eDRAMs are
evaluated

Main memory 8GB (default), 16GB, and 32GB PCMs are evaluated
(4 channels, 4 ranks/channel, 8 banks/rank.)
Memory interface = DDR4
Memory clock = 256MHz
A-R-P / A-W-P = 19 cycles / 47 cycles
tWR / RL = 35 cycles / 10 cycles
A-RWW-P / A-RWR-P = 48 cycles / 30 cycles

Table 5: Major simulation parameters.

5.1 Evaluated techniques
We evaluate the following techniques:

• Baseline: The Baseline technique [2] maximizes PCM per-
formance by serving multiple requests in parallel across all
banks. It uses the FCFS policy and does not exploit partition-
level parallelism.

• MultiPartition: The MultiPartition technique [71] can resolve
the read-write bank conflicts in PCM by exploiting the pres-
ence of partitions in a bank. The original design of [71] uses
the FCFS policy, which provides very small benefit over the
Baseline (according to our evaluations). For a fair compar-
ison with PALP, we implemented out-of-order scheduling
for this technique. This scheduling policy explicitly prior-
itizes requests that exploit read-write parallelism in PCM.
Although [71] does not consider memory interface timings,
we implement the MultiPartition technique with the DDR4
interface to fairly and accurately estimate its performance.

• PALP: Our mechanism enables each PCM bank’s partition-
level parallelism, and uses our new memory access schedul-
ing policy to optimize performance by prioritizing requests
that can exploit such partition-level parallelism. PALP can
resolve both read-write and read-read bank conflicts.

The address mapping for all our evaluated systems is based on Mi-
cron’s DDR4 Datasheet [40]. We show an example of how a mem-
ory address is mapped in PCM with 4 channels, 4 ranks/channel, 8
banks/rank, 8 partitions/bank: [36:35]=rank, [34:23]=row, [22:14]=col-
umn, [13: 11]=partition, [10:8]=bank, [7:6]=channel, [5:0]=byte
within a cache line. We also evaluated various different forms of
address interleaving, ranging from cache block interleaving to row
interleaving [27]. Even though exact numerical benefits differ, our
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mechanism works and improves performance for all evaluated ad-
dress mappings.

5.2 Evaluated workloads
Table 6 reports the evaluated workloads. These workloads were
chosen because they have at least 1 memory access per 1000 in-
structions out of the 64MB on-chip eDRAM cache. Although SPEC
CPU2017 workloads are commonly used for evaluating high perfor-
mance systems, recent works suggest that these workloads are also
representative of many emerging applications that are regularly
enabled by users on their mobile phones [44].

MiBench workloads [20]
tiff2rgba, jpeg_decode, tiffdither, susan_smoothing, typeset
SPEC CPU2017 workloads [8]
cactusBSSN, bwaves, roms, parset, xz
Mixed (parallel) applications
AI-1 (4 copies each of deepsjeng, leela), AI-2 (4 copies each of
mcf, exchange2), Visualization-1 (4 copies each of povray, blender),
Visualization-2 (4 copies each of povray, imagick), Scientific (4 copies
each of cactusBSSN, bwaves)

Table 6: Evaluated workloads.

5.3 Figures of Merit
We report the following figures of merit in this work to evaluate
different mechanisms:

1. Execution Time: The time it takes to finish a workload.
2. Queuing Delay: The total number of memory cycles spent

by a request in the rwQ, averaged over all PCM requests.
The delay of each request is measured as the time difference
between when a request is inserted in the queue and the
time when it is scheduled to PCM.

3. Access Latency: The sum of queuing delay and the PCM
service latency, averaged over all PCM requests.

4. PCM Power Consumption: The total power consumed for
activating partitions and peripheral structures within PCM
banks.

6 RESULTS AND DISCUSSION
6.1 Overall system performance
Figure 7 reports the execution time of each of our workloads for
each of our evaluated systems normalized to the Baseline system.
The simulator is configured for the default settings of 4MB eDRAM
cache and a 8GB PCM. We make the following two observations.

First, MultiPartition has higher performance than the Baseline
(32% lower average execution time). This improvement is because
MultiPartition resolves read-write bank conflicts in PCM. Second,
PALP has the highest performance among all the three evaluated
systems (PALP has 51% lower average execution time than the Base-
line, and 28% lower average execution time than MultiPartition).
This performance improvement is because 1) PALP resolves both
read-read and read-write bank conflicts, and 2) PALP’s memory
access scheduling policy is optimized to maximize both read-read
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Figure 7: Execution time with PALP, normalized to Baseline
for our default configuration of 4MB eDRAM cache and 8GB
PCM.

and read-write partition-level parallelism to achieve higher perfor-
mance.

