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1 INTRODUCTION

Research on understanding opinion dynamics, from both modeling and control perspectives,
abounds in literature [1, 8, 14–16, 18, 20–22, 24, 26, 35, 47, 48, 67], predominantly following two
approaches. The first approach is grounded on the concepts of statistical physics, it is barely data-
driven and therefore shows poor predictive performance [1, 8, 14, 20–22, 24, 26, 35, 47, 48, 67],
The second class of models aims to overcome such limitations, by learning a tractable linear
model from transient opinion dynamics [15, 16, 18]. Barring the individual limitations of these
existing approaches, they all have assumed the absence or lack of external effects, despite empirical
evidences advocating the presence of such signals [2, 28, 29, 49, 60]. Since a social network is
an open system encouraging both inward and outward flow of information, a continuous flux of
external information is funneled to its users, via a gamut of sources like news, feeds, etc. As a result,
a networked opinion formation process that involves extensive interactive discussions among
connected users, is also propelled by such external sources recommended to those users. Therefore,
at the very outset, we observe two families of opinions – endogenous opinions which evolve due to
the influence from neighbors, and exogenous opinions that are driven mostly by the externalities. In
most practical situations, the true labels of the posts (endogenous or exogenous) are not available.
Therefore, an accurate unsupervised labeling of the posts has immense potential impact on opinion
modeling – boosting the predictive performance for a broad spectrum of applications like pole-
prediction, brand sentiment estimation, etc. In this paper, our goal is to demarcate endogenous
and exogenous messages and demonstrate the utility of our proposal from an opinion modeling
viewpoint.

1.1 Proposed approach

We initiate investigating the dynamics of organic opinion in the presence of exogenous actions,
using a recent temporal point-process based model SLANT [18]. It allows users’ latent endogenous
opinions to be modulated over time, by both endogenous and exogenous opinions of their neighbours,
expressed as sentiment messages (Section 3).
Subsequently, in Section 4 we propose CherryPick1, a suite of learning algorithms, based on

experimental design methods that optimally demarcate the endogenous and exogenous opinions
under various circumstances. In a nutshell, in order to categorize messages, we aim to select the
set of events that comply with the organic dynamics with a high confidence, i.e. a low variance
of influence estimation. To this end, we devise this problem as an inference task of the message
category (endogenous or exogenous) by means of subset selection (i.e. demarcating a subset of
endogenous messages from the whole message stream). We find that this proposed inference
problem can be formulated as an instance of a cardinality constrained submodular maximization
problem. To solve this optimization problem, we present a greedy approach which, like an ordinary
greedy submodular maximization algorithm, enjoys approximation bounds. However, since some
of the optimization objectives we consider are only weakly submodular, they admit some special
approximation bounds which have been proposed recently in [33].
Finally, we perform experiments on various real datasets, crawled from Twitter about diverse

topics (Section 5) and synthetic datasets, built over diverse networks (Section 6) and show that
CherryPick can accurately classify endogenous and exogenous messages, thereby helping to
achieve a substantial performance boost in forecasting opinions.

1This paper is an extension of [17] where the idea of CherryPick was first introduced. However, it has been substantially
refined and expanded in this paper.
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2 RELATEDWORK

Opinion modeling and its applications have been widely studied in different guises in many years. In
this section, we review some of them, from two major perspectives– (i) opinion dynamics modeling
and (ii) opinion sensing.
Opinion dynamics modeling. Modeling the evolution process of opinion flow over networks,
mostly follows two approaches, based on (a) statistical physics and (b) data-driven techniques.
The first type of models, e.g. Voter, Flocking, DeGroot, etc. is traditionally designed to capture
various regulatory real-life phenomena e.g. consensus, polarization, clustering, coexistence etc. [10,
14, 19, 20, 23, 34, 40, 45, 46, 56, 61, 62, 64, 66, 67]. Voter model [14] is a discrete opinion model,
where opinions are represented as nominal values, and copied from influencing neighbors in every
step. This underlying principle is still a major workhorse for many discrete opinion models [10,
23, 45, 46, 56, 61, 62, 66, 67]. In contrast to these models, Flocking and DeGroot are continuous
opinion models. In Flocking model and its variations [19, 34, 40, 64], a node 𝑖 having opinion 𝑥𝑖
first selects the set of neighbors 𝑗 with |𝑥𝑖 −𝑥 𝑗 | ≤ 𝜖 , and then updates its own opinion by averaging
these opinions. DeGroot model [20], on the other hand, allows a user to update her opinion with
the average opinions of all her neighbors. In this model, the underlying influence matrix is row
stochastic, enforcing consensus for a strongly connected graph. The second class of models, e.g.
Biased Voter, AsLM, SLANT, etc. aim to learn a tractable linear model from a temporal message
stream reflecting transient opinion dynamics [15, 16, 18, 30]. While a Biased Voter model [15] unifies
various aspects of DeGroot and Flocking models, AsLM [16] generalizes the DeGroot model by
relaxing the structure of the influence matrix. In contrast to these models that ignore the temporal
effects of messages (post-rate), SLANT [18] blends the opinion dynamics along with the message
dynamics, using a stochastic generative model. In contrast to the above modeling approaches,
there exist abundant empirical studies [3–5, 11, 27] which investigate various factors influencing
information diffusion in social networks through large-scale field experiments. However, all these
approaches skirt the effect of externalities, which severely constrains their forecasting prowess.
Opinion sensing. Sensing opinions, or mining sentiments from textual data traditionally relies
on sophisticated NLP based machineries. See [44, 53] for details. Both these monographs provide a
comprehensive survey. In general, LIWC [54] is widely considered as benchmark tool to compute
sentiments from rich textual data. On the other hand, Hannak et al. developed a simple yet effective
method for sentiment mining from short informal text like tweets [31], also used by [16, 18].
Recently, a class of works [36, 37, 41, 42] designs simple supervised strategies to sense opinion
spams, and some of them [36, 37, 42] also advocate the role of temporal signals in opinion spamming.
Note that, exogenous opinions are fundamentally different from opinion spams. In contrast to a
spam which is unsolicited and irrelevant to the discussion, an exogenous post is often relevant, yet
just an informed reflection of some external news or feeds. Also, since spamminess of a message is
its intrinsic property, it does not depend on the messages before it. However, an exogenous post
when retweeted, can become endogenous. Furthermore, the opinion spam detection techniques
rest on the principle of supervised classification that in turn requires labeled messages. However, in
the context of networked opinion dynamics, the messages (tweets) come unlabeled, which renders
the spam detection techniques practically inapplicable for such scenarios.

Finally we conclude this section with this note that our work closely resembles SLANT [18] and
is built upon the modeling framework proposed by SLANT, but the major difference is that SLANT
assumes the entire event stream as endogenous, whereas our work is motivated towards exploring
various techniques for systematically demarcating the externalities from the heterogeneous event
stream. Similarly, our proposed algorithms are closely influenced by recent progress in subset
selection literature [33] where authors deal with designing new alphabetical optimality criteria for
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Symbol Meaning

G A directed social network (such as Twitter)
V Vertices of G (users)
E Edges of G (follower-followee links)
N(𝑢) Set of users followed by 𝑢, subset ofV
U(𝑡) History of messages posted by all users until time 𝑡
U𝑢 (𝑡) History of messages posted by user 𝑢 until time 𝑡
𝑒𝑖 𝑖th message inU(𝑡)
𝑢𝑖 User posting the 𝑖th message inU(𝑡)
𝜁𝑖 Opinion/sentiment value of the 𝑖th message inU(𝑡)
𝑡𝑖 Timestamp of the 𝑖th message inU(𝑡)
H (𝑡) Set of endogenous messages inU(𝑡)
𝑚𝑖 Opinion/sentiment value of the 𝑖th endogenous message inH(𝑡)
H𝑢 (𝑡) Set of endogenous messages posted by user 𝑢 inU𝑢 (𝑡)
C(𝑡) Set of exogenous messages inU(𝑡), complementary toH(𝑡)
𝑤𝑖 Opinion/sentiment value of the 𝑖th exogenous message in C(𝑡)
C𝑢 (𝑡) Set of exogenous messages posted by user 𝑢 inU𝑢 (𝑡), complementary toH𝑢 (𝑡)
𝑁𝑢 (𝑡) Counting process for endogenous messages of user 𝑢, equal to |H𝑢 (𝑡) |
𝑀𝑢 (𝑡) Counting process for endogenous messages of user 𝑢, equal to |C𝑢 (𝑡) |
𝑵 (𝑡) Set of counting processes ( 𝑁𝑢 (𝑡) )𝑢∈V
𝑴 (𝑡) Set of counting processes ( 𝑀𝑢 (𝑡) )𝑢∈V
𝜆∗𝑢 (𝑡) Intensity of 𝑁𝑢 (𝑡), i.e. the endogenous message rate of user 𝑢
𝝀∗ (𝑡) Set of intensities ( 𝜆∗𝑢 (𝑡) )𝑢∈V

Table 1. List of important notations used in Section 3.

quadratic models. However, our work is motivated towards investing the subset selection problem
for linear models in a temporal setting.

3 PROBLEM SETUP

In what follows, we describe the scenario of a social network of users who post opinion-bearing
messages. For ease of reference, we list a compendium of all important notations used in this section
in Table 1.

