CAFE: Automatic Correction and Feedback of Programming
Challenges for a CS1 Course

Simon Liénardy
Université de Liege, Montefiore Institute — Belgium
simon.lienardy@uliege.be

Dominique Verpoorten
Université de Liege, IFRES — Belgium
dverpoorten@uliege.be

ABSTRACT

This paper introduces CAFE (“Correction Automatique et Feed-
back des Etudiants”), an on-line platform designed to assess and
deliver automatic feedback and feedforward information to CS1
students, both on process and products of series of programming
exercises, targeting especially an informal Loop Invariant for build-
ing the code. The paper reports on the first trials of CAFE with a
group of 80 students. Results show that CAFE is used, usable, and
appreciated by students.

CCS CONCEPTS

« Theory of computation — Algorithm design techniques;
« Social and professional topic — CS1.

KEYWORDS

CAFE, Graphical Loop Invariant, feedback, CS1, Assessment for
Learning

1 INTRODUCTION

This paper introduces and discusses CAFE (“Correction Automa-
tique et Feedback des Etudiants”?), an on-line platform for automat-
ically assessing students’ programming exercises. The key point of
CAFE is that it not only focuses on the program output but also on
the cognitive process inherent to the program construction. CAFE
provides students with feedback and feedforward information (i.e.,
what should they do to improve their solution). CAFE is applied
in the context of a CS1 course in which students are exposed to C
programming language concepts and basic algorithmic aspects.

In Belgium, the access to the Higher Education curriculum in
Computer Science is non-selective. Hence, we cannot make any
kind of assumptions about first year students’ background. Many
of them enter the program with excitement (unfortunately due to
a biased vision of the Computer Science field), but without being
clearly aware of actual requirements. This contributes to a high
failure rate, as well as a high withdrawal ratio throughout the
year [5, 6, 39].

Typically, an algorithm requires to write a sequence of instruc-
tions that must be repeated a certain number of times. This is usually
known as a program loop. The methodology we proposed in the CS1
course is based on an informal version of the Loop Invariant (a prop-
erty of a program loop that is verified at each iteration - i.e., at each
evaluation of the Loop Condition) introduced by Hoare [18, 19].

1“Automatic Marking and Feedback for Students”.

Laurent Leduc
Université de Liege, IFRES — Belgium
laurent.leduc@uliege.be

Benoit Donnet
Université de Liége, Montefiore Institute — Belgium
benoit.donnet@uliege.be

Our methodology consists in determining a strategy (i.e., the Loop
Invariant) to solve a problem prior to any code writing and, next,
rely on that strategy to build the code, as initially proposed by
Dijkstra [15] and extended later by Back [2]. The methodology also
implies to verify the loop ends. This is achieved, in our methodology,
by measuring the progress made by each loop iteration through
the definition of a Loop Variant (i.e., a function that measures the
progress made by the loop towards the termination). As such, the
Loop Invariant and the Loop Variant can be seen as the corner
stones of code writing. The problem with such a methodology is
that it is quite an abstract reflection phase that might confuse stu-
dents who may not have the desired abstract background, specially
if the Loop Invariant is expressed as a logical assertion. However,
this methodology requires to be practiced on a regular basis [20, 30]
with carefully scaffolded problems [34], so that students can, little
by little, master it.

In the context of our CS1 course, a reflection was carried out on a
teaching activity that could fulfill this need of regular exercises and
that could come in addition to classic exercises sessions (12 sessions
of exercises and 5 labs in front of computers in our CS1 course).
Limited by multiple constraints (a single Teaching Assistant, time,
room availability, etc.), those exercises have to be done at home,
with an automatic correction and feedback provided to students.

The main issue of such an automatic system lies in the fact that
it is very difficult to, simultaneously, assess the program output
and the cognitive process inherent to the program construction. In
particular, as the course puts the emphasis on the Loop Invariant
and the Loop Variant, it quickly appeared as desirable to include
them in the automatic correction of the student’s work. Further-
more, not doing so would have resulted in a dissonance between
theoretical lessons and practical sessions.

This is exactly what we propose in this paper: an on-line plat-
form, called Car£? (“Correction Automatique et Feedback des Etudi-
ants”) for automatically assessing students’ programming exercises.
In addition, this platform is inspired by assessment for learning®
(AfL) [34, 40].

In a nutshell, CAFE proposes to students several programming
Challenges (roughly one Challenge every two weeks) spread over
the CS1 semester. It encourages students to work on a regular basis
on increasing difficulties problems. In addition, those Challenges

2CaFE source code, with examples of programming Challenges, is provided here:
https://github.com/slienardy/CAFE

3 Assessment for Learning is defined as informing learners of their progress to empower
them to take the necessary action to improve their performance [20].

https://github.com/slienardy/CAFE

ACE 2020, Melbourne, Australia,

1| int bsearch(int *A, int N){

int 1 =0, u=N-1; €=======oe==- zone 1
//Invariant
while(l < u){
//Invariant A Loop Condition
intm= (1 +u) / 2;
if (ALm] < X)
1 =m+1;
else if(Alm] > X) €= === === == = = = = zone 2
u=m-1;
else
u=1-=m;
}
//Invariant A —lLoop Condition
if (Afu]l == X) €= === === === === zone 3
return u;
else
return -1;

}

Excerpt 1: Binary search code with zones delimited by the
Loop Invariant.

could help students to better understand the course learning out-
comes [37] as well as to increase their self-efficacy [3]. Further,
for each Challenge, CAFE allows students to submit up to three
times [21] their solution, thus closing the feedback loop [8]. For
each submission, CAFE automatically provides a feedback and feed-
forward information based on the literature [22], promoting self-
regulated learning. Among established quality criteria for feedback,
CAFE primarily instantiates the followings: (i) individualized feed-
back [11], (i) feedback focused on the task, not on the learner [29],
and, (iii) feedback directly made available to the student preventing
her from being bogged down or frustrated [23]. Finally, CAF£ allows
the pedagogical team to collect valuable temporal data, leading to
a refinement in each student profile and to assess the overall CS1
course understanding.

CarE was used during Academic Year 2018-2019, with a popu-
lation of 80 students. This paper discusses data we have collected
and lessons learned from CAFE usage.