6.2 Queuing delay
Figure 8 reports the queuing delay of each of our workloads for
each of our evaluated systems normalized to the Baseline system.
The simulator is configured for the default settings of 4MB eDRAM
cache and a 8GB PCM. We make the following two observations.
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Figure 8: Queuing delay of PALP, normalized to Baseline.

First, the average queuing delay of MultiPartition is 34% lower
than Baseline. This is because MultiPartition reduces the average
delay of the outstanding write requests by scheduling them con-
currently with read requests that are to different partitions within
PCM banks (exploiting read-write parallelism). Second, the average
queuing delay of PALP is the lowest (52% lower than the Baseline
and 26% lower thanMultiPartition). This reduction is because PALP
also reduces the queuing delay of read requests by scheduling them
concurrently with those that are to different partitions within PCM
banks (exploiting read-read parallelism).

6.3 Access latency
Figure 9 reports the access latency of each of our workloads for
each of our evaluated techniques normalized to the Baseline, using
the default settings of our simulator. We make the following two
observations.

First, the average access latency of MultiPartition is 31% lower
than the Baseline. This reduction is a result of performance im-
provement due to exploiting read-write partition-level parallelism
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Figure 9: Access latency with PALP, normalized to Baseline.

in PCM, as we have discussed in Section 3.1. Second, the average
access latency of PALP is the lowest among all the three systems
(47% lower than the Baseline, and 23% lower than MultiPartition).
This reduction is due to the significant reduction of the PCM ser-
vice latency achieved by exploiting both read-read and read-write
partition-level parallelism in PCM banks.

6.4 PCM power consumption
Figure 10 reports the average and peak power consumption of
PALP for each of our workloads. The simulator is configured for
the default settings of 4MB eDRAM cache and a 8GB PCM. We also
report the RAPL limit, which is 0.4pJ per access. This limit is what
is specified in the PCM datasheet [37]. We make the following two
observations.

ca
ct

us
BS

SN

bw
av

es

ro
m

s

pa
rs

et xz

tif
f2

rg
ba

jp
eg

tif
fd

ith
er

su
sa

n_
sm

oo
th

in
g

ty
pe

se
t

Sc
ie

nt
ifi

c

Vi
su

al
iza

tio
n-

1

Vi
su

al
iza

tio
n-

2

AI
-1

AI
-2

AV
ER

AG
E

0.0

0.2

0.4

PC
M

 p
ow

er
 

(p
J/a

cc
es

s)

Average PCM Power Peak PCM Power RAPL

Figure 10: Average and peak power consumption of PCM
with PALP.

First, both average and peak PCM power consumption of PALP
iswithin the RAPL limit. The average PCMpower is at least 0.08pJ/access
lower than the RAPL limit, while the peak PCM power is at least
0.03pJ/access lower. Our memory access scheduler explicitly esti-
mates the increase in power consumption when more than one
partition is active to exploit partition-level parallelism, and seri-
alizes requests to PCM anytime the RAPL limit is estimated to be
exceeded. None of the prior works take power consumption into ac-
count while exploiting PCM bank’s partition-level parallelism. As a
result, the RAPL limit cannot be guaranteed in these works. Second,
our technique allows the exploration of performance and power
trade-offs. We observe that reducing the RAPL limit to 0.35pJ/access
will not hurt performance when our technique is employed. In fact,
system designers can potentially use our technique to estimate the

RAPL needed to achieve a desired performance target and distribute
the surplus power budget to other system components.

6.5 Latency, power, and area overheads
We evaluate the latency and power overhead of PALP against the
Baseline PCM design using SPICE simulations [16] with 20nm
technology files from [56]. For the Baseline design, we use IBM’s
PCM architecture [37]. In evaluating our design overheads, we
use the industry standard low standby power (LSTP) multi-gate
transistors. We also use copper interconnect parasitics [53] in our
SPICE simulation to model wire delays. Finally, we modeled process
variation using the guidelines presented in [63]. In Table 7, we
report the latency and power overheads of PALP.

Design
Technology Vdd Critical Path Delay Power

Type (V) (ps) (pJ/access)

Baseline [37] Double-gate 0.9 1159.2 0.311
Proposed PALP Double-gate 0.9 1453.2 0.364

Table 7: Design parameters for the Baseline [37] vs. PALP for
a single peripheral structure consisting of a sense amplifier
and a write driver.

