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ABSTRACT
Existing parking recommendation solutions mainly focus on find-
ing and suggesting parking spaces based on the unoccupied options
only. However, there are other factors associated with parking
spaces that can influence someone’s choice of parking such as fare,
parking rule, walking distance to destination, travel time, likelihood
to be unoccupied at a given time. More importantly, these factors
may change over time and conflict with each other which makes
the recommendations produced by current parking recommender
systems ineffective. In this paper, we propose a novel problem called
multi-objective parking recommendation. We present a solution by
designing a multi-objective parking recommendation engine called
MoParkeR that considers various conflicting factors together. Specif-
ically, we utilise a non-dominated sorting technique to calculate a
set of Pareto-optimal solutions, consisting of recommended trade-
off parking spots. We conduct extensive experiments using two
real-world datasets to show the applicability of our multi-objective
recommendation methodology.

CCS CONCEPTS
•Human-centered computing→Ubiquitous andmobile com-
puting; • Information systems→ Decision support systems.
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1 INTRODUCTION
Finding street parking in crowded cities is challenging and thus
requires a highly functional and efficient parking management
strategy. Searching for available parking can cause congestion and
wasted land use. A research found that vehicles cruising for suit-
able parking in Los Angles were responsible for 730 tons of carbon
emissions through the burning of 47,000 gallons of gasoline in one
year [10]. The research also identified that the distance travelled
during the search for parking was equivalent to 38 trips around
the world. These problems can be minimised by providing drivers
with effective recommendations about their parking choices. How-
ever, effective parking recommendation is very complex as it is
influenced by various factors such as parking fare, rule, walking
distance to the destination location, total travel time, and likelihood
of parking locations be available at a given timestamp. Moreover,
these factors can be conflicting with each other. For instance, a low-
fare parking spot may require long-distance walking to destination.
Additionally, some of these factors (e.g. fare, parking rules) may
vary across different times of the day which makes the parking
recommendation problem more complex. With the growing trends
in adopting ubiquitous technologies, many cities around the world
have implanted smart sensors to collect data related to parking
events. Many researchers use this data to extract meaningful infor-
mation. The current research mainly focuses on predictive analytics
of parking events using univariate and multi-variate signals. An-
other research direction uses event logs from parking sensor data
to make new policies (e.g. new parking rule or dynamic parking
price) [9, 13]. There are a few research that provides parking recom-
mendation based on future availability [18]. However, this group
of research rarely consider user preferences as it is challenging
and complex due to the presence of multiple factors. The presence
of various factors in user preferences makes the existing parking
recommender systems ineffective.
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In this paper, we address the challenges associated with park-
ing recommendations by defining a multi-objective optimization
problem. We develop a recommendation engine that takes users’
conflicting preferences as input and provides a set of recommended
parking spots in the Pareto-front. We leverage two real-world large
parking datasets to extract conflicting factors and compute person-
alized parking recommendations. In particular, the contributions of
this paper are as follows:

• Introduce a new parking recommendation problem called
multi-objective parking recommendation which has a range
of prospective implications for smart cities.

• Design of a multi-objective parking recommendation engine
based on a non-dominated sorting technique. This approach
is further refined by adopting a crowding distance mecha-
nism with objective-thresholding.

• Design a system prototype that is able to compute and present
end-to-end travel routes connecting recommended parking
spots.

2 RELATED LITERATURE
This section discusses current research utilizing parking sensor
data and the application of multi-objection recommendations in
various fields. We also highlight the challenges of integrating multi-
objective optimization in parking recommendations considering
the current state of research.

Finding an available car park is challenging for urban drivers.
To help drivers find parking locations in the CBD areas, various
research has been conducted that use probabilistic and machine
learning models to predict parking occupancy or duration. In this
cohort of research, various types of sensor feed (e.g. vision-based
sensors, physical sensors) are used Since most parking data are
recorded from in-ground sensors, many researchers tend to study
on extracting features from time-series data and spatio-temporal
data to explore the correlation between contextual information and
parking availability [1, 14, 16].

Recommender systems suggest items so that the users’ potential
interests are met or at least optimized. In multi-objective recom-
mendation, users have more than one preference to be considered
by the recommendation engine. Usually multi-objective recommen-
dation is considered as a multi-objective optimization problem [2].
One of the approaches to address this problem is to find a set of
Pareto-optimal solutions. Several domain-specific research has been
conducted in this area [15, 17].