The remainder of this paper is organized as follows: Sec. 2 dis-
cusses and illustrates the programming approach we propose in
our CS1 course; Sec. 3 is the heart of the paper by discussing every
CAFE components; Sec. 4 presents a preliminary evaluation of CAFE
impact and discusses the lessons learned from its usage; Sec. 5 po-
sitions this work with respect to the state of the art; finally, Sec. 6
concludes this paper by summarizing its main achievements.

2 PROGRAMMING METHODOLOGY

A Loop Invariant [18, 19] is a property of a program loop that is
verified (i.e., true) at each iteration (i.e., at each evaluation of the
Loop Condition). The Loop Invariant purpose is to express, in a
generic and formal way through a logical assertion, what has been
calculated up to now by the loop. Historically, Loop Invariant has
been used for proving code correctness (see, e.g., Cormen et al. [12]
and Bradley et al. [9] for automatic code verification). As such, the
Loop Invariant is used “a posteriori” (i.e., after code writing).

Liénardy et al.

In our CS1 course, we envision a different perspective in which
the code is built upon the Loop Invariant that must be thus ex-
pressed before coding (“a priori” usage), as suggested by Dijk-
stra [15] and pushed further by Back [2]. This allows us to divide
the code in three main zones, as illustrated in Listing 1, each zone
being constructed thanks to the Loop Invariant. Zone 1 refers to
the code segment prior to the loop, typically used for initializing
variables. At the end of Zone 1, the Loop Condition is evaluated,
meaning that the Loop Invariant must be verified. Based on this
statement, the Loop Invariant can be used to determine the required
variables as well as their initial values. Zone 2 refers to the Loop
Body itself. As the Loop Condition has been verified, before execut-
ing any instruction of the Loop Body, the Loop Invariant is true and
the Loop Condition is true. At the end of the Loop Body, the Loop
Condition is evaluated again, meaning the Loop Invariant must be
restored. Based on those two situations, one can derive the Loop
Body instructions. Zone 3 refers to the piece of code after the loop,
when the Loop Condition has been invalidated. This zone contains
instructions that should allow the program to finally solve the ini-
tial problem. Given that the Loop Condition has been evaluated,
the Loop Invariant is true but the Loop Condition is false. Based on
this situation, it is possible to derive the final instructions.

While Dijkstra expressed Loop Invariants as logical assertions,
we believe this could be counter-productive in the context of a
CS1 course, in which students may not have the required level of
abstraction. Instead, we build our methodological approach on an
informal version of Dijkstra’s process by proposing an informal
Graphical Loop Invariant.

The Graphical Loop Invariant is supposed to contain key infor-
mation that will eventually be used to actually write the code. As
such, the Graphical Loop Invariant represents a strategy to solve the
problem and is used to support thoughts on the code. Although be-
ing informal, this drawing must at least detail variables, constant(s),
and data structures manipulated by the program; the constrains on
them; the relationships they may share, and that are conserved all
over the iterations. It should also express, in a general way, what
has been already computed by the program after a certain number
of loop iterations. With this method, we clearly shift the difficulty
not anymore in writing the code itself but in the reflection phase
that is prior to the code. This step requires thus training and expe-
rience. But, once mastered, it becomes possible to efficiently solve
complex problem.

In the remainder of this section, we illustrate this process (from
drawing the Graphical Loop Invariant to writing the code) with a
well-known problem: the binary search in a sorted (in the increasing
order) array A of length N, A being indexed from @ to N-1. The
function implementing the binary search will return the index of
the researched value X, or a special value -1 if X does not belong to
A.

The basic idea of the binary search is to divide, at each step, the
search zone based on the ordered property of A and the value of X.
Generally speaking, one can thus divide A in three zones: (i) array
elements < X, (ii) array elements > X, and (iii) array portion in
which the search must be performed.

Those considerations are depicted in Fig. 1a where we delimit
the - < X zone with a variable 1 (for lower indices) and the - > X
zone with variable u (for upper indices). As can be seen in Fig. 1a,

CAFE: Automatic Correction and Feedback in CS1

0 1 u N-1|N 0

ACE 2020, Melbourne, Australia,

A: <X to investigate ->X A:

sorted and unmodified

(a) Graphical Loop Invariant for binary search.

(b) Initial state for binary search.

to investigate

(c) Final state for binary search.

Figure 1: Graphical Loop Invariant and particular cases for binary search.

we carefully depict the array as a rectangle labeled with the array
name and the indices written above it. Labeling a data structure
with its name is, at first, useful for the understanding and becomes
mandatory when multiple structures come into the game. It is also
the first required step for making the Loop Invariant coherent with
the code when it will be written. It should be noted that, in our
Figure, the - < X zone is formally comprised between indices 0
and 1 — 1, which is represented by the letter 1 written at the right
of the vertical bar determining this zone. We call such a vertical
bar dividing line (it appears thicker in Fig. 1a). This accuracy in
the drawing is of the highest importance to easily determine 1
initial value . The same remark applies for u. This Graphical Loop
Invariant also makes easier the discovery of a Loop Variant (i.e., a
function that measures the progress made by the loop towards the
termination). It is, simply, the length of the “to investigate” zone,
ie,u—I+1inFig. la.

As explained earlier in this section, the Graphical Loop Invariant
can be used to divide the code in three zones and to write the
code of those zones. In particular, Fig. 1b illustrates, graphically,
the situation in the first zone. This is obtained by stretching the
two dividing lines to their minimum (for 1) and maximum (for u)
values. At start, we cannot ensure that any values in A is less than
X, neither we can ensure that any values in A is greater than X.
Hence, the corresponding zones in the array A at the initialization
are empty, as shown in Fig. 1b. From this drawing, we see that in
this situation, 1 (respectively u) corresponds to index 0 (respectively
N — 1) and we conclude that we must initialize 1 and u to these
respective values, as done in Line 2 of Listing 1.

Similarly, we can modify Fig. 1a to depict the loop final situation
(see Fig. 1c). The zone to be checked in A (i.e., the zone A[1...u]) has
now the minimal size, leading to a case where 1 == u. In such a case,
the loop must be stopped and one can derive the Loop Condition
(i.e., 1 # u). Pedagogically speaking, we can use a lighter condition,
1 < u that has the advantage to better represent the relationship
between those indices.