We observe that due to the new circuits that we introduce, the
critical path delay has increased by 25.3%. However, the clock cy-
cle time is 3.9ns for 256MHz rated memory clock, which is much
higher than the critical path delay of 1453.2ps. We believe that the
introduced logic is unlikely to create setup or hold violations at this
rated clock frequency.

Our design also increases the power consumption by 17% over
the Baseline design of a single peripheral structure consisting of a
sense amplifier and our new write driver.

Finally, we observe that PALP has an area overhead of 1.15%
compared to the area of each peripheral structure. This overhead
is negligible compared to the area of a 1GB PCM bank, which is
9.43 × 6.30 mm2 at 20nm technology node.

6.6 Effect of PALP with different PCM
capacities

Figure 11 reports the execution time of each of our workloads with
PALP using PCM capacities of 16GB and 32GB, normalized to the
default configuration using PALP with 8GB PCM. The eDRAM
capacity is configured to 4MB for all these configurations. We make
the following two observations from our study.

First, for most workloads, we observe a very little performance
improvement when the PCM capacity is increased from 8GB to
32GB. This is because these workloads have small working sets, for
which a 8GB PCM is sufficient. Second, for xz we observe a signifi-
cant performance improvement whenwe increase the PCM capacity
to 16GB and 32GB due to xz’s large working set. For this workload,
the higher the number of PCM banks, the better the performance of
PALP. This is because PALP can exploit more parallelism in more
partitions in PCM that exist in more banks.

6.7 Effect of different eDRAM capacities
Figure 12 reports the execution time of each of our workloads
with PALP, normalized to the default configuration using PALP
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Figure 11: Execution time with PALP, for different PCM ca-
pacities, normalized to the default configuration of PALP
with 8GB PCM.

with 4MB eDRAM cache. We report results for PALP with eDRAM
capacity of 8MB, 16MB, and 32MB. The PCM capacity is configured
to 8GB. We make the following two observations.
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Figure 12: Execution time with PALP, for different eDRAM
capacities, normalized to the default configuration of PALP
with 4MB eDRAM.

First, for most workloads, as we increase the capacity of the
eDRAM cache we observe a significant improvement in perfor-
mance (lower execution time). This is because with a larger eDRAM
cache capacity, more write requests are absorbed in the eDRAM,
leaving only the read requests to be queued in the rwQ. This im-
pacts the execution time in the following two ways: 1) the latency
to service long write requests is reduced, and 2) the memory con-
troller now has more flexibility to exploit read-read parallelism
from the outstanding read requests. Second, for susan_smoothing,
we observe a marginal change in performance when we increase
the eDRAM capacity to 32MB. This is because there are only a
small number of write requests in this workload to begin with, and
therefore the workload’s performance is insensitive to the size of
the eDRAM cache, which buffers only write requests.

6.8 Effect of different interface timings
Figure 13 reports the execution time of each of our workloads for
PALP with DDR2 and DDR4 interfaces, normalized to the Baseline
using the default settings of our simulator. We make the following
two observations.
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Figure 13: Execution time with PALP, for different DDRx in-
terfaces, normalized to the Baseline.

First, the performance of PALP with DDR2 and DDR4 interfaces
are both better than the Baseline. The average execution time of
PALP with the DDR2 interface is 33% lower than the Baseline,
while that with the DDR4 interface is 51% lower than the Baseline.
Second, we observe that the execution time of PALP decreases
when the memory interface is changed from DDR2 to DDR4. The
average performance improves by 27% when DDR4 interface is
used. This increase is because the data transfer rate is doubled in
DDR4 compared to DDR2. A complete exploration of all DRAM
standards is a vast undertaking, and is beyond the scope of this
work (see, for instance, [18]). We conclude that PALP improves
performance for multiple DDRx interface standards.

