
HAL Id: hal-03038307
https://uca.hal.science/hal-03038307v1

Submitted on 3 Dec 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

HoCL High level specification of dataflow graphs
Jocelyn Sérot

To cite this version:
Jocelyn Sérot. HoCL High level specification of dataflow graphs. Réunion thématique du GdR ISIS,
Nov 2020, Rennes, France. �hal-03038307�

https://uca.hal.science/hal-03038307v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

HoCL
High level specification of

dataflow graphs
Jocelyn Sérot

Institut Pascal, UMR 6602 U. Clermont-Auvergne / CNRS
IETR, UMR 6164 I. Rennes 1 / CNRS

GdR ISIS 2020-11-18

Introduction

Q : What are the three most things in programming ?

A :

1. abstraction

2. abstraction

3. abstraction

Question 1

Q : Do dataflow models promote abstraction ?

A : Well, it depends…

Question 2

EXAMPLE 1
Dataflow formulation of an iterative algorithm in Preesm
https://preesm.github.io

Chapter 4 – Dynamically Initialized and State-Aware Dataflow MoCs

The prologue phase is the phase initializing dataBu�er . The loop kernel is the phase
corresponding to the iterative computations of the loop. Finally, the epilogue is the pro-
cessing done after the final iteration of the loop. The three phases of Algorithm 1 are
sequential due to the data dependency of dataBu�er . This data dependency is enforced
at line 4 of the loop kernel phase, where results from the previous loop iterations are
used. In other words, the line 4 computation of iteration n + 1 and iteration n are not
executable in parallel. Nevertheless, parallelism can still be exploited inside each of the 3
phases.

I BR 1

RB1 EDDN*DDup DD

Mux D
D
D
1

P RB0D N*D

N

D

Loop Kernel
D

D1

D

D

Figure 4.9 – Equivalent SDF graph of Algorithm 1.

Figure 4.9 shows how Algorithm 1 is expressed in the strict SDF MoC. Note that
the inner processing of the loop kernel phase is fully exposed in the strict SDF MoC.
Actors P , {R, B} and E represent the prologue, the loop kernel and the epilogue phases
of Algorithm 1, respectively. The size of dataBu�er is noted D and corresponds to the
consumption and production rates of actor B. Actor I is used here to set the number N

of iterations of the for loop. Actors RB
0

, RB
1

and Dup are special actors used to manage
the loop context of Algorithm 1. RB

0

and RB
1

are used to guarantee unique execution
of the prologue and epilogue phases. RB

0

duplicates N times the tokens received on its
input port to its output port and symmetrically, RB

1

forwards only the last D tokens
received on its input port to its output port. The Mux actor is a multiplexer used to select
which tokens are forwarded to actor B. Since actors are stateless in the SDF MoC, the
Mux actor distinguishes the first iteration from the rest of the loop based on the values
produced by actor I. On the first firing of actor B, tokens produced by actor P are used.
For every other firings, actor B uses the tokens produced by its previous firing through a
feedback Fifo. The Dup actor is a duplicate actor and is used to forward the data tokens
produced by actor B to both Mux and RB

1

.

68

P();
for i=0 to N do B() done;
E();

Source : Extensions	and	Analysis	of	Data1low	Models	of	Computation	for	Embedded	
Runtimes..	PhD	thesis.	F.	Arrestier,	2020.

EXAMPLE 2
Dataflow formulation of an RMOD application in DIF
(Dataflow Interchange format)

The DSPCAD Framework for Modeling and Synthesis of Signal Processing Systems 11

a

b c

Fig. 1 CFDF modeling of a reconfigurable modulator (RMOD) application supporting multiple
source data rate and modulation schemes. (a) CFDF model of the RMOD application (b) Mode
transitions of actor S . (c) Mode transitions of actor T

S1
S2

ModeMode Edge:T→FEdge:S→TEdge:S→T Edge:C→TEdge:C→S
INITINIT
BPSK
QPSK
16QAM

a b

0
0
0
0

1

1
1

–1
–1

–1

–2

–4

00

0
0 2

1

Fig. 2 Data-flow tables. (a) Table for actor S . (b) Table for actor T

and m, corresponding to the source data rate and modulation scheme, respectively,
and sends these parameter values to the actors S and T . S and T in turn are two
CFDF actors that each have multiple modes and data-dependent mode transitions,
as illustrated in Figs. 1b and c, respectively.