Zone 2 (i.e., loop body) consists in making the loop progressing
toward the final objective: finding X and returning its position in
A. To do so, we must investigate the unknown zone (labeled “to
investigate” in Fig. 1a) and make growing one of the two other
zones, thus moving the associated dividing line. The binary search
consists in looking the middle of that zone, at index m = l% (line 7
in Listing 1). If it appears that A[m] < X, one concludes that X does
not belong in the left part of A and that the left dividing line must
be translated to the right (line 9 of Listing 1) by taking the value
m+ 1 (+1, since we know that A[m] < X). A similar reasoning can be
made for the A[m] > X case. Finally, otherwise, the loop must end

| November | December ‘|

>

Challenges JJ T ointers +
Dyn. Alloc.
Challenge4
Challenge3
Challenge2

|September| October

Functions +
Invariants
Arrays +
Invariants

Loops +
Invariants

Challengel Loops

Figure 2: Challenges timeline over the semester.

(i.e., A[m] == X). This is achieved by forcing the final situation, as
illustrated in Fig. 1c (see line 13 in Listing 1).

Finally, zone 3 is reached once one leaves the loop, i.e., when
1==u, as explained by Fig. 1c. In such a case, the zone “to investi-
gate” contains a single element. We thus only have to check whether
this element is X or not (lines 17 — 20 in Listing 1).

3 CAFE

This section introduces CAFE (“Correction Automatique et Feed-
back des Etudiants”), our on-line platform for automatically as-
sessing students’ programming exercises. We use CAFE through
six assignments called Challenges distributed throughout the first
semester?, approximately every two weeks. Challenges account
for 10% of the final grade, each Challenge having the same weight.
Each Challenge consists in a programming/algorithmic task. The
first Challenge (called “Challenge 0”) helps students in grasping
how CAFE works and, consequently, does not account in the final
mark. Each of the five subsequent Challenges focuses on a particu-
lar subject and accounts in the final mark. It is worth to notice that
we allow students to not submit one of the five Challenges (concept
of Joker). In that case, the Challenge does not account in the final
mark. This was thought to increase the students’ perception of con-
trollability that leads to higher motivation according to Viau [38]
but also to get rid of students’ excuses when not submitting a
Challenge [10].

The Challenges are of increasing complexity (from a simple loop
to write — Challenge 1 - to a modular program solving a reason-
ably complex problem — Challenge 4), referring thus to assessment
for learning (AfL) [30, 34, 40]. The last Challenge is dedicated to
pointers and dynamic allocation, as we noticed those particular

“In Belgium, the Academic year is divided in two semesters. The first one ranges from
mid-September to Christmas, with the Final Exam taking place in January.

ACE 2020, Melbourne, Australia,

#include <stdio.h>

int main(){
const unsigned int N = ..., M= ..., L = ...;// large enough
int A[NJ], BIMI, C[LI;
// Arrays A and B are filled with values (code not provided)

// Your code will be inserted here.
}//End of the program

Excerpt 2: Code template provided to the student.

topics appear to be difficult for students. The Challenges timeline
is illustrated in Fig. 2 (Challenge 0 not shown).

Sec. 3.1 discusses how students interact with CAFE, in particular
focusing on the Challenge template they have to fill in, while Sec. 3.2
explains how we implemented Cart.?

3.1 Students Interactions with CAFE

A Challenge lasts three days. The first day, the subject is made
available for download on the course blackboard. In addition to
the subject, students must download a template to fill in with their
answers. The correct way to format the answer in the template is
provided in the Challenge subject as well as in the template itself.

Once ready, the student answer can be uploaded to CAFE via a
web platform. CAFE immediately corrects it and produces a feedback
and a feedforward that are directly made available to the student.
She can then consider these feedback and feedforward to improve
her answer and submit it again [17]. Students benefit up to two
retries (for a total of three submissions [21] — this way, we avoid the
traditional trial and error approach) over the Challenge duration.
This process enables the students to learn from their errors by
actually taking into account the feedback and feedforward and by
submitting an improved solution, closing so the feedback loop [8].
Doing so prevents also the student from being bogged down. At
the end, only the last submission accounts for the mark.

3.1.1 Challenge Instructions. The instructions describe the tasks
students have to achieve and how the template must be filled to
provide a valid submission (i.e., to be properly understood by CAFE).
The Excerpt 2 presents an example of code template provided in
a Challenge instructions (this is called “Solution Template” by Ke-
uning et al. [22]). The goal of this Challenge is to compute the
intersection of two sorted arrays, A and B, and to place the result
in a third one, C. As it can be seen in the code Excerpt, the arrays
are already declared and filled with values. The students only have
to complete the code that actually computes the intersection. Note
that imposing the name of the arrays eases the Challenge correction
(for more details see Sec. 3.2).

Furthermore, as most of the Challenges consist in writing loops
and as the course requires to write loops based on Graphical Loop
Invariant (see Sec. 2), the Challenges must embed Loop Invariants
so that students can train themselves. At first, it may appear difficult
to combine automatic correction and graphical representation. We
solve this by asking students to fill in a blank Graphical Loop
Invariant. Such a blank drawing depicts only the general shape that
should follow a correct and rigorous Loop Invariant. Students must
then annotate properly the figure so that the drawing becomes their
Loop Invariant for their solution to the particular problem to be

Liénardy et al.

A: Part A1 Part A2
B: Part B1 Part B2
C: Part C1 Part C2
And the values to the and to the are in the

Figure 3: Example of a blank Loop Invariant given to the stu-
dents in the Challenge instructions described in Sec. 3.1.1.

solved. An example of blank Graphical Loop Invariant is provided
in Fig. 3. The instructions state that the green boxes 1. to 15. should
be replaced by variables, constants names, or left blank. The box
16. has to be replaced by a number corresponding to the multiple
choice: 1: different from; 2: common to; etc. (some inconsistent
possible answers are added). Finally, the boxes 17. to 19. must be
replaced by a number corresponding to one of the part written in
red in Fig. 3, i.e.:
(1) Part A1,

(2) Part A2;
(3) Part B1;
(4) Part B2;
(5) Part C1;
(6) Part C2;

A mock example of such a replacement is always added in the
instructions. The way to encode the Graphical Loop Invariant in
the Challenge template is also clarified in the instructions, with
an example, to be as clear as possible. The Excerpt 3 presents a
template and how it could have been filled in by a student.