6.9 Effect of different design thresholds
6.9.1 RAPL limit: Figure 14 summarizes the variation in PALP’s
execution time (normalized to the Baseline) and PCM power con-
sumption for all workloads, when RAPL limit changes between
0.2-0.4 pJ/access. The bar heights represent the execution time and
power consumption using the default RAPL limit of 0.3pJ/access.
The error bars represent variation when the RAPL limit is varied
between 0.2pJ/access and 0.4pJ/access. We make the following three
observations.

ca
ct

us
BS

SN

bw
av

es

ro
m

s

pa
rs

et xz

tif
f2

rg
ba

jp
eg

_d
ec

od
e

tif
fd

ith
er

su
sa

n_
sm

oo
th

in
g

ty
pe

se
t

Sc
ie

nt
ifi

c

Vi
su

al
iza

tio
n-

1

Vi
su

al
iza

tio
n-

2

AI
_1

AI
_2

AV
ER

AG
E0.0

0.2
0.4
0.6
0.8
1.0
1.2

Ex
ec

ut
io

n 
tim

e 
of

 P
AL

P 
no

rm
al

ize
d 

to
 th

e 
Ba

se
lin

e

Execution time Average power

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Av

er
ag

e 
PC

M
 p

ow
er

(p
J/a

cc
es

s)

Figure 14: Execution time with PALP normalized to the
Baseline and average power consumption with PALP for all
workloads. Height of each bar represents PALP’s result with
the default RAPL limit of 0.3pJ/access [37]. Error bars repre-
sentminimum tomaximumvariation obtained by sweeping
the RAPL limit from 0.2pJ/access to 0.4pJ/access.
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First, different RAPL limits lead to different performance and
power consumption trade-offs in all workloads. In other words, the
RAPL limit can be set to achieve the desired performance and power
targets. Second, setting a stricter RAPL limit results in lower per-
formance (i.e., higher normalized execution time), while reducing
the average power. We observe that for bwaves, setting the RAPL
limit to 0.2 pJ/access results in a performance improvement of only
11% over the Baseline, compared to the 33% when RAPL limit is
set to 0.4pJ/access. Third, beyond the RAPL limit of 0.4pJ/access,
we see no significant variation in either execution time or power
consumption, which means that the RAPL limit for PCM can be
safely reduced from its rated value of 0.4pJ/access [37].

6.9.2 Backlogging threshold thb : Figure 15 summarizes the varia-
tion in PALP’s execution time normalized to Baseline for all work-
loads. Each bar height represents the execution time using the
default backlogging threshold of 8 accesses. The error bars repre-
sent variation when the backlogging threshold is varied from 2 to
16. We make the following two observations.
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Figure 15: Execution timewith PALPnormalized to the Base-
line for all workloads. Height of each bar represents PALP’s
execution time using the default backlogging threshold (thb )
of 8 accesses. Error bars represent minimum to maximum
variation obtained by sweeping the threshold from 2 to 16.

First, normalized execution time changes as we vary the back-
logging threshold. This is because setting a lower threshold forces
PALP to schedule outstanding requests sooner, prioritizing starva-
tion freedom over performance (i.e., parallelism exploitation). This
leads to a reduction in PALP’s performance improvement. On the
other hand, setting the backlogging threshold to a higher value
offers more flexibility to PALP, allowing it to exploit partition-level
parallelismmore aggressively, thereby improving performance. Sec-
ond, for workloads such as xz, there is no impact of varying the
backlogging threshold, meaning that PALP can prioritize starvation
freedom for these workloads.

6.10 Impact of PALP design decisions
6.10.1 Bank conflicts and scheduling: To estimate the impact of
resolving both the read-read and read-write bank conflicts, and
the access scheduling policy, in Figure 16 we report the execution
time of PALP normalized to Baseline, with three configurations:
(1) PALP resolving read-write conflicts only (PALP-RW-FCFS), (2)
PALP resolving both conflicts (PALP-RR-RW-FCFS), and (3) PALP

resolving both conflicts with the new access scheduling policy
(PALP-ALL). We make the following two observations. First, by re-
solving the read-write bank conflicts, PALP improves performance
by only 7% over the Baseline.1 When PALP resolves both read-write
and read-read bank conflicts, performance improves by 32.2% over
the Baseline. Second, by introducing our new scheduling policy,
PALP’s performance improves significantly (51.1% lower average
execution time than the Baseline with PALP-ALL). We conclude
that our choice of resolving both the read-read and read-write con-
flicts, and the new access scheduling policy are all essential to
provide the highest performance benefits with PALP.
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Figure 16: Performance impact of PALP’s different compo-
nents.

7 RELATEDWORKS
To our knowledge, this is the first work that 1) enables and ex-
ploits partition-level parallelism in phase-change memory to re-
solve read-read bank conflicts, and 2) designs a new memory access
schedulingmechanism to aggressively exploit PCM’s partition-level
parallelism.