We use two sources of data as input: (I). a directed social network G = (V, E) of users with the
connections between them (e.g. friends, following, etc), and (II). an aggregated historyU(𝑇 ) of the
messages posted by these users during a given time-window [0,𝑇 ). In this paper, we summarize
each message-event 𝑒𝑖 ∈ U(𝑇 ) using only three components, the user 𝑢𝑖 who has posted the
message, the opinion or sentiment value 𝜁𝑖 associated with the message, and the timestamp 𝑡𝑖 of
the post. Therefore,U(𝑇 ) := {𝑒𝑖 = (𝑢𝑖 , 𝜁𝑖 , 𝑡𝑖 ) |𝑡𝑖 < 𝑇 }. We also use the notationU(𝑡) to denote the
set of messages collected until 𝑡 < 𝑇 i.e.U(𝑡) := {𝑒𝑖 = (𝑢𝑖 , 𝜁𝑖 , 𝑡𝑖 ) |𝑡𝑖 < 𝑡}.

In the spirit of [18], we assume that the history of events until time 𝑡 influences the arrival process
of events after time 𝑡 . However, in a direct contrast to [18] which skirts the potential influence of
externalities, we posit that the message events belong to two categories– endogenous and exogenous.
Whereas the arrivals of endogenous events are driven by the previous events in the network i.e. these
are history-dependent, exogenous events originate from external influence outside the given social
network and are, therefore not history-dependent. Note that the distinction between endogenous
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Demarcating Endogenous and Exogenous Opinions 1:5

and exogenous events is not directly observable from the data, but needs to be inferred from the
characteristics of the event sequence. To this end, we split the entire set of messages observed until
time 𝑡 ,U(𝑡) into two complementary subsets,H(𝑡) and C(𝑡) representing the sets of endogenous
and exogenous events respectively, withU(𝑡) = H(𝑡) ∪C(𝑡) &H(𝑡) ∩C(𝑡) = 𝜙 . At a user level, we
denoteH𝑢 (𝑡) = {𝑒𝑖 = (𝑢𝑖 ,𝑚𝑖 , 𝑡𝑖 ) |𝑢𝑖 = 𝑢 and 𝑡𝑖 < 𝑡} as the collection of all endogenousmessageswith
sentiments𝑚𝑖 , posted by user 𝑢 until time 𝑡 . Similarly, C𝑢 (𝑡) = {𝑒𝑖 = (𝑢𝑖 ,𝑤𝑖 , 𝑡𝑖 ) |𝑢𝑖 = 𝑢 and 𝑡𝑖 < 𝑡}
denotes the history of exogenous messages posted by user 𝑢 ∈ V with sentiments𝑤𝑖 until time 𝑡 .
Finally we writeU𝑢 (𝑡) = H𝑢 (𝑡) ∪ C𝑢 (𝑡), as the history gathering both types of messages posted by
user 𝑢, until time 𝑡 . Therefore, ∪𝑢∈VH𝑢 (𝑡) = H(𝑡), ∪𝑢∈VC𝑢 (𝑡) = C(𝑡), and ∪𝑢∈VU𝑢 (𝑡) = U(𝑡).
Note that, for clarity we denote𝑚𝑖 and𝑤𝑖 as endogenous and exogenous sentiments respectively,
while 𝜁𝑖 denotes opinion of any type. However, both types of sentiments belong to identical domain.
To model the endogenous message dynamics, we represent the message times by a set of counting
processes denoted as a vector 𝑵 (𝑡), in which the 𝑢-th entry, 𝑁𝑢 (𝑡) ∈ {0} ∪ Z+, counts the number
of endogenous messages user 𝑢 posted until time 𝑡 , i.e. 𝑁𝑢 (𝑡) = |H𝑢 (𝑡) |. Then, we characterize the
message rates with the conditional intensity function

E[𝑑𝑵 (𝑡) | U(𝑡)] = 𝝀∗ (𝑡) 𝑑𝑡, (1)

where 𝑑𝑵 (𝑡) := ( 𝑑𝑁𝑢 (𝑡) )𝑢∈V counts the endogenous messages per user in the interval [𝑡, 𝑡 + 𝑑𝑡)
and 𝝀∗ (𝑡) := ( 𝜆∗𝑢 (𝑡) )𝑢∈V denotes the user intensities that depend on the historyU(𝑡).

Note that we assume the endogenous events do not depend on their own historyH(𝑡) only, but
rather on the combined history U(𝑡) of both endogenous and exogenous events. Hence, every
exogenous post influences the subsequent endogenous events in the same manner as the previous
endogenous events. This is because a recipient user cannot distinguish between exogenous or
endogenous posts made by her neighbors.
In order to represent the arrival times of the exogenous message set C(𝑡), we introduce an

additional counting process 𝑴 (𝑡) that describes the rate of generation of exogenous events, in
which the 𝑢-th entry,𝑀𝑢 (𝑡) ∈ {0} ∪ Z+, counts the number of exogenous messages user 𝑢 posted
until time 𝑡 , i.e. 𝑀𝑢 (𝑡) = |C𝑢 (𝑡) |. Note that, we do not aim to model the dynamics of exogenous
events, since their source is not known to us.

3.1 Opinion dynamics in absence of exogenous actions

For clarity, we briefly discuss the proposal by De et al. [18], that ignores the effect of exogenous
messages. The user intensities 𝜆∗𝑢 (𝑡) are generally modeled using multivariate Hawkes Process [43].
We denote the set of users that u follows by N(𝑢). In absence of exogenous actions, i.e., when
U(𝑡) = H(𝑡), we have:

𝜆∗𝑢 (𝑡) = 𝜇𝑢 +
∑︁

𝑣∈N(𝑢)
𝑏𝑣𝑢

∑︁
𝑒𝑖 ∈H𝑣 (𝑡 )

𝜅 (𝑡 − 𝑡𝑖 ). (2)

Here, the first term, 𝜇𝑢 ⩾ 0, captures the posts by user 𝑢 on her own initiative, and the second term,
with 𝑏𝑣𝑢 ⩾ 0, reflects the influence of previous posts on her intensity (self-excitation). The users’
latent opinions are represented as a history-dependent, multidimensional stochastic process x∗ (𝑡):

𝑥∗𝑢 (𝑡) = 𝛼𝑢 +
∑︁

𝑣∈N(𝑢)
𝑎𝑣𝑢

∑︁
𝑒𝑖 ∈H𝑣 (𝑡 )

𝑚𝑖𝑔(𝑡 − 𝑡𝑖 ) (3)

where the first term, 𝛼𝑢 ∈ R, models the original opinion of a user 𝑢 and the second term, with
𝑎𝑣𝑢 ∈ R, models updates in user 𝑢’s opinion due to the influence from previous messages of her
neighbours. Here, 𝜅 (𝑡) = 𝑒−𝜈𝑡 and 𝑔(𝑡) = 𝑒−𝜔𝑡 (where 𝜈, 𝜔 ⩾ 0) denote exponential triggering
kernels, which model the decay of influence over time. Finally, when a user 𝑢 posts a message at
time 𝑡 , the message sentiment𝑚 reflects the expressed opinion which is sampled from a distribution
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1:6 Koley, et al.

𝑝 (𝑚 |𝑥∗𝑢 (𝑡)). Here, the sentiment distribution 𝑝 (𝑚 |𝑥∗𝑢 (𝑡)) is assumed to be normal, i.e. 𝑝 (𝑚 |𝑥𝑢 (𝑡)) =
N(𝑥𝑢 (𝑡), 𝜎𝑢).

3.2 Opinion dynamics with exogenous events

In this section, we model the effect of exogenous events, C(𝑡), on the latent endogenous opinion
process 𝑥∗ (𝑡) and the endogenous rate 𝜆∗ (𝑡). Recall thatN(𝑢) denotes the set of users that u follows.
We present the dynamics of latent opinion 𝑥∗𝑢 (𝑡) of user 𝑢, in the presence of exogenous messages
in the following equation.

𝑥∗𝑢 (𝑡) = 𝛼𝑢 +
∑︁

𝑣∈N(𝑢)
𝑎𝑣𝑢

(∑︁
𝑒𝑖 ∈H𝑣 (𝑡 )

𝑚𝑖𝑔(𝑡 − 𝑡𝑖 ) +
∑︁

𝑒𝑖 ∈C𝑣 (𝑡 )
𝑤𝑖𝑔(𝑡 − 𝑡𝑖 )

)
(4)

where, the last term captures signals from exogenous posts. Similarly, the endogenous message
rate 𝜆∗𝑢 (𝑡) of a user 𝑢 evolves as,

𝜆∗𝑢 (𝑡) = 𝜇𝑢 +
∑︁

𝑣∈N(𝑢)
𝑏𝑣𝑢

(∑︁
𝑒𝑖 ∈H𝑣 (𝑡 )

𝜅 (𝑡 − 𝑡𝑖 ) +
∑︁

𝑒𝑖 ∈C𝑣 (𝑡 )
𝜅 (𝑡 − 𝑡𝑖 )

)
. (5)

Note that same parameters, 𝑎𝑣𝑢 and 𝑏𝑣𝑢 , are used to model the effect of endogenous and exogenous
processes, on both opinion and message dynamics. The above equation can be equivalently written
as:

𝒙∗ (𝑡) = 𝜶 +
∫ 𝑡

0
𝑔(𝑡 − 𝑠)𝑨

[
𝒎(𝑠) ⊙ 𝑑𝑵 (𝑠) +𝒘 (𝑠) ⊙ 𝑑𝑴 (𝑠)

]
(6)

𝝀∗ (𝑡) = 𝝁 +
∫ 𝑡

0
𝑩𝜅 (𝑡 − 𝑠)

[
𝑑𝑵 (𝑠) + 𝑑𝑴 (𝑠)

]
. (7)

Here 𝑨 = (𝑎𝑣𝑢) ∈ R |V |×|V | , 𝑩 = (𝑏𝑣𝑢) ∈ R |V |×|V |+ , 𝒙∗ (𝑡) = (𝑥∗𝑢 (𝑡))𝑢∈V . Similarly we define
𝝀∗ (𝑡), 𝒎(𝑠), 𝒘 (𝑠). Furthermore, the exogenous intensity is given by: E[𝑑𝑴 (𝑡) |U(𝑡)] = 𝜼(𝑡). We
do not aim to model 𝜼(𝑡).