2
3

3.1.2 Template. The format of the template file follows very basic
rules: the answers are delimited by the special symbol "#". C-style
comments are allowed, everything else is considered as an answer.
With such rules, the template is easily parsed. An example of tem-
plate, already filled with a student’s answer is presented in the
Excerpt 3. The C syntax highlighting enables to distinguish the
reminders of instructions (i.e., the comments in green) and the
student’s answers.

In particular, the lines 9 to 27 show how the Loop Invariant is
encoded. As the Loop Variant is concerned, it is expressed, in the
template, as a simple C expression.

3.1.3 Feedback. After each submission, a feedback is quickly pro-
vided to the student. The feedback contains the student’s mark, as
well as information about how CAFrf£ understood her submission,
feedback on her performance, and feedforward advices (i.e., what
should she do to improve her mark). Each piece of feedforward
advice is either informational (e.g., the instructions were not prop-
erly followed and should be re-read carefully), either theoretical
(e.g., some theoretical concepts seem to not be properly understood
and a reference to the course material is provided), either regula-
tional (i.e., recommendations on actions that should be taken for
improving the answer). Fig. 4 provides an example of a part of
the feedback that could have been provided after the submission
of the Challenge corresponding to the instructions presented in
Sec. 3.1.1. As can be seen in Fig. 4, the structure of the feedback

CAFE: Automatic Correction and Feedback in CS1

/* Challenge 3: Arrays and Loop Invariant
Some reminders about the submission process and the statement

Invariant

Encode your Loop Invariant below. For your convenience, Box
numbers are already written
*/

o

N U A wWN
ez

o =

13.
L
2
17. 1
3
5
/* Encode your Loop Invariant above */

/*
Variant

Encode your Loop Variant below, as a valid C expression #*/
M+ N-1-73

/* Encode your Loop Variant above */

#

/*

Code

Type your code below, i.e. what should replace the line "Your code
will be inserted here" in the template. x/
int i =0, j =0, k = 0;
while(i < N && j < M){
if (ALi] < BL[j1) ++i;
if (ALi] > BLJ1) ++3;
if (A[i] == BLJI){ CLk++] = A[il; ++i; ++j;}
}

/* Type your code above */

Excerpt 3: Challenge template to fill and submit to complete
the Challenge.

follows submission template (See Excerpt 3). The Loop Invariant
formed by the combination of the blank Loop Invariant from the
instructions (See Fig. 3) and the content that should replace the 19
boxes specified by the student in her submission (See Excerpt 3) is
clearly displayed. Moreover, the feedforward information is framed
to draw student’s attention.

3.2 CarE Implementation

CAF# is written in Python 2.72 and easily extensible for new fea-
tures. The Python script is run in a dedicated sandbox (for avoiding
any security issue), on a submission platform, each time a student
submits a Challenge. Currently, correcting and grading a Challenge
is done in three main steps, as illustrated in Fig. 5: (i) the prepro-
cessing (i.e., splitting the submitted Challenge into several answers
- Sec. 3.2.1), (ii) the correction per se (i.e., each answer is corrected,
graded, and commented - Sec. 3.2.2), and (iii) feedback generation
(i-e., the various grades are combined and comments are concate-
nated to form the feedback to be provided to students - Sec. 3.2.3 to
Sec. 3.2.4). It is worth noticing that the steps are independent from
each other: one can easily modify the correction step as soon as

ACE 2020, Melbourne, Australia,

Hello! Your grade is .../20. Here are some details about your Remarks
result:
Array Out Of bounds: Use your Loop Invariant while you F FT“;
write the loop body. Check all the indexes while accessing onﬁg ™
array elements. (Out?)

Loop Invariant Correction } TITLE

Here is how the system understood your Invariant:
0 il N

A: Part Al | Part A2
0 il M

B: | Part Bl | Part B2
| k L

C: l Part C1 | Part C2

and the common values to Part Al and Part Bl are in Part C1
About the array A:

Detected variable: i
[Same remarks about j (resp. k) in arrays B (resp. C)]

Code analysis:

-> The variable i does not seem to be initialized according to REMARK

your Loop Invariant. prio: 50

[Same remarks about j and k, with same code and priority] code: ‘Init’
Variables initialization according to the Loop Invariant: FEED-
Thanks to the Loop Invariant, draw the initial situation. FORWARD
Deduce from it the initial value of the variables you use (‘Init’)
in your code.

Code execution } e

When C is not empty (There are common values to A and B):

An Array Out Of Bound Error was detected. This is an important

issue!

Input were: N =9, M=38 EXAMPLE

A: [2 5 8 16 18 21 24 28 36] prio: 2000

B: [7 17 19 23 28 31 36 39] code: ‘Out’

[... (Other cases are also tested)]
[Other tests: Part. cases (N, M = 0), Iterations count, etc.]

Overall recommendations

Do not hesitate to submit again. Sincerely.

Figure 4: An example of Feedback. The right column indi-
cates which type of remark was used to build each part of
the feedback (See Sec. 3.2.3 and 3.2.4).

Preprocessing

Test Library Template

Compiling &

Executing |Code

Formatting

Results Text
| Grouping and Selecting |
[Answer 1] |Answt'er 2]
| * ! Correction
[Grade 1 i Remarks 1| [Grade 2 i Remarks 2| ... [Graden i Remarks n|

Feedback

| |Final grade computation l—’[Feedback Generation ‘

¥
Deliver to the student

Figure 5: The three main steps of the correction: preprocess-
ing, correction, and feedback generation.

it handles the answers from the preprocessing and generates data
that can be transformed into feedback at the next step.

3.2.1 Preprocessing. A Challenge solution contains both pieces
of code and text (e.g., the Loop Invariant that helped to write the
code). The preprocessing step consists in analyzing those pieces

ACE 2020, Melbourne, Australia,

of information and extracting the corresponding answers that will
be corrected in the next step. This is illustrated in Fig. 5. One can
see that the pieces of code are used in several ways. On one hand,
they are merged and compiled with additional sources files and
libraries into an executable to be run. The execution results are
used by the correction step. On the other hand, they are gathered
into a source file that is also used, by the correction step, for lexical
and syntax analysis. Eventually, an actual answer regroups one or
more pieces of information computed during this step. For example,
the student’s code and the Loop Invariant are both transmitted to a
dedicated correction function.