Both S and T are initialized to begin execution in their respective INIT modes.
In its INIT mode, S reads the source data rate r and switches to either S1 or S2
depending on the value of r . Similarly, in its INIT mode, T reads the modulation
scheme index m and switches to one of the 3 modes, Binary PSK (BPSK),
Quadrature PSK (QPSK), or 16-QAM, depending on m. S and T have different
production and consumption rates in different modes.

Figure 2 shows the data-flow tables for actors S and T . A data-flow tableZ for a
CFDF actor A specifies the data-flow behavior for the available modes in the actor.
Each entryZŒ!; p" corresponds to a mode ! 2 modes.A/ and input or output port p
of A. If p is an output port of A, then ZŒ!; p" gives the number of tokens produced
on the edge connected to p during a firing of A in mode !. Similarly, if p is an input

12 S. Lin et al.

port, then ZŒ!; p" D !c, where c is the number of tokens consumed during mode
! from the edge connected to p.

In the column headings for the data-flow tables shown in Fig. 2, each port is
represented by the edge that is connected to the port. If m D 1, then T executes in
the BPSK mode and consumes only 1 token on its input edge. On the other hand, if
m D 4, then T executes in the 16-QAM mode and consumes 4 tokens on its input
edge. After firing in their respective BPSK or 16-QAM modes, S and T switch
back to their INIT modes and await new values of r and m for the next round of
computation. The remaining actors are SDF actors that consume/produce a single
token on each of their input/output edges every time they fire.

3.3 Data-Flow Graph Specification in the DIF Language

As discussed above, the DIF language is a design language for specifying mixed-
grain data-flow models in terms of a variety of different forms of data flow [22].
The DIF language provides a C-like, textual syntax for human-readable description
of data-flow structure. An XML-based version of the DIF language, called DIFML,
is also provided for structured exchange of data-flow graph information between
different tools and formats [17]. DIF is based on a block-structured syntax and
allows specifications to be modularized across multiple files through integration
with the C preprocessor. As an example, a DIF specification of the RMOD
application is shown in Listing 1.

Listing 1 DIF Language specification of the RMOD application
CFDF RMOD {
topology {
nodes = C, S, T, F, M, P, X, K;
edges = e1(C, S), e2(C, T), e3(S, T), e4(T, F),

e5(F, M), e6(F, P), e7(M, X), e8(P, X), e9(X, K);
}
actor C {
name = "mod_ctrl";
out_r = e1; out_m = e2; /* Assign edges to ports */

}
actor S {
name = "mod_src";
in_ctrl = e1; out_data = e3;
mode_count = 3;

}
actor T {
name = "mod_lut";
in_ctrl = e1; in_bits = e3; out_symbol = e4;
mode_count = 4;

}
/* Other actor definitions */
/* ... */

}

Source : The	DSPCAD	Framework	for	Modeling	and	Synthesis	of	Signal	Processing	Systems.	
Shuoxin Lin, Yanzhou Liu, Kyunghun Lee, Lin Li, William Plishker,
and Shuvra S. Bhattacharyya, 2017.

• Simplify the specification of large and complex dataflow graphs

• Independently of the underlying dataflow model of computation

- pure coordination language (..CL = Coordination Language)

• Support for hierarchical and parameterized graphs

• Independently of the target implementation platform (software,
hardware, mixed, ...)

• Support for mixed-style descriptions (structural or functional)

Motivations

•Informal presentation of the language by means of small
examples

•Technical details such as typing, semantics, etc. deliberately
omitted

- https://github.com/jserot/hocl

This presentation

Core features

• This defines a graph top, with input i
and output o.