By defining, 𝑷 (𝑡) := 𝑵 (𝑡) +𝑴 (𝑡), as the counting process associated with the combined history
U(𝑡) = H(𝑡) ∪ C(𝑡) of both endogenous and exogenous events, we further simplify Eqs. (6) and (7)
as,

𝒙∗ (𝑡) = 𝜶 +
∫ 𝑡

0
𝑔(𝑡 − 𝑠)𝑨

[
𝜻 (𝑠) ⊙ 𝑑𝑷 (𝑠)

]
(8)

𝝀∗ (𝑡) = 𝝁 +
∫ 𝑡

0
𝑩𝜅 (𝑡 − 𝑠)𝑑𝑷 (𝑠). (9)

4 DEMARCATION OF ENDOGENOUS AND EXOGENOUS MESSAGES

In this section, we propose a novel technique for demarcating endogenous messagesH(𝑇 ) and
exogenous messages C(𝑇 ) from a stream of unlabelled messagesU(𝑇 ) gathered during time [0,𝑇 ).
Then, based on the categorized messages, we find the optimal parameters 𝜶 , 𝝁, 𝑨 and 𝑩 by solving
a maximum likelihood estimation (MLE) problem. From now onwards, we would write U(𝑇 ),
H(𝑇 ), C(𝑇 ) as U𝑇 , H𝑇 and C𝑇 to lighten the notations. Hence, succinctly, the problem can be
stated as follows:

(1) identify a subsetH𝑇 ⊆ U𝑇 of endogenous events
(2) find the optimal (maximum-likelihood) parameters 𝜶 , 𝝁, 𝑨 and 𝑩 based only onH𝑇
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Demarcating Endogenous and Exogenous Opinions 1:7

4.1 CherryPick𝑋 : Our proposed approach

Now, we attempt to design an unsupervised learning algorithm to isolate the endogenous events
H𝑇 and exogenous events C𝑇 from the stream of unlabeled sentiment messages U𝑇 , which is
equivalent to assigning each event 𝑒 ∈ U𝑇 into either H𝑇 or C𝑇 . This is achieved by extracting
the set of events that comply with the endogenous dynamics with high confidence that in turn is
indicated by a low variance of estimated parameters.

In more detail, given a candidate set of endogenous eventsH𝑇 , the opinion parameters 𝑨,𝜶 can
be estimated by maximizing the likelihood of endogenous opinions𝑚𝑖 ,

∑
𝑖 log𝑝 (𝑚𝑖 |𝑥∗𝑢𝑖 (𝑡𝑖 )), i.e.,

minimizing the following,

min
𝑨,𝜶

∑︁
𝑒𝑖 ∈H𝑇

𝑢∈V

𝜎−2
(
𝑚𝑖 − 𝛼𝑢 −

∫ 𝑡𝑖

0
𝑔(𝑡 − 𝑠) (𝜻 (𝑠) ⊙ 𝑑𝑷 (𝑠))𝑇𝑨𝑢

)2

+ 𝑐 | |𝑨| |2𝐹 + 𝑐 | |𝜶 | |22. (10)

Here, the first term is derived using the Gaussian nature of 𝑝 (𝑚 |𝑥∗𝑢 (𝑡)) and the last two are the
regularized terms. The optimal parameters (�̂�, �̂� ) depend on the candidate set of endogenous
messagesH𝑇 . To this end, we compute the estimation covariance as,

𝚺(H𝑇 ) := E(𝜽 − 𝜽 ) (𝜽 − 𝜽 )𝑇 , 𝜽 := vec( [𝑨, 𝜶 ]). (11)

Here the expectation is taken over the noise process induced while getting the message sentiment
𝑚𝑖 , from the opinion 𝑥∗𝑢𝑖 (𝑡𝑖 ) according to the distribution 𝑝 (𝑚𝑖 |𝑥∗𝑢𝑖 (𝑡𝑖 )). Before proceeding further,
we want to make a clarification that we exclude intensity parameters (𝜇 and 𝐵) in covariance
estimation as their MLE estimation do not offer closed form solution, making it mathematically
inconvenient. Prior to going into the selection mechanism ofH𝑇 , we first look into the expression
of covariance matrix 𝚺 in the Lemma 1. Note that, the inference problem given by Eq. (10) is that
of regularized least squares estimation, and so the covariance matrix for the optimal parameters
can be derived in a closed form given in the following:

Lemma 1. For a given endogenous message-setH𝑇 ,

𝚺(H𝑇 ) = diag
𝑢∈V

(
𝑐𝑰 + 𝜎−2

∑︁
𝑒𝑖 ∈H𝑇

𝝓𝑢𝑖 𝝓
𝑢𝑇
𝑖

)−1 (12)

where,

𝝓𝑢𝑖 =

{
vec( [

∫ 𝑡𝑖

0 𝑔(𝑡 − 𝑠)𝜻 (𝑠) ⊙ 𝑑𝑷 (𝑠), 1]) 𝑢𝑖 = 𝑢

0 𝑢𝑖 ≠ 𝑢
(13)

The proof of this lemma is given in the Appendix (Section A.1).
Our objective is to identify H𝑇 , given its size 𝑁H , so that 𝚺(H𝑇 ) is small. Such a demarcated

message-setH𝑇 would then follow endogenous opinion dynamics more faithfully than its com-
plementU𝑇 \H𝑇 . In order to compute the best candidate forH𝑇 , we need to minimize a suitable
function Ω𝑋 (H𝑇 ) which is some measure of 𝚺(H𝑇 ).
In accordance with the alphabetical design criteria of A-optimality, D-optimality, E-optimality,

and T-optimality used by [12, 33], we define,

Ω𝐴 (H𝑇 ) := tr [𝚺(H𝑇 )] (14)
Ω𝐷 (H𝑇 ) := tr [log 𝚺(H𝑇 )] = log [det(𝚺(H𝑇 ))] (15)
Ω𝐸 (H𝑇 ) := 𝜆𝑚𝑎𝑥 [𝚺(H𝑇 )] (16)

Ω𝑇 (H𝑇 ) := − tr
[
𝚺(H𝑇 )−1] (17)
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where log 𝚺 is the matrix logarithm of 𝚺, and 𝜆𝑚𝑎𝑥 [𝚺(H𝑇 )] refers to the maximum eigenvalue of
𝚺(H𝑇 ). These functions Ω𝑋 (H𝑇 ), where 𝑋 ∈ {𝐴, 𝐷, 𝐸,𝑇 } can be viewed as complexity measures
of 𝚺(H𝑇 ) [33] that make them good candidates for minimizing 𝚺. Hence, by defining 𝑓𝑋 (H𝑇 ) :=
−Ω𝑋 (H𝑇 ), where 𝑋 ∈ {𝐴, 𝐷, 𝐸,𝑇 }, we pose the following optimization problem to obtain the best
cardinality constrained candidate setH𝑇 :

maximize
H𝑇 ∈U𝑇

𝑓𝑋 (H𝑇 )

subject to, |H𝑇 | = 𝑁H (18)

Normally such a cardinality constrained subset selection problem would be NP-Hard [38, 65].
Hence, we will rely on a greedy heuristic for maximizing 𝑓𝑋 (Algorithm 1), that, we would show
later, gives an (1 − 1/𝑒) approximation bound. Before going to that, we first specify two properties
defined for any set function ℎ(𝑉 ) in general (Definition 2) . We would show that, 𝑓𝑋 specifically
enjoys these properties, thereby affording an approximation guarantee from the proposed simple
greedy algorithm.

Definition 2. A multidimensional set function ℎ(𝑉 ) in a set argument 𝑉 ⊆ 𝑈 , is said to be

(1) submodular, if for any set 𝑉 ⊆ 𝑉 , 𝑥 ∉ 𝑉

ℎ(𝑉 ∪ 𝑥) − ℎ(𝑉 ) ≥ ℎ(𝑉 ∪ 𝑥) − ℎ(𝑉 ) (19)

In addition, if for all sets 𝑉 ⊆ 𝑈 , ℎ(𝑉 ) can be expressed as a linear function of weights of
individual set elements, i.e.