3.2.2 Correction. As long as the code is concerned, the correction
step is in charge of comparing the output of the preprocessing step
with the expected result(s).

The correction step is able to check whether syntactic constraints
are met by the code (e.g., using awhile loop instead of a for one). In
addition, by modifying student’s code before the compilation, CAFE
can also count the number of loop iterations to verify whether the
code is compliant with complexity constraints and ensure that all
the array accesses are within the array bounds. Regarding Challenge
5 (pointers and dynamic memory allocation), the student’s code
is linked to mock functions (i.e., fake malloc, free, etc.) that test
whether they are called with the proper parameters and in the
right order instead of actually manipulating the memory. Moreover,
every call to those functions is logged and displayed in the feedback.
The way errors (e.g., returning NULL for malloc) are handled by
students is also assessed.

Regarding the Loop Invariant, the correction step verifies that
what has been proposed as replacement of the boxes (see Sec. 3.1.1
and Fig. 3) is relevant. Most of the time, several answers are possible
and are considered by CAFE.

Concerning the Loop Variant correction, the expression provided
by the student is evaluated by giving particular values to each
identifier of the expression. CAFE checks that the proper variable
names (inferred from the Loop Invariant) appear in the expression
and that the value of the expression decreases at each iteration.

Finally, there is always the risk a student will submit her Chal-
lenge with the Loop Invariant produced after the code (which clearly
violates the methodology we propose). To limit this risk, CAFE
checks if variables used in the Loop Invariant are consistent with
the one in the code and if they are initialized accordingly. The
matching between the Loop Condition and the Loop Invariant is
checked by verifying that the Loop Condition makes used of the
proper variables and leads to the correct number of iterations. The
Loop Body is not checked against the Loop Invariant as it would
be too time consuming to design a system that would cover all the
code alternatives. If both the Loop Invariant seems correct and the
code produces the expected results, we “a priori” believe the student
has followed the methodology. Anyway, a student that would write
the code first and later the Loop Invariant would, first, work twice
and, second, just lie to herself.

During this correction step, each test, each check can give rise
to a remark. Hence each correction function handling an answer
will generated a list of remarks and a grade, as depicted in Fig. 5.

3.2.3 Feedback Generation. For each student’s answer, the correc-
tion steps generates a mark and a list of remarks. To illustrate this,

Liénardy et al.

the right part of Fig. 4 shows the type of the remarks constituting
the final feedback. They are four types of remark:

TriTLE It is used to structure the feedback and to help the student
to understand which part of her submission is commented (See
Fig. 4, in green). A TITLE must always start each new question
correction to ensure the feedback readability.

DisprAY It is used to display unconditionally a message, for in-
stance, an introductory text (See Fig. 4, in orange).

REMARK It is used to provide comments on a student’s perfor-
mance (See Fig. 4, in purple). In addition to a text that will be
displayed, a code and a priority number must be specified for
each Remark. The code is related to a feedforward message that
is printed in the feedback according to rules depending on the
priority number. These rules are detailed in Sec. 3.2.4.

ExamPLE Like a Remark, it contains a message, a code, and a
priority (See Fig. 4, in magenta). Unlike a Remark, the printing
of their associated message is not mandatory. This feature can be
helpful to shorten the feedback.

The feedback generation consists in merging and formatting all
these remarks into a single text. The remarks order is preserved.
Some feedforward messages can be inserted in the remarks (See
Fig. 4, in blue), as detailed in the following. Finally, each type of
remarks has its specific format style, e.g., the title are underlined
and the feedforward messages are framed to increase the readability
of the feedback, as illustrated in Fig. 4.

3.24 Adding feedforward. In order to provide feedforward to stu-
dents, the REMARKs, and the EXAMPLES can be tagged with a code
and a priority number (both depicted, in Fig. 4). Each code refers to
a feedforward message and the priority number is used to decide
whether this message will be eventually displayed. For each code
present in the list of remarks produced by the correction step, the
total priority (i.e., the sum of all the priority numbers with the same
code) is computed. For instance, in Fig. 4, the REMARK with the code
“Init” is issued three times (each time for a different variable), hence
the total priority of this code will be 150. The feedforward message
associated with the n codes having the highest total priority are
actually inserted in the feedback to the student. Thus, the number of
feedforward messages is limited to avoid overloading students with
too long feedback. However, the priority mechanism helps to select
the most relevant messages, ensuring the feedback personalization.
The feedforward messages can be inserted at several places in the
feedback. First, if the code with the highest priority is above a cer-
tain warning threshold, the feedforward message corresponding to
this code will be placed at the very beginning of the feedback, as a
warning, to draw the student’s attention. For example, in Fig 4, this
is the case of the feedforward labeled “Out”, because of its highest
priority. Each of the others feedforward messages is displayed as
close as possible to the question it is related to, if this question is
unique. If several questions are related to the same feedforward
message, this one is placed at the end of the feedback, as an overall
recommendation.

4 PRELIMINARY EVALUATION

Our CS1 course is organized during the first semester, starting
mid-September until, roughly, mid-December. Around the end of
October/beginning of November (six weeks after the beginning of

CAFE: Automatic Correction and Feedback in CS1

= Abs. S Joker WEE 1 . 2 . 3

=

et

i
'
+

Cf

Q

Challenges

0.0 0.2 0.4 0.6 0.8 1.0
Proportion

Figure 6: Distribution of students’ involvement in Chal-
lenges over the semester. 1, 2 and 3 refer to the number of
submissions, “Joker” to Students not submitting for the first
time, and “Abs”” to students not submitting at least for the
second time.

the semester), courses are adjourned and Mid-Terms are organized
for first year students in Computer Science. At the end of the se-
mester, courses are again adjourned for two weeks during which
students are supposed to study (this period is called blocus) and ex-
ams are organized during four weeks in January. Both evaluations
are written tests (paper exercises, thus not in front of computers)
based on a set of exercises to complete.

The platform on which we deploy CAF£ allows us to collect vari-
ous data on students involvement and performance in Challenges.
In addition, we conducted a survey, during Academic Year 2018-
2019, between February 2019 and March 2019, after the course and
the Final Exam. The survey was anonymous, to let the students
express freely their opinions. We received 22 answers over the 30
students who still continued their curriculum during the second
semester. This section investigates the data collected in 2018-2019
and discusses lessons learned from CAFE usage.