3 MOPARKER SYSTEM OVERVIEW
3.1 Datasets
To investigate the multi-objective parking recommendation, this
research utilises smart parking datasets from two city councils in
Victoria, Australia. The first dataset is a continuous log of more
than 4650 in-ground parking sensors around the Melbourne CBD
area. The sensors are capable of detecting parking events. A total
of 5.9 million records are present in the 2017-18 parking dataset

which is publicly available through the open data portal of the City
of Melbourne1.

The second dataset was collected from the city of Rye as part of
Victorian government’s Smart City and Smart Suburb project. This
dataset integrates parking-event feeds from in-ground as well as
vision-based sensors. Both of the datasets have similar attributes to
describe a particular parking event in a time-series manner.

Figure 1: Heatmap showing (a) frequency of parking events
and (b) time-usage of parking locations between 8.30 am and
9.00 am in Melbourne CBD.

Figure 2: Heatmap showing (a) frequency of parking events
and (b) time-usage of parking locations between 02.00 pm
and 02.30 pm in Rye.

To understand the parking behavior in these two cities, we plot
heatmaps of parking locations in terms of frequencies of parking
events and time-usage. Figures 1 and 2 illustrate different parking
patterns in these two cities. The heatmap in Figure 1(a) shows
average parking events of two-weeks between 8.30 am and 9.00
am in different parts of Melbourne CBD while Figure 1(b) depicts
a time-usage heatmap of parking locations. We can see that the
parking locations with a high number of parking events are also
accounted for high utilisation times. However, there are many other
locations with lower parking events that turned out to be highly
utilised by single parking events within the selected time window.
In contrast, similar locations seemed to be highly utilised in terms
of both events and time-usage in Rye as can be seen from Figures
2(a)-(b). We plot the average utilisation in the first two weeks of
January 2020 between 2.00 pm and 2.30 pm. This may be due to
the fact that Rye is a busy tourist spot on the coastline where these
parking locations provide easy access to the beaches and shops.

1https://data.melbourne.vic.gov.au/Transport/On-street-Car-Parking-Sensor-Data-
2017/u9sa-j86i
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3.2 Multi-objective parking recommendation
In this section, we present MoParkeR, a multi-objective parking
recommendation engine. Our parking recommendation engine has
two main components: i) parking sensor data processing and ii)
user query and response. The key components of the MoParkeR is
given in Figure 3.
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Figure 3: An overarching view of the MoParkeR recommen-
dation engine.

3.2.1 Parking sensor data processing. In thismodule, parking events
data collected from sensors (i.e. in-ground and vision-based) are
stored in the central storage. Since two side-by-side parking bays
are of less significance in terms of their physical location, we clus-
ter those to form parking lots. We adopted a spatial-clustering
technique to form parking lots consists of multiple parking bays.
Specifically, two parking bays are part of a single parking bays (i.e.
cluster) if both are connected to each other, or the distance between
these slots is within a specific value and they have the same parking
restriction (e.g. 1 hour, 2 hours, loading zone). This processed data
is then stored in a parking lot database which is used to handle user
queries.

3.2.2 User query and response. This module is responsible for pro-
cessing user queries to provide parking recommendations. As can
be seen from Figure 3, a user-defined query consists of a user’s
source location, the destination location, and a set of objectives.
Once a query is defined, it is sent to the parking sensor data pro-
cessing module which returns the locations of parking lots. The
APIs in response generator utilises these locations of the parking
lots to compute the objective values and create a response dataset.
In practice, the likelihood of parking spaces needs to be estimated
from real-time data. One of the APIs plays as a sub-module of the
‘Response generator’ which is responsible for Likelihood predic-
tion of parking spaces. This prediction API uses state-of-the-art
techniques to generate likelihood prediction.

To provide a multi-objective parking recommendation, this re-
search computes four response factors associated with each parking
lot. First, we consider the total travel time from source to destina-
tion for a recommended parking lot. Given a source location 𝑣𝑖 ,
destination location 𝑣𝑘 , and any parking lot 𝑣 𝑗 , the total travel time
is defined as follows.

𝑇 ( 𝑗) = 𝑡 (𝑣𝑖 , 𝑣 𝑗 ) + 𝑡 (𝑣 𝑗 , 𝑣𝑘 ); 𝑡 (.) ≥ 0 (1)

Here, 𝑇 ( 𝑗) is the total travel time if a drive needs to park at
parking lot 𝑣 𝑗 . 𝑡 (𝑣𝑖 , 𝑣 𝑗 ) is the travel time from source location 𝑣𝑖 to
parking lot 𝑣 𝑗 while 𝑡 (𝑣 𝑗 , 𝑣𝑘 ) denotes travel time between parking
lot 𝑣 𝑗 and destination 𝑣𝑘 .