ℎ(𝑉 ) = 𝑤 (𝜙) +
∑︁
𝑥 ∈𝑉

𝑤 (𝑥) (20)

for some weight function𝑤 : 𝑈 → R, then ℎ(𝑉 ) is said to be modular.
(2) weakly submodular, if for any set 𝑉 ⊆ 𝑉 , 𝑥 ∉ 𝑉 , the two quantities

𝑐ℎ = max
𝑉 ,𝑉 ,𝑥

ℎ(𝑉 ∪ 𝑥) − ℎ(𝑉 )
ℎ(𝑉 ∪ 𝑥) − ℎ(𝑉 ) (21)

and

𝜖ℎ = max
𝑉 ,𝑉 ,𝑥

(ℎ(𝑉 ∪ 𝑥) − ℎ(𝑉 )) − (ℎ(𝑉 ∪ 𝑥) − ℎ(𝑉 )) (22)

are bounded. 𝑐ℎ and 𝜖ℎ are called the multiplicative and additive weak submodularity constants,
respectively.

Theorem 3 (Characterizing 𝑓𝑋 ). LetV(H𝑇 ) be the set of users of the message setH𝑇 .

(1) 𝑓𝑋 (H𝑇 ) ismonotone inH𝑇 ∀𝑋 ∈ {𝐴, 𝐷, 𝐸,𝑇 }.
(2) 𝑓𝐴 (H𝑇 ) and 𝑓𝐸 (H𝑇 ) are weakly submodular inH𝑇 .
(3) 𝑓𝐷 (H𝑇 ) is submodular inH𝑇 .
(4) 𝑓𝑇 (H𝑇 ) ismodular inH𝑇 .

Proof Idea: The key to the proof of monotonicity relies on mapping the given set-function 𝑓𝑋
to a suitably chosen continuous functions 𝑔(𝑝) so that, 𝑔(1) > 𝑔(0) implies the monotonicity of
𝑓𝑋 . Noting that 𝑓𝑋 is linear, the rest of the proof follows from the properties of the A, D, E and T
optimality criteria presented in [33] and the citations therein. The complete proof is given in the
Appendix (Sec. A.2)
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4.1.1 Maximization of 𝑓𝑋 (H𝑇 ). Since 𝑓𝑋 is (weakly) submodular inH𝑇 , it can be maximized by a
traditional greedy approach adopted for maximizing submodular functions of a single set [51]. The
maximization routine is formally shown in Algorithm 1. At each step, it greedily adds an event 𝑒 to
H𝑇 sequentially, by maximizing the marginal gain 𝑓𝑋 (H𝑇 ∪ {𝑒}) − 𝑓𝑋 (H𝑇 ) (step 5, Algorithm 1)
until |H𝑇 | reaches 𝑁H .

Lemma 4 (Solutionqality for 𝑓𝐷 and 𝑓𝑇 ). Algorithm 1 admits a (1 − 1/𝑒) approximation
bound for 𝑓𝐷 (H𝑇 ) and 𝑓𝑇 (H𝑇 ).

This result is due to submodularity and monotonicity of the functions 𝑓𝐷 (H𝑇 ) and 𝑓𝑇 (H𝑇 ). It
has been shown in [52] that such a greedy algorithm for maximizing a monotone and submodular
function admits a (1 − 1/𝑒) approximation bound.

Lemma 5 (Solutionqality for 𝑓𝐴 and 𝑓𝐸 ). Let 𝑐 𝑓𝐴 and 𝜖𝑓𝐴 be the multiplicative and additive
weak submodularity constants (see Definition 2) for 𝑓𝐴 and 𝑐 𝑓𝐸 and 𝜖𝑓𝐸 be those for 𝑓𝐸 . By Theorem 3,
these quantities exist and are bounded providedV(H𝑇 ). Let (H𝐴𝑔

𝑇
) and (H𝐸𝑔

𝑇
) be the subsets obtained

by maximizing 𝑓𝐴 and 𝑓𝐸 respectively, and (H𝐴∗
𝑇
) and (H𝐸∗

𝑇
) be the optimal subsets achieving the

maximum of 𝑓𝐴 and 𝑓𝐸 respectively. Then,

𝑓𝐴 (H𝐴𝑔

𝑇
) ≥ (1 − 𝑒−1/𝑐𝐴 ) 𝑓𝐴 (H𝐴∗

𝑇 ) (23)

𝑓𝐸 (H𝐸𝑔

𝑇
) ≥ (1 − 𝑒−1/𝑐𝐸 ) 𝑓𝐸 (H𝐸∗

𝑇 ) (24)

where 𝑐𝐴 = max{𝑐 𝑓𝐴 , 1} and 𝑐𝐸 = max{𝑐 𝑓𝐸 , 1}. Also,

𝑓𝐴 (H𝐴𝑔

𝑇
) ≥ (1 − 1

𝑒
) (𝑓𝐴 (H𝐴∗

𝑇 ) − (𝑁H − 1)𝜖𝑓𝐴 ) (25)

𝑓𝐸 (H𝐸𝑔

𝑇
) ≥ (1 − 1

𝑒
) (𝑓𝐸 (H𝐸∗

𝑇 ) − (𝑁H − 1)𝜖𝑓𝐸 ) (26)

where 𝑁H is the required number of endogenous events that is fed as an input to Algorithm 1.

This result is due to weak submodularity and monotonicity of the functions 𝑓𝐴 (H𝑇 ) and 𝑓𝐸 (H𝑇 ).
This result directly follows from Proposition 2 of [33].

Note that, one can find fast adaptive algorithms as an alternative to standard greedy for submod-
ular function maximization. For 𝑓𝐷 being submodular monotone, recent fast adaptive algorithm
proposed in [9] easily applies for 𝑓𝐷 . Though recent fast adaptive techniques in submodular max-
imization do not apply to weakly submodular functions in general, it has been shown that 𝑓𝐴
satisfies 𝛾-differential submodularity [55] and thereby DASH, a recent fast adaptive technique
proposed by [55] can be applied for maximizing 𝑓𝐴. However, in practice, we find the performance
obtained by both fast adaptive algorithms for maximizing 𝑓𝐴 as well as 𝑓𝐷 are inferior to standard
greedy in some cases, despite speeding up the demarcation process. Thereby we have added a
detailed comparative evaluation of standard greedy and adaptive algorithms as additional results
in supplementary (see Section B).
The event-set H𝑇 thus obtained would be used next to estimate all the parameters 𝑨, 𝝁,𝜶 ,𝑩

(See Algorithm 2) by maximizing L(𝜶 , 𝝁,𝑨,𝑩 |H𝑇 ) which is given by

L(𝜶 , 𝝁,𝑨,𝑩 |H𝑇 ) =
∑︁

𝑒𝑖 ∈H𝑇

𝑝 (𝑚𝑖 |𝑥∗𝑢𝑖 (𝑡𝑖 )) +
∑︁

𝑒𝑖 ∈H𝑇

log(𝜆𝑢𝑖 (𝑡𝑖 )) −
∑︁
𝑢∈V

∫ 𝑇

0
𝜆∗𝑢 (𝑠)𝑑𝑠 (27)

Since L is a concave function, one can maximize this efficiently. We adopt the method given
by the authors in [18], which can accurately compute the parameters. In conclusion, the above
procedures yield four distinct methods for demarcating the endogenous and exogenous dynamics,
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ALGORITHM 1: 𝚼=CherryPick𝑋 (𝑓𝑋 , 𝑁H ,U𝑇 )
1: Initialization:
2: H𝑇 ← ∅, C𝑇 ← U𝑇

3: General subroutine:
4: while |H𝑇 | < 𝑁H do

5: 𝑒 ← arg max𝑒∈U𝑇 𝑓𝑋 (H𝑇 ∪ {𝑒 }) − 𝑓𝑋 (H𝑇 )
6: C𝑇 ← C𝑇 \{𝑒 }
7: /*Update endogenous message-set */
8: H𝑇 ← H𝑇 ∪ {𝑒 }
9: end while

10: 𝚼 = (H𝑇 , C𝑇 )
11: return 𝚼.

ALGORITHM 2: Parameter Estimation
1: Input: 𝑁H , U𝑇

2: Output: (𝜶 ∗, 𝝁∗,𝑨∗,𝑩∗)
3: /*First find the endogenous messages */
4: (H𝑇 , C𝑇 )=CherryPick𝑋 (𝑓𝑋 , 𝑁H , U𝑇 )
5: /*Estimate parameters over only H𝑇 */
6: (𝜶 ∗, 𝝁∗,𝑨∗,𝑩∗) = argmax L(𝜶 , 𝝁,𝑨,𝑩 |H𝑇 )
7: return 𝜶 ∗, 𝝁∗,𝑨∗,𝑩∗.

viz. CherryPick𝐴, CherryPick𝐷 , CherryPick𝐷 and CherryPick𝑇 according to the optimality
criterion applied.