One key point with CAFE is to ensure students involvement in
the course and to ensure a minimum amount of regular practice
over the course duration. Fig. 6 shows the distribution of students’
involvement in Challenges over the semester. It is worth reminding
that students can play a Joker during the semester (see Sec. 3). After
this Joker has been played, any non-submission is accounted as an
“Absence” and the student received a null mark for the Challenge.
Finally, as Challenge 0 does not account in the final grade, not
submitting it is not considered as a Joker. An Absence for Chal-
lenge 1 typically corresponds to students who lately join the cursus
(registrations are open until end of October). We tag them as an
“Absence” but it does not account in their final mark.

Students’ involvement in CAFE is pretty good in the beginning
of the Semester (above 60% until Challenge 2). A drop is observed
starting Challenge 3 (that follows the Mid-Term Exam). It seems
that the Mid-Term plays an important role regarding students’
involvement. In 2018-2019, the participation rate decreases over
the semester until reaching a low 28% of the students participating
to Challenge 5. This is aligned with the attrition rate observed
during the final Exam (61% of Participation).

ACE 2020, Melbourne, Australia,

The conducted survey shows that the majority of respondents
(19/22, 86.4%) agrees or totally agrees that CAFE and Challenges
seemed to me a good motivating way to make me work regularly
(on a Likert scale [25]: Totally agree (10), Agree (9), Disagree (3),
Absolutely Disagree (0)).

CaFt allows students to submit a solution to a given Challenge up
to three times, with feedback and feedforward sent back to students
after each submission. Fig. 6 also shows how students manage
multiple submissions. Multiple submissions (i.e., 2 or 3) are common,
suggesting so that feedback and feedforward provided by CAFE are
useful for students for improving their solution. It is confirmed by
the survey as it appears, as the Table2 shows, that, for 59.1% of the
students, the feedback provided by 3 Challenges or more enabled
them to better understand the course (31.8% of them if we reduce to 1
or 2 Challenges). Also, 45.5% of the students admit that the feedback
helped them to realize they had a learning gap regarding the subject
tackled by 3 Challenges or more (36.4% of them if we reduce to 1
or 2 Challenges). Finally, after receiving the feedback, 59.1% of the
students admit they went back, for 3 Challenges or more, to the
theoretical course to reread the corresponding theoretical notions
(13.7% of them if we reduce to 1 or 2 Challenges).

The survey shows that, to the open question Why did you play
your Joker?, students mainly answer they have reached an accept-
able grade (and they do not want to decrease their grade by doing
an additional Challenge) or because the Challenge appeared as too
difficult (e.g., the Challenge 5 was qualified as such by half of the
answers).

Letting the students use a Joker is a double-edged sword. On one
hand, this was thought to make them responsible for their learning,
to avoid excuses when not submitting, and to increase their percep-
tion of their controllability on the course. On the other hand, there
is a risk that they discard an opportunity to improve their skills
because a Challenge perceived difficulty is too high. According to
the survey, some students (4/22) “regretted using their Joker” and
recognized that “taking the Challenge would have helped them
for the Final Exam” when they answer to the open question: The
Challenge 5 submission rate was low this year. However, it had been
announced that one or more questions in the Final Exam would focus
on the subject tackled by this Challenge. In your opinion, what is the
cause of this?. They thus recognize that they applied a poor strategy
by not doing Challenge 5. The importance of doing a Challenge is
confirmed by the Final Exam results, in particular for the questions
related the topics tackled by Challenge 5 (pointers and dynamic
memory allocation): every student that succeeded in the Challenge
5, succeeded in the Final Exam too but it worth noticing that all of
them first improved their Challenge mark through multiple sub-
missions. On the other hand, those who did not submit Challenge
5 mainly failed at those questions in the Final Exam.

We believe that the Joker system must be maintained. However,
this advocates first to better present to the students the conse-
quences their choices can lead to (i.e., applying a poor/short term
strategy) and, second, to ensure to debunk any rumor on a Chal-
lenge difficulty that would prevent students to even try it.

Table 1 deepens Fig. 6. In particular, it shows how students
improve their marks (and, consequently, their solution) through
multiple submissions. The key point highlighted by Table 1 is that,
when multiple submissions are used (2 or 3), students are mostly

ACE 2020, Melbourne, Australia,
Liénardy et al.

Table 1: Potential mark improvement thanks to multiple submissions of challenges during Academic Year 2018-2019. Columns
labeled p, provide the proportion of students having submitted x times a Challenge. Columns labeled «; 3 refer to a proportion
in a Challenge submitted two or three times (i.e., a proportion in p 3). E[X] is the average improvement or worsening, expressed
as a percentage of the maximal mark (20). ox is the standard deviation (- means that computing standard deviation does not
make sense). Stagnation means that no progress has been made in the mark even in the presence of multiple submissions.

Number of Submissions

0 1 2or3
Stagnation Improvement Worsening
P P13 2,3 xz3 E[X] ox 33 E[X] ox
0 02 022 058 0.11 084 45% 33% 0.05 -55% 35%
1 018 0.18 0.64 0.32 0.67 79% 30% 0 0% -
Challenge 2 033 0.09 058 0.16 0.77 42% 25% 0.07 -43% 21%
3 05 011 039 0.21 0.73 47% 28% 0.03 -30% -
4 0.61 0.05 034 0 096 37% 24% 0.04 -15% -
5 072 005 023 0.29 0.65 47% 18% 0.06 -15% -

Table 2: Questions and raw results of the survey. Each num-
ber corresponds to the number of respondents.

For how many Challenge(s) ?
01 2 3 4 5

The feedback allowed me to
better understand the course

The feedback made me aware
ofleamninggaps " __ _________.

After I received feedback, I went
back to the theoretical course

able to improve their marks, sometimes by 80% on average (Chal-
lenge 1). In some uncommon cases, multiple submissions lead to a
worst solution. A single submission might be explained by the fact
that it leads directly to a correct solution, with the maximum mark
or very close to the maximum. The survey we conducted indicates
that students, in that case, will choose to not resubmit, as the efforts
required to gain a few points are not worth.