Second, we define the required walking distance from any park-
ing lot 𝑣 𝑗 to destination 𝑣𝑘 as follows.

𝑊 ( 𝑗) = 𝑑 (𝑣 𝑗 , 𝑣𝑘 );𝑑 (.) ≥ 0 (2)

Here, 𝑑 (𝑣 𝑗 , 𝑣𝑘 ) is the walking distance between 𝑣 𝑗 and 𝑣𝑘 .
Third, for a parking duration of 𝑠 in a parking lot 𝑣 𝑗 , we consider

the dynamic parking fare as follows.

𝐹 ( 𝑗) = 𝑓𝑠 (3)

Here, 𝑓𝑠 ≥ 0 is the parking fare for 𝑠 duration of parking at 𝑣 𝑗 .
Fourth, we compute the likelihood of a parking spot 𝑗 being

available as follows.

𝐿( 𝑗) = 1 −
∑𝑛
𝑖=1𝑂𝑡 (𝑖)
𝑛 ∗ 𝜏 (4)

Here, 𝑂𝑡 (𝑖) ≥ 0 and 0 ≤ 𝐿( 𝑗) ≤ 1; 𝑂𝑡 (𝑖) is the occupied time of
any parking bay 𝑖 within a parking lot 𝑗 , 𝑛 is the number of parking
bays within 𝑗 , and 𝜏 is the length of the time window when a driven
will arrive at 𝑗 . Therefore,

∑𝑛
𝑖=1𝑂𝑡 (𝑖)

𝑛 is the average occupied time
of parking lot 𝑗 .

Once the responses are computed using Eq. 1-4, it is forwarded
to the multi-objective parking recommendation engine which com-
putes recommended parking lots. The recommended lots are used
by the routing engine to provide routing support to the user.

Multi-objective parking recommendation engine. A driverwho
is planning to drive from a source to a destination needs to find
a suitable parking location to park her car before walking to the
destination. The suitability of a parking location can be dependent
on various crucial factors including the total travel time, required
walking distance from any parking lot to the destination, parking
fare, and likelihood of getting a parking lot available. We assume
the user would prefer the path that connects a parking lot with
lower parking fare, shorter travel time and walking distance, and
a higher likelihood of getting an available bay in a parking lot.
However, in practice, these factors may be in conflict with each
other. In this case, one should provide a set of trade-off parking
lots, which are termed the pareto-optimal parking lots, instead of
one single global optimal solution.

In our research, we have three objectives to minimize and one
objective to maximize. The four objectives to be minimized or max-
imized in parking recommendation can be described as follows:

min
𝑗

𝑇 ( 𝑗) = 𝑡 (𝑣𝑖 , 𝑣 𝑗 ) + 𝑡 (𝑣 𝑗 , 𝑣𝑘 ), (5)

min
𝑗

𝑊 ( 𝑗) = 𝑑 (𝑣 𝑗 , 𝑣𝑘 ), (6)

min
𝑗

𝐹 ( 𝑗) = 𝑓𝑠 , (7)

max
𝑗

𝐿( 𝑗) = 1 −
∑𝑛
𝑖=1𝑂𝑡 (𝑖)
𝑛 ∗ 𝜏 (8)
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where, 𝑇 ( 𝑗) is the total travel time from source 𝑣𝑖 to destination
𝑣𝑘 if parking lot 𝑣 𝑗 is chosen,𝑊 ( 𝑗) is the walking distance from 𝑣 𝑗
to destination, and 𝐹 ( 𝑗) is the fare of 𝑣 𝑗 , and 𝐿( 𝑗)is the likelihood
of getting an free parking bay at 𝑣 𝑗 .

Given two parking lots 𝑣 𝑗,1 and 𝑣 𝑗,2, 𝑣 𝑗,1 is said to dominate 𝑣 𝑗,2
if and only if all the objective values of 𝑣 𝑗,1 are no worse than those
of 𝑣 𝑗,2, and there is at least one objective for which 𝑣 𝑗,1 has a better
value than 𝑣 𝑗,2. We denote 𝑣 𝑗,1 ≺ 𝑣 𝑗,2 for 𝑣 𝑗,1 dominating 𝑣 𝑗,2. A
parking lot 𝑉𝑗∗ is said to be Pareto-optimal, if and only if there is
no other parking lot that dominates 𝑉𝑗∗ . The goal of this problem
is to find all the possible Pareto-optimal parking lot and provide a
smaller list as recommendation.