4.2 Discussion on the various optimalities

Since 𝑓𝐴 and 𝑓𝐸 are only weakly submodular while 𝑓𝐷 and 𝑓𝑇 enjoy full submodularity, Cher-
ryPick𝐴 and CherryPick𝐸 may, in theory, achieve poorer performance than CherryPick𝐷 and
CherryPick𝑇 . However, [33] have noted that, if the difference between the minimum and maximum
information of individual observations is small, E-optimality is nearly submodular and under these
conditions, CherryPick𝐸 is expected to find a good (informative) subset. Furthermore [13, 33] have
also noted that the behavior of both A-optimality and E-optimality approaches that of a submodular
function if the highest SNR of the observations is relatively small and in this case CherryPick𝐴
and CherryPick𝐸 should perform well. Also, [13, 33] have noted that even when the SNRs are
large, when the observations are not too correlated, greedy design for A and E optimality achieves
good results. In this context, we note that Proposition 1 of [7] provides a lower bound of the sub-
modularity ratio of A-optimality in terms of the spectral norm | |H𝑇 | | of the observationsH𝑇 . From
there it follows that if the spectral norm | |H𝑇 | | is low, then the lower bound of the submodularity
ratio approaches 1, i.e. the behaviour of A-optimality approaches that of a submodular function.

We also note that the modular nature of 𝑓𝑇 (H𝑇 ) implies that each 𝑥 ∈ H𝑇 contributes indepen-
dently to the function value. Consequently, the optimization of 𝑓𝑇 is easily achieved by simply
evaluating 𝑓𝑇 for each individual event, sorting the result, and then choosing the top 𝑁H individual
events from the sorted list to obtain the best subsetH𝑇 .
Finally, as noted by [33], under certain conditions A-optimality and D-optimality have more

intuitive interpretations than E-optimality and T-optimality, A-optimality being related to the
mean-square-error (MSE) and D-optimality being related to maximization of entropy of model
parameters.
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5 EXPERIMENTS WITH REAL DATA

In this section, we provide a comprehensive evaluation of the four variants of CherryPick on a
diverse set of real datasets. Since the category of being exogenous or endogenous is latent to a
message event in most public datasets, our proposals cannot be tested in terms of their classification
error. Hence, we resort to measure the utility of our methods in terms of their impact on the
predictive power of the underlying endogenous model. To that aim, we address the following
research questions:
(1) How do the variants of CherryPick compare against the competitive baselines in terms of

the predictive accuracy of the trained endogenous model?
(2) How does the pre-specified value of the fraction of exogenous messages 𝛾 impact the predic-

tive accuracy?
(3) Do the proposed methods have any positive impact on the long term forecasting task?
(4) How do they perform well on a curated test set, which only contains endogenous messages?
(5) How does their performance vary across different sizes of training set?

5.1 Datasets

We consider five real datasets (summarized in Table 2) corresponding to various real-world events,
collected from Twitter. They are tweets about a particular story. Specifically, we have:
(1) Club [68]: Barcelona winning the La-liga, from May 8 to May 16, 2016.
(2) Elections [68]: British national election from May 7 to May 15, 2015.
(3) Verdict [68]: Verdict for the corruption-case against Jayalalitha, an Indian politician, from

May 6 to May 17, 2015
(4) Sports [68] Champions League final in 2015, between Juventus and Real Madrid, from May

8 to May 16, 2015.
(5) Delhi [18]: Delhi assembly elections, from 9th to 15th of December 2013
Along with other statistics, the last column (𝑟 ) in Table 2 indicates average absolute correlations

of the observation matrix for each dataset. We observe that the average correlations are quite
small (in range of 0.001-0.006) despite high SNR value (in range of 30-50 dB), which justifies the
application of CherryPick𝐴 or CherryPick𝐸 on these datasets as the greedy design of A and E
optimality should achieve good performance for such cases even though they are only weakly
submodular (see Section 4.2).
For all datasets, we follow a very standard setup for both network construction and message

sentiment computation [16, 18, 63]. We built the follower-followee network for the users that posted
related tweets using the Twitter rest API2. Then, we filtered out users that posted less than 200
tweets during the account lifetime, follow less than 100 users, or have less than 50 followers. For
each dataset, we compute the sentiment values of the messages using a popular sentiment analysis
toolbox [31]. Here, the sentiment takes values𝑚 ∈ [−1, 1] and we consider the sentiment polarity
to be simply sign(𝑚). Note that, while other sentiment analysis tools [54] can be used to extract
sentiments from tweets, we appeal to [31] due to two major reasons– its ability of accurately extract
sentiments from short informal texts like tweets, and its wide usage in validating data-driven
opinion models [16, 18].

5.2 Evaluation protocol

The temporal stream of sentiment messages is split into training and test sets, assigning the first
90% of the total number of messages to the training set. The training setU𝑇 , collected until time

2
https://dev.twitter.com/rest/public
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Datasets |V| |E | |U𝑇 | E[𝑚] 𝜌 [𝑚] 𝑟

Club 703 4154 9409 0.109 0.268 0.0026
Elections 231 1108 1584 -0.096 0.232 0.0062
Verdict 1059 17452 10691 0.062 0.266 0.0016
Sports 703 4154 7431 0.562 0.224 0.0041
Delhi 548 5271 20026 0.016 0.178 0.0018

Table 2. Statistics of real datasets.

𝑇 , is categorized into endogenous H𝑇 and exogenous messages C𝑇 , and model parameters are
estimated over the classifiedH𝑇 . During categorization, we took a range of pre-specified values
of |H𝑇 |/|U𝑇 |, the pre-specified fraction of organic messages. Finally, using this estimated model,
we forecast the sentiment value𝑚 for each message in the test set given the history up to T hours
before the time of the message as �̂� = 𝐸H𝑡 \H𝑡−T [𝑥∗𝑢 (𝑡) |H𝑡−T] that we compute using an efficient
simulation method given by [18, 25].

5.3 Baselines

We compare the four variants of CherryPick with four unsupervised event classification tech-
niques, borrowed from robust regression literature as well as various outlier detection techniques.
Finally, we compare a representative of CherryPick with three best performing baselines for each
experiment.
Huber regression [59]. Here, we apply Huber penalty in our learning objective, which follows
from the underlying assumption that a subset of the samples are outliers.

min
𝑨,𝜶

∑︁
𝑒𝑖 ∈U𝑇

𝜌ℎ

(
𝑚𝑖 − 𝛼𝑢 −

∫ 𝑡𝑖

0
𝑔(𝑡 − 𝑠) (𝜻 (𝑠) ⊙ 𝑑𝑷 (𝑠))𝑇𝑨𝑢

)
(28)

where 𝜌ℎ : 𝑹 → 𝑹 is defined as 𝜌ℎ (𝑢) = 𝑢2 if |𝑢 | ≤ 𝑐/2, otherwise 𝑐 |𝑢 | − 𝑐2/4.
Robust lasso [50]. Here, we define 𝜖𝑖 as a measure of exogenous behavior of an event 𝑒𝑖 . Such a
measure is matched with the training error using a mean square loss, which is further penalized by
an 𝐿1 regularizer on 𝝐 = (𝜖𝑖 )𝑖∈U𝑇

. Such a regularizer controls the fraction of exogenous messages
identified by this model. During our implementation, we tune it so that the fraction of exogenous
messages is close to 𝛾 .

min
𝑨,𝜶 ,𝒐

∑︁
𝑒𝑖 ∈U𝑇

(
𝑚𝑖 − 𝛼𝑢 −

∫ 𝑡𝑖

0
𝑔(𝑡 − 𝑠) (𝜻 (𝑠) ⊙ 𝑑𝑷 (𝑠))𝑇𝑨𝑢 − 𝑜𝑖

)2
+ 𝑐1

(
| |𝑨| |1 + ||𝜶 | |1

)
+ 𝑐2 | |𝒐 | |1.

Robust hard thresholding [6]. Instead of minimizing different measures of variance, such a
method directly solves the training error of the endogenous model using a hard thresholding based
approach.

min
𝑨,𝜶 , |H𝑇 | ≥(1−𝛾 ) |U𝑇 |

∑︁
𝑒𝑖 ∈H𝑇

𝑢∈O

1
|U𝑇 |

(
𝑚𝑖 − 𝛼𝑢 −

∫ 𝑡𝑖

0
𝑔(𝑡 − 𝑠) (𝜻 (𝑠) ⊙ 𝑑𝑷 (𝑠))𝑇𝑨𝑢

)2
+ 𝑐

(
| |𝑨| |2𝐹 + ||𝜶 | |22

)
.

Soft thresholding. This method is designed by assuming the presence of unlimited error signals
on a limited number of data points and alternates between (𝛼,𝐴) and {𝑜𝑖 }∀𝑖∈H𝑇

for solving the
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following objective.

min
𝑨,𝜶 ,𝒐

∑︁
𝑒𝑖 ∈U𝑇

1
|U𝑇 |

(
𝑚𝑖 − 𝛼𝑢 −

∫ 𝑡𝑖

0
𝑔(𝑡 − 𝑠) (𝜻 (𝑠) ⊙ 𝑑𝑷 (𝑠))𝑇𝑨𝑢 − 𝑜𝑖

)2
+ 𝑐1

(
| |𝑨| |2𝐹 + ||𝜶 | |22

)
+ 𝑐2 | |𝒐 | |1.

SLANT [18]. In this baseline, we have used all the samples for parameter estimation purpose,
without any filtering.