• This graph is built from two boxes,
n1 and n2, linked by a wire w

• Boxes and wires are typed

• Each box is an instance of a node
(f and g resp.)

• Nodes f and g are here defined as
opaque actors (black boxes)

• The graph top is here defined
structurally

Example 1

node f
 in (i: int) out(o: int);

node g
 in (i: int) out(o: int);

graph top
 in (i: int)
 out (o: int)
struct
 wire w: int
 box n1: f(i)(w)
 box n2: g(w)(o)
end;

i f og

• This is an alternative description of
graph top using a functional style

• Nodes are interpreted as functions and
the graph is described using function
application

• applying function f to value x (here
denoted as f x) builds a node by
instantiating actor f and connecting the
wire representing the value x to its input

• An actor with m inputs e1:t1, …, em:tm and
n inputs s1:t’1, …, sn:t’m is interpreted as a
(curried) function of type

 e1:t1 →… → em:tm → t’1 * … * t’m

Example 1

node f
 in (i: int)
 out(o: int);

node g
 in (i: int)
 out(o: int);

graph top
 in (i: int)
 out (o: int)
fun
 val o = g (f i)
end;

i f og

• Another functional formulation using
the reverse application operator |> :

 x |> f = f x

Example 1

node f
 in (i: int)
 out(o: int);

node g
 in (i: int)
 out(o: int);

graph top
 in (i: int)
 out (o: int)
fun
 val o = i |> f |> g
end;

i f og

f

g

g

h oi

node f in (i: int) out (o1: int, o2:int);
node g in (i: int) out (o: int);
node h in (i1: int, i2:int) out (o:int);

Example 2
x1

x2

graph top
 in (i: int)
 out (o: int)
fun
 val (x1,x2) = f i
 val o = h (g x1) (g x2)
end;

A slightly more complex graph

Cycles and recursive wiring

f g

o

i
z

graph top
 in (i: t1) out (o: t4)
fun
 val rec (o,z) = f i (g z)
end;

node f in (i1: t1, i2: t2) out (o1: t4, o2: t3);
node g in (i: t3) out (o: t2);

graph top
 in (i: int) out (o: int)
fun
 val rec (o,z) = f (i, delay ‘0’ z)
end;

Delayed cycles

• Delays are required to avoid deadlock when simulating the graph (they provide the
initial token(s) on the feedback edge(s)

• The special actor delay is predefined (and interpreted specifically by the various
backends)

- the actor parameter (‘0’, here) specifies the initial value)

• Using type or application specific delay actors is also possible

graph top
 in (i: int) out (o: int)
struct
 wire w1, w2: int
 box n1: f(i,w1)(o,w2)
 box n2: delay(‘0’,w2)(w1)
end;

f

delay

o

0

i

Recursive graphs

node f
 in (i: t)
 out (o: t);
node qmf
 in (i: t)
 out (o1: t, o2: t);

graph top
 in (i: t)
 out (o: t)
fun
 val rec fb d x =
 if d = 0 then f x
 else
 let x1,x2 = qmf x in
 qmf (f x1)
 (fb (d-1) x2)
 val o = fb 3 i
end;

• line 12 respectively binds x1 and x2 to the first and
second output of the f node5,

• lines 13 and 14 respectively bind y1 and y2 to the output
of the first and second instance of the g node, i.e. to the
output of the corresponding subgraphs,

• line 15 binds these two values to the inputs of the h node
and its output to the graph output o.

Thanks to referential transparency, the definition given at
lines 12–15 can be rewritten in a slightly more concise manner,
without explicitly binding y1 and y2, as :

v a l (x1 , x2) = f i
v a l o = h (g x1) (g x2)

A. Wiring functions
Values bound by val declarations are not limited to wires

but can also be, as in any functional programming language,
functions.