Additionally, the survey also suggests that students may be
happy with their score (even if it is not really the maximum) and
may fear to do worst by taking a Challenge. Consequently, those
students strategically choose to not submit this Challenge. Six (over
22) of them (27.3%) mentioned this reason as an an answer to the
open question Why did you use your Joker?. This kind of strategy
might also arise between two submissions of a same Challenge.

From the surveys, some students mentioned, in open comments,
that the Challenges were too easy compared to the Mid-Term and
the Final Exam, highlighting so a constructive alignment issue [7].
This perceived difference is mainly due to the fact that the overall
Loop Invariant structure is provided with the Challenge but not for
the formal evaluations. However, a large part of students (77.3% in
2018-2019) agreed that “the Challenges enabled them to understand
the Loop Invariant determination” (on a Likert scale: Totally agree
4/22, Agree 13/22, Disagree 5/22, Totally Disagree 0/22) and few of
them (2/22) acknowledged, in open comments, that the concept of
Loop Invariant was understood “thanks to the given blank Loop

Invariant”. This tends to confirm the bootstrap effect of the blank
Loop Invariant and suggests to focus the classroom sessions on
graphical methods to find and master the Loop Invariant since it is
not fully tackled by the Challenges

5 RELATED WORK

While there is an abundant literature on Loop Invariants for
code correctness and on automatic generation of Loop Invariants
(e.g., [12]), their usage for building the code has attracted little
attention from the research community. Tam [36] proposed incom-
plete and informal Loop Invariants written in natural language.
Astrachan [1] is probably the closest to our approach as he pro-
posed Graphical Loop Invariant. Finally, Back [2] proposed nested
diagrams (a kind of state charts) representing, at the same time, the
Loop Invariant and the code. None of these approaches come with
an automatic system that is able to assess the code construction
and the Loop Invariant.

More generally speaking, Graphical Loop Invariant based pro-
gramming falls within the scope of metacognition [28], as it pro-
vides a problem-solving strategy and self-reflection on where one
is in the problem-solving process. As such, Graphical Loop Invari-
ant based programming can be related to three problem-solving
stages introduced by Loksa et al. [27], i.e., search for solutions, eval-
uate a potential solution, and implement a solution. Also, writing a
Graphical Loop Invariant prior to coding should help students in
understanding the problem to be solved [13]. This actual impact
of the Graphical Loop Invariant on problem understanding will be
studied in future works.

Many automated system for providing feedback to programming
exercices were already proposed (e.g., [4, 14, 16, 24, 26, 31, 32]). Most
of them apply test-based feedback, i.e., student’s code is corrected
through unit testing (except UNLOCK [4] that tackles the problem
solving skills in general, not just coding skills). WebCAT [16] even
makes students write their own tests too. Kumar’s Problets [24]
enables step by step code execution as part of feedback. More ad-
vanced automatic feedback has been proposed by Singh et al. [35]
by providing, to students, a numerical value (the number of required
changes) and the suggestion(s) on how to correct the mistake(s).

CAFE: Automatic Correction and Feedback in CS1

With respect to metacognition, CAFE is an automated assessment
tool increasing metacognitive awareness [33], as it relies on Graph-
ical Loop Invariant for building the code to solve programming
Challenges. However, future work should reveal to what extend
CaFE really helps in improving students’ performance.

Following Keuning et al. classification [22], CAFE feedback falls
within

o the knowledge of mistakes. CAFE performs unit testing (“test
failure”), compile students’ code and, in case of compilation
errors, warns the students (“‘compilation errors”) and, finally,
checks the number of iterations, as well as the proper use of
memory allocation (“performance issues”).

o the knowledge about how to proceed. Through feedforward,
CAFE provides references to the theoretical course or hints
about actions to be taken to improve the solution solution, as
well as hints about improvement to the submitted Challenge.

o the knowledge about metacognition. CAFE checks that the
student’s code matches with Graphical Loop Invariant (al-
legedly) used to derive it.

6 CONCLUSION

This paper introduced CAFE, an online system for automatically
correcting and providing feedback on programming Challenges for
a CS1 course. CAFE is also built around the programming method-
ology discussed during theoretical lessons, i.e., build the code upon
the Graphical Loop Invariant, ensuring so a reflection phase prior
to any code writing.

Carf has been used, in parallel to theoretical lectures and classic
practical sessions (in front of either a computer, either a sheet of pa-
per). All these activities are complementary. CAFE enables to make
the students work and improve their solution according to feedback
and feedforward information, three times within three days and at
least five times during the semester. This would be unfeasible with-
out an automatic assessment. In addition, the classroom sessions
can be dedicated to customizing each student’s learning, in particu-
lar their capability to solve a problem from scratch (including the
Graphical Loop Invariant). As such, CAFE is not yet self-sufficient.

The preliminary evaluation provided in this paper does not al-
low to conclude on CAFE’s effect on students’ performance. How-
ever, a longer use of CAFE will enable to collect information about
how it impacts students’ understanding of the course and the pro-
gramming methodology and how it improves their programming
capabilities.

REFERENCES

[1] O. Astrachan. 1991. Pictures as Invariants. In Proc. Technical Symposium on
Computer Science Education (SGICSE).

[2] R-J.Back,J. Eriksson, and L. Mannila. 2007. Teaching the Construction of Correct
Programs using Invariant Based Programming. In Proc. 3rd South-East European
Workshop on Formal Methods.

[3] A.Bandura. 1993. Perceived self-efficacy in cognitive development and function-
ing. Educational psychologist 28, 2 (1993), 117-148.

[4] T.Beaubouef, R. Lucas, and J. Howatt. 2001. The UNLOCK System: Enhancing
Problem Solving Skills in CS-1 Students. ACM SIGCSE Bulletin 33, 2 (June 2001),
43-46.

[5] T. Beaubouef and J. Mason. 2005. Why the High Attrition Rate for Computer
Science Students: Some Thoughts and Observations. ACM SIGCSE Bulletin 37, 2
(June 2005), 103-106.

[6] J.Bennedse and M. E. Caspersen. 2007. Failure Rates in Introductory Program-
ming. ACM SIGCSE Bulletin 39, 2 (June 2007), 32-36.

ACE 2020, Melbourne, Australia,

[7] J. Biggs and C. Tang. 2011. Teaching for Quality Learning at University (4th ed.).
Open University Press.