5.4 Evaluation metrics

We measure the performance of our methods and the baselines using the prediction errors of the
correspondingly trained endogenous model. Specifically, we use (i) the mean squared error (MSE)
between the actual sentiment value (𝑚) and the estimated sentiment value (�̂�), i.e., E[(𝑚 − �̂�)2].
and (ii) the failure rate (FR) which is the probability that the polarity of actual sentiment (𝑚) does
not coincide with the polarity of predicted opinion (�̂�), i.e., P(sign(𝑚) ≠ sign(�̂�)) to measure the
predictive error of the resulting endogenous model.

Mean squared error: E(𝑚 − �̂�)2
CherryPick Competitive methods

Datasets A D E T Hard Huber Lasso Soft Slant
Club 0.038 0.037 0.038 0.038 0.038 0.039 0.039 0.039 0.040

Elections 0.054 0.053 0.054 0.051 0.049 0.055 0.054 0.054 0.055
Verdict 0.069 0.071 0.071 0.071 0.070 0.076 0.074 0.074 0.073
Sports 0.066 0.056 0.060 0.071 0.069 0.060 0.073 0.074 0.076
Delhi 0.035 0.039 0.0 0.036 0.037 0.040 0.040 0.039 0.042

Failure Rate: P(sign(𝑚) ≠ P(sign(�̂�))
Club 0.120 0.113 0.121 0.122 0.108 0.119 0.115 0.117 0.126

Elections 0.169 0.176 0.169 0.188 0.163 0.213 0.213 0.201 0.188
Verdict 0.207 0.210 0.208 0.204 0.214 0.211 0.210 0.211 0.215
Sports 0.114 0.079 0.096 0.122 0.090 0.080 0.086 0.086 0.098
Delhi 0.137 0.147 0.0 0.144 0.141 0.152 0.157 0.152 0.160

Table 3. Sentiment prediction performance for five real-world datasets for all competing methods for a fixed

𝛾 = 0.2. For each message𝑚 in test set, we predict its sentiment value given the history up to T = 4 hours

before the time of the message. For the T hours, we predict the opinion stream using a sampling algorithm.

Mean squared error and failure rate have been reported. We observe that the variants of CherryPick generally

perform better than the baselines on all datasets. Among the baselines, Robust𝐻𝑇 performs comparably with

CherryPick on some of the datasets presented here.

5.5 Results

Comparative analysis. Here we aim to address the research question (1). More specifically, we
compare the endogenous model obtained using our method against the baselines. Table 3 sum-
marizes the results, which reveals the following observations. (I) Our method outperforms other
methods. (II) CherryPick𝐴 and CherryPick𝐷 perform best among the variants of CherryPick.
This is because CherryPick𝐸 and CherryPick𝑇 often suffer from poor training due to the com-
putational inefficiency of eigenvalue optimization in CherryPick𝐸 and the trace optimization of
inverse matrices in CherryPick𝑇 . (III) The robust regression with hard thresholding performs best
across the baselines, which together with the superior performance of our methods indicate that
the hard thresholding based methods are more effective than those based on soft thresholding in
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the context of unsupervised demarcation of the opinionated messages. Here we want to clarify
that Table 3 presents a complete comparative evaluation of all the baselines along with all variants
of CherryPick whereas, in subsequent experiments, we present only the three best performing
baselines for clarity.
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Fig. 1. Performance variation with size of endogenous subset for Club, Verdict and Delhi datasets where the

size of endogenous subset of data is varied from 50% to 100%. Time span T has been set to 4 hours. Mean

squared error and failure rate have been reported. We observe that our method performs better for the range

of size of endogenous subset within 70% to 90% of the whole data whereas performance deteriorates when

endogenous subset size is set too small like 60% or too high like 100% of the whole data.

Variation of performance with the fraction of outliers (𝛾 ). Next, we address the research
question (2). Figure 1 describes the variation of forecasting performance for different values of 𝛾
i.e. the pre-specified fraction of outliers, for Club, Verdict and Delhi datasets. In this experiment, 𝛾
is varied from 0.4 to 0, and demarcation methods are used to remove outlier according to a given
𝛾 , followed by parameter estimation over the refined set. As this experiment is mainly intended
for showing the effect of the parameter 𝛾 in our methods on predictive performance, baselines are
omitted here. For this experiment, the time span has been fixed to 4 hours. Here we observe, as we
start refining the event set, the prediction performance improves. But if we increase the value of 𝛾
beyond around 0.4, the performance drops, strongly suggesting an optimum number of outliers
present in the training data. If we set a high value of 𝛾 , our methods misclassify many regular
events as outliers, while a small value of 𝛾 ignores their effects.
Forecasting performance. Next, we address the research question (3). In particular, we compare
the forecasting performance of CherryPick against the baselines. Figure 2 shows the forecasting
performance with respect to variation of T, across various representative datasets, for the best
performing variant of CherryPick and three best performing baselines (best according to MSE
at T = 4 hours), where 𝛾 = 0.2. We make the following observations. (I) CherryPick outperforms
the baselines for the majority of the cases. (II) Generally, Robust𝐻𝑇 performs better among the
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baselines. (III) The performance deteriorates as we predict further in the future for all the methods,
but the performance stabilizes after a while.
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Fig. 2. Sentiment prediction performance for five real-world datasets for the best performing variant of

CherryPick and three best performing baselines for a fixed 𝛾 = 0.2. For each message𝑚 in test set, we predict

its sentiment value given the history up to T hours before the time of the message. For the T hours, we predict

the opinion stream using a sampling algorithm. Mean squared error and failure rate have been reported.

We observe CherryPick generally performs better than the baselines on all datasets. Among the baselines,

Robust𝐻𝑇 performs comparably with CherryPick on some of the datasets presented here.

Effect of sanitizing test data. Next, we address the research question (4). To that aim, we remove
the outliers from the test data by refining entire datasets using variants of CherryPick and then
check the prediction performance of the previously computed model (in the experimental settings
of Section 5.5) over the refined test set. We compare the prediction error over this sanitized test
set with the prediction error over the unrefined test set and report the improvement. We report
the prediction error in Table 4 (improvements over the error on the unrefined test set are given in
brackets). As observed from the results, for the majority of the cases, refining the test set improves
prediction performance, confirming the presence of outliers in the test set which the estimated
model will not be able to predict well. Depending on the type and nature of the datasets, the error
reduction varies, reaching its highest for Sports and lowest for Club. Among our methods, we
observe CherryPick𝐴 and CherryPick𝐷 to perform better than the rest in terms of error reduction.
In summary, the effectiveness of CherryPick is more prominent after demarcating the test set.
Variation of performance with training set size. Next, we answer the research question (5).
Specifically, we evaluate the efficacy of our approaches over varying training set sizes as follows.
We use a subset of training data, varying from initial 50% of the total training set to entire 100%
for estimating the parameters and test the estimated model on the same test data used in all the
experiments, which is the last 10% data of the entire stream of events. Figure 3 summarizes the
results over three datasets (Club, Elections and Sports) out of the five real datasets, which reveals
the following observations. (I) The performance deteriorates with decreasing training set size for
all methods. (II) Our methods generally perform better compared to the baselines over varying
training set sizes showing the effectiveness of the demarcation technique. (III) For Elections where
the total number of events is quite small compared to the rest, Robust𝐻𝑇 performs better than the
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Datasets CherryPick𝐴 CherryPick𝐷 CherryPick𝐸 CherryPick𝑇
MSE

Club 0.038 (1.78%) 0.044 (-16.%) 0.039 (-1.1%) 0.042 (-10.%)
Elections 0.057 (-4.5%) 0.053 (1.48%) 0.051 (6.56%) 0.062 (-19.%)
Verdict 0.068 (2.04%) 0.069 (3.89%) 0.071 (0.51%) 0.074 (-4.4%)
Sports 0.059 (11.9%) 0.042 (24.8%) 0.057 (6.43%) 0.059 (17.1%)
Delhi 0.033 (6.41%) 0.039 (1.15%) 0.0 (100.%) 0.036 (1.41%)

FR
Club 0.744 (0.29%) 0.140 (-23.%) 0.740 (1.52%) 0.650 (-7.1%)

Elections 0.314 (13.9%) 0.168 (4.59%) 0.252 (28.4%) 0.140 (28.3%)
Verdict 0.685 (0.32%) 0.204 (2.94%) 0.701 (-0.4%) 0.694 (-0.0%)
Sports 0.062 (22.4%) 0.071 (10.9%) 0.051 (20.4%) 0.051 (43.8%)
Delhi 0.474 (19.2%) 0.143 (2.70%) 0.0 (100.%) 0.480 (0.83%)

Table 4. Mean squared error and failure rate of CherryPick𝑋 on all the datasets after demarcating exogenous

events from the test set. Error reduction (from error reported on the entire test set) is given in brackets. After

demarcating the test set, in the majority of the cases, error reduction is positive, indicating that the error on

an unfiltered test set gives an overestimation of the true error.
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Fig. 3. Mean squared error and failure rate on three datasets Club, Elections and Sports for varying size of

training data from 50% to 100% of total training data (initial 90% data of entire event collection) for the best

performing variant of CherryPick and three best performing baselines. Time span for future prediction T is

set to 4 hours and 𝛾 = 0.2. For all methods, error reduces with increasing training set size. Generally on the

entire range, CherryPick performs better than the baselines.

variants of CherryPick, indicating hard thresholding to be quite effective for demarcation. (IV)
The performance of CherryPick for smaller sample size, relative to its competitors, indicates its
stability and robustness.
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6 EXPERIMENTS WITH SYNTHETIC DATA

In this section, we provide a comparative evaluation of the four variants of CherryPick with
baselines on a set of three synthetic datasets. To that aim, we address the following research
questions here:

(1) How do the variants of CherryPick compare in terms of parameter estimation performance
across different sizes of training set?