For example, the definition of subgraph g in Listing 2 can
be rewritten as follows :

node g in (i : t) out (o : t)
v a l o = t w i c e k x

end ;

where twice is the function defined, classically, as :

v a l t w i c e f x = f (f x)

and has type : (↵ ! ↵) ! ↵ ! ↵

The definition of the top graph in Listing 2 can also be
reformulated as follows, using a function :

graph t o p in (i : t) out (o : t)
fun

v a l diamond l e f t midd le r i g h t x =
l e t (x1 , x2) = l e f t x in
r i g h t (midd le x1) (midd le x2)

v a l o = diamond f g h i
end ;

The diamond function takes four arguments : three func-
tions, left, middle, and right and a value x and applies
the given functions to x to form the diamond-shaped pattern
exemplified in Fig. 1. For this, it first applies function left

to x, giving two intermediate values x1 and x2, then applies
function middle, in parallel, both to x1 and x2 and finally
applies function right to the results. This definition is con-
veyed using a local definition (let ... in). The semantics
of local definition is that of classical FPLs : the scope of the
values defined in the let part is limited to the declarations
occurring in the in part. In essence, the diamond function
captures (“encapsulates”) the depicted graph pattern, just as the
twice function was capturing the repetition pattern depicted
in the subgraph g.

Functions like twice or diamond may be viewed as a
means of capturing wiring patterns in dataflow graphs. For

5Strictly speaking, to the first and second output of the box resulting from
the instantiation of node f. For simplification, and unless explicitly noted,
we will now denote a node instance by the name of the corresponding node
model.

this reason, we call them wiring functions, to distinguish them
from “ordinary” functions operating on scalar values.

HoCL comes with a standard library defining several useful
wiring functions encapsulating classical graph patterns such as,
for example :

• iter, for applying a given function n times in sequence;
so that the function twice can actually be defined as :

v a l t w i c e = i t e r 2 f

• pipe, a variant of iter in which a distinct function is
applied at each stage (see Sec. VI),

• map, to apply the same function to a list of values,
• mapf to apply a list of functions to a given value,
• . . .
An important feature is that all these functions are defined

using regular HoCL declarations, i.e. within the language
itself6. For example, the definition of the iter wiring function
is just, and as expected :
v a l r e c i t e r n f x =

i f n=0 t h e n x
e l s e i t e r (n�1) f (f x)

The set of available higher order graph patterns is therefore
not fixed but can be freely modified and extended by the
application programmer to suit her specific needs. This is in
strong contrast with most dataflow-based design tools in which
similar abstraction mechanisms rely on a predefined and fixed
set of patterns.

B. Recursive graphs
In a dataflow context, a recursive graphs is a graph in which

the refinement of some specific nodes is the graph itself. A
typical example is provided by Lee and Parks in their classical
paper on dataflow process networks [6].

This example is an analysis/synthesis filter bank under the
SDF (Synchronous Data Flow) model. The corresponding
dataflow graph has a regular structure which can be charac-
terized by its “depth”. Fig. 2, for example, shows a graph of
depth three7.

Fig. 13. A recursive specification of an FFT implemented in the SDF domain in Ptolemy. The
recursion is unfolded during the setup phase of the execution, so that the graph can be completely
scheduled at compile time.

-1
2
+

aMF--, -

Fig. 14. A fourti-order decimation-in-time FFT shown graph-
ically. The order of the FFT, however, is hard-wired into the
representation.

1- - - 2 +
1 - 1

3

stylistically identical to that found in functional languages
like Haskell, albeit with a visual syntax. This can be
illustrated with another practical example of an application
of recursion.

Consider the system shown in Fig. 15. It shows a mul-
tirate signal processing application: an analysidsynthesis
filter bank with harmonically spaced subbands. The stream
coming in at the left is split by matching highpass and
lowpass filters (labeled “QMF” for “quadrature mirror
filter”). These are decimating polyphase finite impulse
response (FIR) filters, so for every two tokens consumed
on the input, one token is produced on each of two outputs.
The left-most QMF only is labeled with the number of
tokens consumed and produced, but the others behave the
same way. The output of the lowpass side is further split
by a second QMF, and the lowpass output of that by a
third QMF. The boxes labeled “F” represent some function
performed on the decimated stream (such as quantization).
The QMF boxes to the right of these reconstruct the signal
using matching polyphase interpolating FIR filters.