7.1 Read-While-Write in PCM
A patent application [5] describes read-while-write for PCM,
where a read and write request can be scheduled simultaneously
from a PCM bank using different partitions. However, no archi-
tectural technique is described on how to leverage this feature for
system performance. Some earlier works such as [71] address ar-
chitectural aspects assuming unrealistic system settings (such as
infinite memory channel bandwidth). Our work not only addresses
limitations of these prior works to resolve read-write bank conflicts,
but also resolves read-read bank conflicts for the first time. We also
evaluate PALP against a realistic version of [71] and find that PALP
improves average system performance by 28%.

7.2 Performance/energy/endurance
improvement of PCM

Many prior works optimize performance and energy of PCM [2,
12, 31, 32, 47, 50, 65]. Cho et al. propose Flip-N-Write [12] to im-
prove PCM performance by first reading the memory content and
1PALP-RW-FCFS is comparable to the original design proposed in the MultiPartition
technique [71]. However, the results we present in Section 6.1 for the MultiPartition
technique are better than those we present here for PALP-RW-FCFS. This is because, in
Section 6.1, we implemented out-of-order scheduling for the MultiPartition technique,
to enable a more fair comparison with our PALP mechanism.
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then programming only the bits that need to be altered. Qureshi et
al. propose PreSET [47], an architectural technique that SETs the
PCM cells of a memory location in the background before program-
ming them during write. This improves performance by converting
a write operation to a RESET operation of the PCM cells, which
is faster. There are also techniques to consolidate multiple write
operations [62] to reduce the number of cells that need to be pro-
grammed, saving energy and improving performance. To mitigate
PCM’s cell-level endurance problem, several wear-leveling tech-
niques are proposed [1, 54]. PALP can be combined with these and
similar techniques.

7.3 Writeback optimization
Several prior works propose line-level writeback [30–32, 45, 46, 50],
where for each evicted DRAM cache block, processor cache blocks
that become dirty are tracked and selectively written back to PCM.
Various works propose dynamic write consolidation [33, 55, 58,
61, 62], where PCM writes to the same row are consolidated into
one write operation. Other works propose write activity reduction
[24, 25], where registers are allocated on CPUs to reduce costly
write operations in PCM. Yet some other works propose multi-stage
write operations [67, 69], where a write request is served in several
steps rather than in one-shot to improve performance. Qureshi et al.
propose a morphable PCM system [48], which dynamically adapts
between high-density and high-latency MLC PCM and low-density
and low-latency single-level cell PCM. Qureshi et al. propose write
cancellation and pausing [49], which allows PCM reads to be ser-
viced faster by interrupting long PCM writes. Jiang et al. propose
write truncation [26], where a write operation is truncated to allow
read operations, compensating for the loss in data integrity with
stronger ECC. PALP is complementary to all these approaches.

7.4 Multilevel Cell PCM Optimizations
PCM cells can be used to store multiple bits per cell (referred to as
multilevel cell or MLC). MLC PCM offers greater capacity per bit at
the cost of asymmetric energy and latency in accessing the bits in
a cell. Yoon et al. propose an architectural technique for data place-
ment in MLC PCM [65], exploiting energy-latency asymmetries.
These techniques are also complementary to and can be combined
with PALP.

8 CONCLUSION
We introduce PALP, a new mechanism that enables each PCM
bank’s partition-level parallelism, and exploits such parallelism
using a new memory access scheduling mechanism. Previous archi-
tectural solutions to address parallelism in PCM banks can resolve
only the read-write bank conflicts and assume an unrealistic mem-
ory interface with no timing constraints. We observe that (1) read-
read bank conflicts far outnumber read-write bank conflicts, and (2)
without designing a memory interface with realistic timing, the esti-
mated performance improvements can be misleading. Based on our
observations, we introduce PALP, which is built on three contribu-
tions. First, we introduce new PCM commands to enable parallelism
in a bank’s partitions in order to resolve read-write bank conflicts,
with modest changes needed to PCM logic or its interface. Second,
we propose simple circuit modifications to resolve read-read bank

conflicts. Third, we propose a new PCM access scheduling mecha-
nism that improves performance by prioritizing those requests that
exploit PCM bank’s partition-level parallelism over other requests.
While doing so, our new scheduling mechanism also guarantees
starvation-freedom and the running-average-power-limit (RAPL)
of PCM.

We evaluate PALP with workloads from the MiBench and SPEC
CPU2017 Benchmark suites. Our results show that PALP reduces
average PCM access latency by 23%, and improves average system
performance by 28% compared to the state-of-the-art approaches.

We conclude that PALP is a simple yet powerful mechanism to
improve PCM performance. We have open-sourced our infrastruc-
ture [57] to enable future work based on PALP .
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