(2) How does their predictive performance vary across different levels of noise present in the
data?

6.1 Dataset generation

For constructing the synthetic datasets, we have generated the following networks, each with 512
nodes to use as input to the opinion model (SLANT) [18].

• Kronecker Core-Periphery networks : In this Kronecker network, the core is very well
connected and there are comparatively fewer nodes in the periphery, sparsely connected
with the core (parameter matrix [0.9, 0.5; 0.5, 0.3]).
• Kronecker Random networks: This Kronecker network has been generated using the param-
eter matrix [0.5, 0.5, 0.5, 0.5].
• Barabasi Albert : This is a scale-free network where the network grows iteratively with
this preferential attachment property that the more well-connected nodes are more likely to
receive new links.

The message stream is generated for each of the networks by simulating the message sampling
algorithm proposed in [18]. Each user starts with a latent opinion (𝛼𝑖 ) as well as non-zero opinion
influence parameters corresponding to directed edges of the network (𝐴𝑖 𝑗 ) sampled from a zero-
mean unit variance Gaussian distribution. The rate of intensity (𝜇𝑖 ), as well as the intensity influence
parameters (𝐵𝑖 𝑗 ), are uniformly sampled from the range [0, 1]. Opinions are sampled from unit
variance Gaussian with the mean set as the latent opinion of the user. Using multivariate Hawkes,
the events are generated. While generating event times, each event is marked as exogenous with
20% probability and if marked exogenous, it is sampled by a distinct distribution (described later).
The kernel used in exponential decay of the opinion (𝜔) is 1000 and the kernel for the intensity (𝜇)
is 10.

6.2 Baselines

We compare our proposed approaches with the same baselines introduced in Section 5.3.

6.3 Evaluation protocol

The evaluation protocol used is the same as in the case of real datasets (Section 5.2).

6.4 Metrics

We measure the performance of our methods and the baselines using the sentiment prediction
errors and parameter estimation error of the correspondingly trained endogenous model, depending
on corresponding experiment. Specifically, we measure the sentiment prediction error using the
mean squared error (MSE) between the actual sentiment value (𝑚) and the estimated sentiment
value (�̂�), i.e., E[(𝑚 − �̂�)2] and the parameter estimation error using the mean squared error (MSE)
between the estimated (𝑥 )and true opinion parameters (𝑥 ), i.e., 𝐸 [(𝑥 − 𝑥)2].
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6.5 Results

Variation of performance with sample size. Here, we investigate the research question (1).
More specifically, to understand the effect of sample size on parameter estimation, we vary the
number of events per node from 20 to 400. 20% of the messages are perturbed as exogenous events
and they are sampled from a Gaussian distribution with 0.1 variance and mean sampled separately
from a zero-mean-unit-variance Gaussian.

Figure 4 summarizes the results for all variants of CherryPick along with three best performing
baselines, which reveals following observations. (I) CherryPick𝐷 and CherryPick𝑇 are able
to boost parameter estimation performance across a wide range of training set size, along with
showing their robustness and stability with decreasing sample size. Hoewever, CherryPick𝐴 and
CherryPick𝐸 are observed to perform poorly over the entire range.(II) Robust𝐻𝑇 shows very
comparable performance with best performing variants of CherryPick. We can conclude that
CherryPick𝐷 and CherryPick𝑇 are able to identify more useful samples for accurately estimating
the parameters compared to CherryPick𝐴 and CherryPick𝐸 . This is because CherryPick𝐴 and
CherryPick𝐸 suffer from their weak submodularity property, which renders them disadvantageous
due to high SNR of the datasets (40-50 dB) [13].
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Fig. 4. Mean squared error for parameter estimation on three synthetic datasets against varying training set

size. Best performing variants of CherryPick always achieve comparable (if not better) performance with

best of the baselines.

Variation of performance with noise. Here we address research question (2). In particular, to
have a better understanding of the effect of noise intensity in the performance of CherryPick, we
gradually increase the noise intensity in the message stream in all synthetic datasets and report the
sentiment prediction performance of all competing methods. 30000 events are sampled for each
network and 20% of them are perturbed by adding noises of increasing intensity. The noise is sampled
from Gaussian with variance set at 0.05 and mean varying in the range [0.5, 0.75, 1.0, 1.5, 2.0, 2.5].

Figure 5 summarizes the results for all variants of CherryPick along with three best performing
baselines, where it shows, (i) as prediction error increases sharply with increasing noise for all the
methods, CherryPick𝐷 or CherryPick𝑇 outperform or perform comparably with the baselines,
(iii) interestingly Robust𝐻𝑇 performs comparably with CherryPick𝑋 in majority of the cases. As
we already mentioned, for all the cases, the performance of CherryPick𝐴 or CherryPick𝐸 suffers
because their weak submodularity property which renders them ineffective due to high SNR of the
corresponding datasets (40-50 dB) [13].
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Fig. 5. Sentiment prediction error in terms of mean squared error on three synthetic datasets against varying

intensity of noise. Best performing variants of CherryPick degrade gracefully in comparison with the baselines

for most of the cases.

7 CONCLUSION

The principal contribution of this paper lies in emphatically establishing the dual nature of message
flow over online social network: injection of exogenous opinions and influence-based dynamics,
internal to the network. The realization helps us to propose CherryPick𝑋 , a set of novel learning
methodologies to demarcate endogenous and exogenous opinions and illustrate their utility by
analyzing their performance from an opinion modeling perspective. In CherryPick𝑋 , to this aim,
we formulated the message classification problem as a submodular optimization task in the set
of messages, which we solved using an efficient greedy algorithm. Our proposed techniques are
very easy to implement, extremely scalable (particularly CherryPick𝐴 and CherryPick𝑇 ) and
quite effective in serving their purpose, showing their superiority over the baselines which were
designed by robust regression literature. Finally, on various real datasets crawled from Twitter as
well as synthetic datasets, we showed that our proposals consistently outperform various outlier
removal algorithms in terms of predictive performance. The superior performance is even more
remarkable considering the fact that we train our system on smaller (but relevant) amounts of data.
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A PROOFS OF RESULTS

A.1 Proof of Lemma 1

For any 𝑢 ∈ V , define 𝜽𝑢 = [𝑨𝑢 ;𝛼𝑢]. We observe the loss (Eq. 10) associated with only user 𝑢 is a
regularized least squares loss, i.e.,

𝜽𝑢 =min
𝜽𝑢

∑︁
𝑒𝑖 ∈H𝑇

𝜎−2
(
𝑚∗𝑢 (𝑡𝑖 ) − 𝝓𝑢𝑇𝑖 𝜽𝑢

)2
+ 𝑐 | |𝜽𝑢 | |22, (29)

𝜽𝑢 =

(
𝑐𝑰 + 𝜎−2

∑︁
𝑒𝑖 ∈H𝑇

𝝓𝑢𝑖 𝝓
𝑢𝑇
𝑖

)−1
𝜎−2

∑︁
𝑒𝑖 ∈H𝑇

𝑚𝑢 (𝑡𝑖 )𝝓𝑢𝑖

=

(
𝑐𝑰 + 𝜎−2

∑︁
𝑒𝑖 ∈H𝑇

𝝓𝑢𝑖 𝝓
𝑢𝑇
𝑖

)−1
𝜎−2

∑︁
𝑒𝑖 ∈H𝑇

𝝓𝑢𝑖 𝝓
𝑢𝑇
𝑖 𝜽𝑢 +

(
𝑐𝑰 + 𝜎−2

∑︁
𝑒𝑖 ∈H𝑇

𝝓𝑢𝑖 𝝓
𝑢𝑇
𝑖

)−1 ∑︁
𝑒𝑖 ∈H𝑇

𝝓𝑢𝑖
𝜖 (𝑡𝑖 )
𝜎2

The equality follows from the fact that, 𝑚𝑢 (𝑡𝑖 ) = 𝝓𝑢𝑇𝑖 𝜽𝑢 + 𝜖 (𝑡𝑖 )

𝜽𝑢 − 𝜽𝑢 = −𝑐
(
𝑐𝑰 + 𝜎−2

∑︁
𝑒𝑖 ∈H𝑇

𝝓𝑢𝑖 𝝓
𝑢𝑇
𝑖

)−1
𝜽𝑢 +

(
𝑐𝑰 + 𝜎−2

∑︁
𝑒𝑖 ∈H𝑇

𝝓𝑢𝑖 𝝓
𝑢𝑇
𝑖

)−1 ∑︁
𝑒𝑖 ∈H𝑇

𝝓𝑢𝑖
𝜖 (𝑡𝑖 )
𝜎2

Then the covariance product is given in the following:

E(𝜽𝑢 − 𝜽𝑢) (𝜽𝑢 − 𝜽𝑢)𝑇 = 𝑐2
(
𝑐𝑰 + 𝜎−2

∑︁
𝑒𝑖 ∈H𝑇

𝝓𝑢𝑖 𝝓
𝑢𝑇
𝑖

)−1
E[𝜽𝑢𝜽𝑇𝑢 ]

(
𝑐𝑰 + 𝜎−2

∑︁
𝑒𝑖 ∈H𝑇

𝝓𝑢𝑖 𝝓
𝑢𝑇
𝑖

)−1

+
(
𝑐𝑰 + 𝜎−2
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𝑒𝑖 ∈H𝑇

𝝓𝑢𝑖 𝝓
𝑢𝑇
𝑖

)−1 ∑︁
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𝝓𝑢𝑖 𝝓
𝑢𝑇
𝑖

E(𝜖2 (𝑡𝑖 ))
𝜎4

(
𝑐𝑰 + 𝜎−2

∑︁
𝑒𝑖 ∈H𝑇

𝝓𝑢𝑖 𝝓
𝑢𝑇
𝑖

)−1

Note that, from the regularizer we have, 𝜽𝑢 ∼ N(0, 𝑰 /𝑐). Furthermore E(𝜖2 (𝑡𝑖 )) = 𝜎2. Using simple
algebraic calculation, we have the value for 𝚺(H𝑇 ).