There are four distinct sample rates in Fig. 15 with a ratio
of 8:l between the largest and the smallest. This type of
application typically needs to be implemented in real time
at low cost, so compile-time scheduling is essential.

The graphical representation in Fig. 15 is useful for
developing intuition, and exposes exploitable parallelism,
but it is not so useful for programming. The depth of the
filter bank is hard-wired into the visual representation, so
it cannot be conveniently made into a parameter of a filter-
bank module. The representation in Fig. 16 is better. A
hierarchical node called “FB,” for “filterbank” is defined,
and given a parameter D for “depth.” For D > 0 the
definition of the block is at the center. It contains a
self-reference, with the parameter of the inside reference
changed to D- 1. When D = 0, the definition at the
bottom is used. The system at the top, consisting of just
one block, labeled “FB(D = 3),” is exactly equivalent
to the representation in Fig. 15, except that the visual
representation does not now depend on the depth. The
visual recursion in Fig. 16 can be unfolded completely
at compile time, exposing all exploitable parallelism, and
incurring no unnecessary run-time overhead.

F. Higher-Order Functions
In dataflow process networks, all arcs connecting actors

represent streams. The icons represent both actors and
the processes made up of repeated firings of the actor.
Functional languages often represent such processes using

LEE AND PARKS: DATAFLOW PROCESS NETWORKS

.

79 1

Fig. 2: A filter bank of depth 3 under the SDF model (from
[6], Sec III-C, p 792)

For the sake of generality, Lee and Parks propose to view
this graph as an instance of a “recursive template”, depicted
in Fig. 3.

6In file lib/hocl/stdlib.hcl technically.
7The meaning of the actor QMF and F and the numbers on the wires are

irrelevant here.

FB(D > 0)

Fig. 16.
This representation uses template matching.

A recursive representation of the filter bank application.

Fig. 17.
lent of the Haskell “scanl f a xs” higher-order function.

Visual syntax for the dataflow process network equiva-

higher order functions. For example, in Haskell,

map f xs

applies the function f to the list xs. Every single-input
process in a dataflow process network constitutes an invo-
cation of such a higher order function, applied to a stream
rather than a list. In a visual syntax, the function itself is
specified simply by the choice of icon. Moreover, Haskell
has the variant

zipwith f xs ys

where the function f takes two arguments. This corresponds
simply to a dataflow process with two inputs. Similarly, the
Haskell function

scanl f a x s

takes a scalar a and a list xs. The function f is applied
first to a and the head of xs. The function is then applied
to the first returned value and the second element of 5s. A
corresponding visual syntax for a dataflow process network
is given in Fig. 17.

Recall our proposed syntactic sugar for representing
feedback loops such as that in Fig. 17 using actors with
state. Typically the initial value of the state (U) will be a

192

bbdo”: RaisedCosine
where_delined:
penumrter-map: exmssBW = 1 .o/instance_numbe~
input-map: -In
arqut_map: sig-

Fig. 18.
different raised cosine pulses.

An example of the use of the Map actor to plot three

Panel 1. Icon for the Map higher-order function in Ptolemy.

parameter of the node. In fact, dataflow processes with state
cover many of the commonly used higher-order functions
in Haskell.

The most basic use of icons in our visual syntax may
therefore be viewed as implementing a small set of built-in
higher-order functions. More elaborate higher-order func-
tions will be more immediately recognizable as such, and
will prove extremely useful. Pioneering work in the use
of higher-order functions in visual languages was done by
Hills [51], Najork and Golin [75], and Reekie [U]. We
will draw on this work here.

We created an actor in Ptolemy called Map that general-
izes the Haskell map. Its icon is shown in Panel 1.