[8] D.Boud. 2000. Sustainable Assessment: Rethinking Assessment for the Learning
Society. Studies in Continuing Education 22, 2 (August 2000), 151-167.

[9] A.R.Bradley and Z. Manna. 2007. The Calculus of Computation: Decision Proce-
dures with Applications to Verification. Springer.

[10] M. Brauer. 2011. Enseigner a I’Université: Conseils Pratiques, Astuces, Méthodes
Pédagogiques. Armand Colin.

[11] S.M. Brookhart. 2008. How to Give Effective Feedback to Your Students. Association
for Supervision & Curriculum Development (ASCD).

[12] T. H Cormen, C. E Leiserson, R. L. Rivest, and C. Stein. 2009. Introduction to

Algorithms. MIT press.

M. Craig, A. Petersen, and J. Campbell. 2019. Answering the Correct Question.

In Proc. ACM Conference on Global Computer Education (CompEd).

[14] G. Derval, A. Gego, P. Reinbold, B. Frantzen, and P. Van Roy. 2015. Automatic

Grading of Programming Exercises in a MOOC Using the INGInious Platform. In

Proc. European MIIC Stakeholder Summit (EMOOC).

E. W. Dijkstra. 1976. A Discipline of Programming. Prentice-Hall, Inc.

S. H. Edwards and M. A. Perez-Quinones. 2008. Web-CAT: Automatically Grad-

ing Programming Assignments. In Proc. Annual Conference on Innovation and

Technology in Computer Science Education (ITiCSE).

[17] N. Falkner, R. Vivian, D. Piper, and K. Falkner. 2014. Increasing the Effectivement
of Automated Assessment by Increasing Marking Granularity and Feedback Units.
In Proc. ACM Technical Symposium on Computer Science Education (SIGCSE).

[18] R. W. Floyd. 1967. Assigning Meanings to Programs. In Proc. Symposium on
Applied Mathematics.

[19] C. A.R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun.
ACM 12, 10 (1969), 576-580.

[20] C.A. Jones. 2005. Assessment for learning. Learning and Skills Development
Agency.

[21] V. Karavirta, A. Korhonen, and L. Malmi. 2006. On the Use of Resubmissions in

Automatic Assessment Systems. Computer Science Education 16, 3 (September

2006), 229-240.

H. Keuning, J. Jeuring, and B. Heeren. 2019. A Systematic Literature Review of

Automated Feedback Generation for Programming Exercices. ACM Transactions

on Computing Education (TOCE) 19, 1 (January 2019).

[23] C.H.Knoblauch and L. Brannon. 1981. Teacher Commentary on Student Writing:
The State of the Art. Freshman English News 10, 2 (Fall 1981), 1-4.

[24] A.N.Kumar. 2013. Using Problets for Problem-Solving Exercises in Introductory

C++/Java/C# Courses. In Proc. IEEE Frontiers in Educatoin Conference (FIE).

R. Likert. 1932. A Technique for the Measurement of Attitudes. Archives of

Psychology 140 (1932), 1-55.

[26] R.Lobb and J. Harlow. 2016. Coderunner: a Tool for Assessing Computer Pro-

gramming Skills. ACM Inroads 7, 1 (March 2016), 47-51.

D. Loksa, A. J. Ko, W. Jernigan, A. Oleson, C. J. Mendez, and M. M. Burnett. 2016.

Programming, Problem Solving, and Self-Awareness: Effects of Explicit Guidance.

In Proc. ACM Conference on Human Factors in Computing Systems (CHI).

[28] J. Metcalfe and A. P. Shimamura. 1994. Metacognition: Knowing about Knowing.
MIT Press.

[29] S. Narciss and K. Huth. 2002. How to Design Informative Tutoring Feedback for

Multimedia Learning. In Proc. International Workshop of SIG 6 Instructional Design

of the European Association for Research on Learning and INstructions (EARLI).

D. Nicol. 2009. Quality Enhancement Themes: The First Year Experience: Trans-

forming Assessment and Feedback: Enhancing Integration and Empowerment in

the First Year. The Quality Assurance Agency for Higher Education.

N. Parlante. 2011. CodingBat: Code Practice. https://codingbat.com [Online;

accessed: 30 March 2019].

Pearson. [n.d.]. My Lab Programming. https://www.pearsonmylabandmastering.

com/northamerica/myprogramminglab/ [Online; accessed: 30 March 2019].

[33] J. Prather, R. Pettit, B. A. Becker, P. Denny, D. Loksa, A. Peters, Z. Albrecht,
and K. Masci. 2019. First Things First: Providing Metacognitive Scaffolding for
Interpreting Problem Prompts. In Proc. ACM Technical Symposium on Computer
Science Education (SIGCSE).

[34] K. Sambell, L. McDowell, and C. Montgomery. 2013. Assessment for Learning in

Higher Education. Routledge.

R. Singh, S. Gulwani, and A. Solar-Lezama. 2013. Automated Feedback Generation

for Introductory Programming Assignments. In Proc. ACM SIGPLAN Conference

on Programming Language Design and Implementation (PLDI).

[36] W. C. Tam. 1992. Teaching Loop Invariants to Beginners by Examples. In Proc.
Technical Symposium on Computer Science Education (SIGCSE).

[37] V. Tinto. 1999. Taking Retention Seriously: Rethinking the First Year of College.
NACADA Journal 19, 2 (Fall 1999), 5-9.

[38] R. Viau. 2009. La motivation en contexte scolaire (5th ed.). de boeck.

[39] C.WatsonandF. W.Li. 2014. Failure Rates in Introductory Programming Revisited.
In Proc. Conference on Innovation & Technology in Computer Science Education
(ITiCSE).

[40] D. Wiliam. 2011. What Is Assessment for Learning? Studies in Educational
Evaluation 37, 1 (March 2011), 3—-14.

[13

jpergeny
i)

&
5

™~
2

&
=

[30

[31

[32

@
2

https://codingbat.com
https://www.pearsonmylabandmastering.com/northamerica/myprogramminglab/
https://www.pearsonmylabandmastering.com/northamerica/myprogramminglab/

	Abstract
	1 Introduction
	2 Programming Methodology
	3 Café
	3.1 Students Interactions with Café
	3.2 Café Implementation

	4 Preliminary Evaluation
	5 Related Work
	6 Conclusion
	References