A.2 Proof of Theorem 3

(i) Monotonicity of 𝑓𝑋 : To prove monotonicity, we need to show, 𝑓𝑋 (H𝑇 ∪ {𝑒𝑘 }) − 𝑓𝑋 (H𝑇 ) ≥ 0.
Recall that the set of users posting the messages is denoted byV . Assume the user 𝑢 has posted
the event 𝑒𝑘 = {𝑢𝑘 ,𝑚𝑘 , 𝑡𝑘 }, i.e. 𝑢𝑘 = 𝑢. We define an auxiliary function of 𝑝 ∈ [0, 1]:

𝑔 (𝑝) :=
∑︁
𝑢∈V

tr log
(
𝑐𝑰 + 𝜎−2

∑︁
𝑒𝑖 ∈H𝑇

𝝓𝑢
𝑖 𝝓

𝑢𝑇
𝑖 + 𝑝𝜎−2𝝓𝑢

𝑘
𝝓𝑢𝑇
𝑘

)
.

Monotonicity of 𝑓𝑋 inH𝑇 is equivalent to the condition: 𝑔(1) ≥ 𝑔(0) that can be shown by proving
𝑑
𝑑𝑝
𝑔(𝑝) ≥ 0. For compactness, we define 𝑮𝑢 =

(
𝑐𝑰 + 𝜎−2 ∑

𝑒𝑖 ∈H𝑇
𝝓𝑢𝑖 𝝓

𝑢𝑇
𝑖

)
. Now we can show that:

𝑑

𝑑𝑝
𝑔(𝑝) =

∑︁
𝑢∈V

tr
𝑑

𝑑𝑝
log(𝑮𝑢 + 𝑝𝝓𝑢𝑘𝝓

𝑢𝑇
𝑘
)

=
∑︁
𝑢∈V

tr
𝑑

𝑑𝑝
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Hence 𝑓𝑋 is monotone inH𝑇 ∀𝑋 ∈ {𝐴, 𝐷, 𝐸,𝑇 }.
(ii)Weak submodularity of 𝑓𝐴 and 𝑓𝐸 : Since 𝑓𝐴 and 𝑓𝐸 are linear and monotone as proved above,
their weak submodularity follows from the weak submodularity of the A and E optimality criteria
which has been proved in [7, 13, 32] for linear and monotone observation models.
(iii) Submodularity of 𝑓𝐷 : Since 𝑓𝐷 is linear and monotone as proved above, its submodularity
follows from the submodularity of the D optimality criterion which has been proved in [39, 57] for
linear and monotone observation models.
(iv) Modularity of 𝑓𝑇 : Since 𝑓𝑇 is linear and monotone as proved above, its modularity follows
from the modularity of the T optimality criterion which has been proved in [39, 58] for linear and
monotone observation models.

B ADDITIONAL RESULTS

Datasets CherryPick𝐴-Gr CherryPick𝐴-Fast CherryPick𝐷 -Gr CherryPick𝐷 -Fast
Mean squared error: E(𝑚 − �̂�)2

Club 0.038 0.039 0.037 0.037
Elections 0.054 0.055 0.053 0.051
Verdict 0.069 0.071 0.071 0.072
Sports 0.066 0.067 0.056 0.057
Delhi 0.035 0.036 0.039 0.039

Failure Rate: P(sign(𝑚) ≠ P(sign(�̂�))
Club 0.120 0.124 0.113 0.116

Elections 0.169 0.176 0.176 0.182
Verdict 0.207 0.204 0.210 0.213
Sports 0.114 0.091 0.079 0.087
Delhi 0.137 0.144 0.147 0.152

Table 5. Comparative performance evaluation of CherryPick𝐴-Fast and CherryPick𝐷 -Fast with CherryP-

ick𝐴-Gr and CherryPick𝐷 -Gr for five real-world datasets for fixed 𝛾 = 0.2 and T =4 hours. For each message

𝑚 in test set, we predict its sentiment value given the history up to T =4 hours before the time of the message.

For the T hours, we predict the opinion stream using a sampling algorithm. Mean squared error and failure

rate have been reported. We observe that, in general, greedy variants outperform adaptive variants by small

margin.

For the experimental results, we apply standard greedy for maximizing 𝑓𝐴 and 𝑓𝐷 (see Section 5).
As we have mentioned earlier, there exist fast adaptive techniques as alternative to greedy for
both maximization of 𝑓𝐷 as well as 𝑓𝐴. In this section, we repeat our primary experiments with
fast adaptive techniques for CherryPick𝐴 and CherryPick𝐷 and compare them with their greedy
alternatives. For maximizing 𝑓𝐷 , we use Fast-Full, a fast adaptive algorithm proposed in [9]. We
refer to this method as CherryPick𝐷 -Fast. For maximizing 𝑓𝐴, we adopt DASH, a fast adaptive
technique proposed by [55], which we refer to as CherryPick𝐴-Fast. From now onwards, we refer
to greedy techniques for 𝑓𝐴 and 𝑓𝐷 as CherryPick𝐴-Gr and CherryPick𝐷 -Gr respectively. We
present their detailed comparative evaluation in our primary experiments on real datasets below.
Comparative analysis. Here we compare the predictive performance of CherryPick𝐴-Fast
and CherryPick𝐷 -Fast with CherryPick𝐴-Gr and CherryPick𝐷 -Gr. We fix the fraction of
endogenous chosen to 0.8 and prediction time to 4 hours. We follow the same setup as in the
corresponding experiment in Section 5. Table 5 summarizes the results. In aggregate, we observe
the trade-off that fast adaptive techniques either perform comparably with the greedy methods or
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standard greedy algorithms outperform adaptive methods by a small margin at the cost of speeding
up the demarcation process.

CherrypickA-GR CherrypickA-Fast CherrypickD-GR CherrypickD-Fast
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Fig. 6. Performance variation with size of endogenous subset for Club, Verdict and Delhi datasets where the

size of endogenous subset is varied from 60% to 100%. Timespan T has been set to 4 hours. Mean squared

error and failure rate have been reported. Adaptive variants display almost identical behavior with greedy

variants.

Variation of performance with the fraction of outliers (𝛾 ). Figure 6 compares greedy and
adaptive variants of CherryPick𝐴 and CherryPick𝐷 by observing the variation of forecasting
performance for different values of 𝛾 i.e. the pre-specified fraction of outliers, for Club, Verdict,
and Delhi datasets. In this experiment, 𝛾 is varied from 0.4 to 0, and the timespan has been
fixed to 4 hours. Here we observe both CherryPick𝐴-Fast and CherryPick𝐷 -Fast perform very
similar to CherryPick𝐴-Gr and CherryPick𝐷 -Gr respectively. Moreover, CherryPick𝐴-Fast
and CherryPick𝐷 -Fast preserve the same behavioral pattern as their greedy counterpart i.e. both
performing best for a fixed value of 𝛾 , with performance drop at both ends.
Forecasting performance. Finally, we compare the forecasting performance of CherryPick𝐴-
Fast and CherryPick𝐷 -Fast with their greedy counterparts with respect to variation of T, fixing
𝛾 = 0.2. Figure 7 summarizes the results, where we make following observations. (I) Generally, both
CherryPick𝐴-Fast and CherryPick𝐷 -Fast are outperformed by their greedy counterparts with
very low margin as T increases. (II) CherryPick𝐴-Fast and CherryPick𝐷 -Fast display a similar
pattern of performance drop with higher T with small deviations from the greedy counterparts.
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Fig. 7. Forecasting performance for greedy and adaptive variants of CherryPick𝐴 and CherryPick𝐷 for a

fixed 𝛾 = 0.2 for four major real datasets. For each message𝑚 in the test set, we predict its sentiment value

given the history up to T hours before the time of the message. For the T hours, we predict the opinion stream

using a sampling algorithm. Mean squared error and failure rate have been reported. We observe almost

identical behavior of greedy and adaptive variants, with adaptive methods outperformed by greedy methods

with negligible margin.
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