It has the following parameters:

blockname
wheredejned

parametermap

inputmap
outputmap

Our implementation of Map is simple but effective. It
creates one or more instances of a the specified actor (which
may itself be a hierarchical node) and splices those instance
into its own position in the graph. Thus we call the specified
actor the replacement actor, since it takes the place of the
Map actor. The Map actor then self-destructs. This is done
in- the setup phase of execution so that no overhead is
incurred for the higher order function during the run phase
of execution, which for signal processing applications is the
most critical. This replacement can be viewed as a form of
partial evaluation of the program [34].

Consider the example shown in Fig. 18. The replacement
actor is specified to be RaisedCosine, a built-in actor in

The name of the replacement actor.
The location of the definition of the
actor.
How to set the parameters of the
replacement actor.
How to connect the inputs.
How to connect the outputs.

PROCEEDINGS OF THE IEEE, VOL. 83, NO. 5 , MAY 1995

Fig. 3: A recursive template for filter bank of depth D under
the SDF model (from [6], Sec III-C, p 793)

The recursive nature of this description is evidenced by
occurrence, in the definition of the graph labeled FB(D),
of a node labeled FB(D-1). The graph labeled FB(D=0)

provides the base case for the recursion.
This graph structure can be readily encoded in HoCL as

follows :

v a l r e c fb d x =
i f d=0 t h e n

f x
e l s e

l e t (x1 , x2) = qmf x in
qmf (f x1) (fb (d�1) x2)

end ;

so that the graph of Fig.2 can be simply defined as

graph l e e p a r k s 3 in (i : i n t) out (o : i n t)
fun

v a l o = fb 3 i
end ;

C. Cyclic graphs

Recursive definitions can also be used to encode cyclic
graph structures, in which the output of a node is fed back to
one of its input, as exemplified in Fig. 4. The corresponding
graph can be described as follows in HoCL :

graph t o p in (i : i n t) out (o : i n t)
fun

v a l r e c (o , z) = f i (g z)
end ;

The rec keyword is required here because the value z, here
bound to the second output of node f, is also used as an input
of the same node.

f g

o

i

Fig. 4: A graph with a cycle

Mutual recursion is also possible, as exemplified by the
following description of the graph depicted in Fig. 5 :
node f in (i 1 : t , i 2 : t) out (o1 : t , o2 : t) ;
node g in (i 1 : t , i 2 : t) out (o1 : t , o2 : t) ;

graph t o p in (i 1 : t , i 2 : t) out (o1 : t , o2 : t)
fun

v a l r e c ((o1 , z1) , (z2 , o2)) = f i 1 z2 ,
g z1 i 2

end ;

f
i1
i2

o1
o2 g

i1
i2

o1
o2

o1

o2
i2

i1

Fig. 5: Graph example 7

D. Parameterized graphs
The term parameterized dataflow was introduced in [4]

to describe a meta-model which, when applied to a given
dataflow model of computation (MoC), extends this model
by adding dynamically reconfigurable actors. Reconfigurations
occur when values are dynamically assigned to parameters
of such actors, causing changes in the computation they
perform and/or their consumption and production rates. The
precise nature of changes triggered by reconfigurations and the
instants at which these reconfigurations can occur both depend
on the target MoC. HoCL offers a MoC-agnostic interface to
this feature using a dedicated type to distinguish parameters
from “regular” data flows.

Consider, for example, a node mult, taking and producing
a flow of integers and parameterized by an integer value
corresponding to the factor by which each input is multiplied
to produce an output. Such a node could be declared as
follows :
node mul t in (k : i n t param , i : i n t) out (o : i n t)

with the corresponding function having type

int param ! int ! int

As shown by the above signature, parameters are supplied
to nodes used curried application. The following program, for
instance, instantiates node mult with k=2, giving the graph
depicted in Fig. 6 :

1graph t o p in (i : i n t) out (o : i n t)
2fun
3v a l o = mul t ’2 ’ i
4end ;

In Fig. 6, local parameters are drawn as house-shaped nodes
and parameter dependencies using dashed lines. In the code,
the simple quote around the parameter value 2 is used to
distinguish parameter values from ordinary values8.

8From a typing perspective, the ’.’ operator has type t -> t param.

Example (from [Lee and Parks, 1995])

Hierarchical graphs

• Nodes can be described as
(sub)graphs (either
structurally or functionally),
giving rise to hierarchical
graphs

• Node with no description are
interpreted as opaque actors
(« blackboxes »)

• Toplevel graphs are
identified with the graph
keyword

node foo in (i: t) out (o: t);
node bar in (e: t) out (s: t);

node sub in (i: t) out (o: t)
fun
 val o = i |> foo |> bar
end;

graph top in (i: t) out (o: t)
fun
 val o = i|> sub
end;

sub oi

bar ofooi

node mult
 in (k: int param, i: int)
out (o: int);

graph top
 in (i: int) out (o: int)
fun
 val o = i |> mult ‘2’
end;

Parameters

• Parameters are used to configure
(specialize) nodes

• Parameters are distinguished from
data by their type :

• t param is the type of a parameter

having itself type t

• In functional descriptions, this allows
specifying their value using partial
application of the corresponding
function

mult o

2

i

node sub
 in (k: int param, i: int)
out (o: int)
fun
 val o =
 i |> mult k |> mult k
end;

graph top
 in (i: int) out (o: int)
fun
 val o = i |> sub ‘2‘
end;

Parameter passing
• Parameters can be passed from one hierarchy level to a nested one

mult o
mult

k

i

sub o

2

i

node sub
 in (k: int param, i: int)
 out (o: int)
fun
 val o =
 i |> mult k |> mult k
end;

graph top
 in (k: int param=2, i: int)
out (o: int)
fun
 val o = i |> sub k
end;

Parameter passing

• The value of the toplevel parameters can be defined in the corresponding
graph interface

mult o
mult

k

i

sub o

k=2

i

node sub
 in (k: int param, i: int)
 out (o: int)
fun
 val o =
 i |> mult ’k+1’
end;

graph top
 in (k: int param=2, i: int)
 out (o: int)
fun
 val o = i |> sub k
end;

Parameter dependencies

• The value of some parameters can depend on that of other parameters, defined
at the same or at higher level(s) in the graph hierarchy

• Dependencies between parameter values create a tree in graph, which is
‘‘orthogonal’’ to the data flow

sub o

k=2

i

mult o

k+1k

i

Higher order features
Ho..

f

g

g

h oi

Wiring functions

graph top
 in (i: int)
 out (o: int)
fun
 val body x =
 let (x1,x2) = f x in
 h (g x1) (g x2)
 val o = body i
end;

Another formulation : • body is a wiring function : it
encapsulates the wiring pattern
of the encoded graph

• The definition of body makes
use of a local definition (let .. in)

• The top graph is built by simply
applying this function

• Wiring functions can be defined
within a (sub)graph (local
scope) or globally

f

g

g

h oi

Higher order wiring functions

graph top
 in (i: int)
 out (o: int)
fun
 val diamond left middle right x =
 let (x1,x2) = left x in
 right (middle x1) (middle x2)
 val o = diamond f g h i
end;

Pushing the abstraction a bit further :
• The diamond function

abstracts further the
definition of body, by taking
as parameters the actors
to be instantiated to build
the defined graph

• The graph top is built by
supplying the actual actors
(f, g and h) as arguments to
diamond.

• diamond is an higher-
order wiring function
(HOWF)

h o

h

g

gf

hg

g

f

fi

• The diamond function is here instantiated at two levels :

- within the sub function, to describe the « inner » diamond structure

- within the definition of the output o, to build the toplevel graph structure

Higher order wiring functions
graph top
 in (i: int) out (o: int)
struct
 wire w1,w2,w3,w4,
 w5,w6,w7,w8,
 w9,w10,w11,w12:int
 box f1: f(i)(w1,w2)
 box f2: f(w1)(w3,w4)
 box f3: f(w2)(w5,w6)
 box g1: g(w3)(w7)
 box g2: g(w4)(w8)
 box g3: g(w5)(w9)
 box g4: g(w6)(w10)
 box h1: h(w7,w8)(w11)
 box h2: h(w9,w10)(w12)
 box h3: h(w11,w12)(o)
end;

!

graph top
 in (i: int) out (o: int)
fun
 val diamond l m r x = …
 val sub = diamond f g h
 val o = diamond f sub h i
end;

« Classic » higher order wiring functions

graph top
 in (i: int)
 out (o: int)
fun
 val o = i |> pipe [f1;f2;f3]
end;

i f1 of2 f3

• Many recurrent graph patterns can be encapsulated using higher-order wiring
functions

• Example :

val rec pipe fs x = match fs with
 [] -> x
 | f::fs' -> pipe fs' (f x);

where :

« Classic » higher order wiring functions

graph top
 in (i: int)
 out (o: int)
fun
 val o = i |> iter 4 f
end;

• Many recurrent graph patterns can be encapsulated using higher-order wiring
functions

• Example :

val rec iter n f x =
 if n = 0 then x
 else iter (n-1) f (f x)

where :

f offfi

« Classic » higher order wiring functions
• Many recurrent graph patterns can be encapsulated using higher-order wiring

functions

• Example :

where :

f1 o1

f2 o2

f3 o3

i

graph top
 in (i:int)
 out (o1:int, o2:int, o3:int)
fun
 val (o1,o2,o3) =
 i |> mapf [f1;f2;f3]
end;

val rec mapf fs x = match fs with
 [] -> []
 | f::fs' -> f x :: mapf fs' x;

Higher order wiring functions

• Higher order wiring functions

- promote abstraction

- allow common graph patterns to be encapsulated for reuse

• In HoCL, they are defined within the language itself

- the set of available reusable patterns can therefore be freely
extended to suit the application domain

- this is in contrast with existing dataflow-based design tools in which
similar abstraction mechanisms rely on a predefined and fixes set of
patterns

In practice

•Prototype compiler written in OCaml

•Based upon a fully formalized static semantics (natural style)

• Source code available on github (jserot/hocl)

•Two versions

- a command line compiler

- a toplevel interpreter

•The CL compiler currently has four backends

- a .dot backend (for visualizing the DFGs)

- a DIF backend (for interfacing to DF-based analysis tools)

- a Preesm backend (for generating code on heterogeneous many-core
embedded platforms)

- a SystemC backend (for simulation under the DDF and SDF MoCs)

Implementation

• Used to simulate the described DFGs

• Initialisation and per-activation code provided as external C functions

• Automatic generation of FIFOs, delay, broadcast and IO nodes (reading/writing files)

Example : using the SystemC backend

Example

node foo
 in (i: int) out (o: int)
actor
 systemc(
 loop_fn="foo",
 incl_file="foo.h",
 src_file="foo.cpp")
end;

graph top
 in (i: int) out (o: int)
fun
 val o = i |> foo
end; main.hcl

foo o :inti :int

bash> cd ./systemc; make

void foo(IN int *i, OUT int *o);

void foo(IN int *i, OUT int *o)
 { *o = *i * 2; }

1 2 3 4 …

foo.h

foo.c

top_i.dat

bash> hoclc -systemc main.hcl
Wrote file systemc/main_top.cpp
Wrote file systemc/top_gph.h
Wrote file systemc/foo_act.h
Wrote file systemc/foo_act.cpp

2 4 6 8 … top_o.dat

Conclusion

• Another attempt to bring the benefits of functional programming
outside its « classical » circle

- programmers in the DSP field are not familiar with concepts such as
polymorphic typing and higher order functions

• Drawing of previous experience in a similar context with the CAPH
project (http://dream.ispr-ip.fr/CAPH)

- provide interfaces to existing, already used, tools

- demonstrate practical benefits wrt. this tools

- introduce disruptive concepts only if it serves a well identified goal

Conclusion

• Work in progress

- injection of MoC-specific features into specifications

- design of large scale DSP applications with HoCL for assessing gains if
programmer’s productivity

Thanks for your (remote) attention