In this paper, we employed an epsilon-nondomination based
multi-objective sorting algorithm to find the Pareto-optimal parking
lots. The details of epsilon-domination framework are described
in [3, 8]. Since there could be many elements in the Pareto front,
we adopted a Crowding distance technique to achieve a smaller
number of parking lots for final recommendation. The concept of
crowding distance is to measure the relative isolation of a solution
in the Pareto front from other solutions. The greater the crowding
distance, the greater is its isolation and hence, higher chance to be
included in the final recommendation.We further refine the selected
solutions by applying an objective-thresholding. Specifically, we
consider a threshold for an objective, e.g., for parking likelihood
in our case to ensure that the solution subset only comprises of
the parking spaces with high likelihood. Algorithm 1 illustrates the
deployed crowding distance calculation mechanism in our study.
Given a set of candidate solutions 𝑆 and objective-threshold 𝜏𝑚 , this
algorithm computes crowding distance of all candidate solutions in
𝑆 . The computation starts by initializing all candidates to 0. Upon
satisfying the objective-threshold 𝜏𝑚 , the candidates are sorted in
ascending order in turn for each objective. Note that the first and last
candidates (i.e. boundary points) from the sorted list are selected
automatically as they have an only neighbor candidate in total.
Hence, we assign the largest crowding distance score of ∞. Give
any objective, the crowding distance for the rest of the candidates 𝑖
in 𝑆 are calculated as follows. First, we subtract the objective value
of candidate 𝑖−1 from the objective value of candidate 𝑖+1. Then the
result is divided by the 𝑀𝑎𝑥 (𝑆.𝑚) −𝑀𝑖𝑛(𝑆.𝑚) where, 𝑀𝑎𝑥 (𝑆.𝑚)
and 𝑀𝑖𝑛(𝑆.𝑚) are the maximum and minimum objective values
in 𝑆 for objective𝑚. The final crowding distance is computed by
repeating this process and taking the sum over all of the objectives.
Routing engine. Once computed, the recommended parking lots
are considered to generate journeys from any source location to
the destination location connecting all recommended parking lots.
Specifically, driving routes from the source location to parking lots
are constructed before generating walking routes from parking
lots to the destination location. For route generation, APIs such as
Google Map can be utilised.

4 EXPERIMENTAL STUDIES
In this section, we present the experiential results of the proposed
approach. To evaluate our approach, we develop a system prototype
and conducted two case studies for two cities in Victoria, Australia
including the city of Melbourne and the city of Rye. These cities

Algorithm 1: Crowding distance calculation
Input: 𝑆 : set of all solutions, 𝜏𝑚 : threshold for objective𝑚
Output:𝐶𝐷𝑠 [𝑖 ] ; // crowding distance for all 𝑖 in 𝑆

1 int 𝑙 = |𝑆 | ; // 𝑙 is the number of solutions in 𝑆

2 𝜏𝑚 .𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 () ; // initialize 𝜏𝑚
3 foreach 𝑖 ∈ 𝑆 do
4 𝐶𝐷𝑠 [𝑖 ] = 0 ; // initialize crowding distance

5 if𝑚 satisfies 𝜏𝑚 then
6 foreach𝑚 do
7 S = 𝑠𝑜𝑟𝑡 (𝑆,𝑚) ;
8 𝐶𝐷𝑠 [1] ,𝐶𝐷𝑠 [𝑙 ] =∞ ; // select boundary points

9 for 𝑖 = 2 to 𝑙 − 1 do
/* for all other solutions in 𝑆 */

10 𝐶𝐷𝑠 [𝑖 ] = 𝐶𝐷𝑠 [𝑖 ] + 𝑠 [𝑖+1] .𝑚−𝑠 [𝑖−1] .𝑚
𝑀𝑎𝑥 (𝑆.𝑚)−𝑀𝑖𝑛 (𝑆.𝑚) ;

11 return𝐶𝐷𝑠 [𝑖 ] ;

are good examples for the experimental studies as one of these is a
busy business district while the other is a popular tourist spot.

4.1 Case Study-1: Melbourne, VIC, Australia
In this case study, we find connecting parking lots for journeys
between the source location, State Library (point A), and destination
location, St Vincent’s hospital (point B). These two locations are
situated in inner-city Melbourne. Figure 4 shows four journeys
connecting four different parking lots computed by our MoParkeR
engine. These parking lots are chosen arbitrarily from the set of
recommended parking lots for illustration purposes. A full list of
recommended trade-off parking lots are given by Table 1.

Figure 4: Routes with four recommended parking lots in
Melbourne CBD, VIC, Australia [source location: State Li-
braryVictoria (A); destination location: St Vincent’s hospital
(B)]

Table 1: Recommended parking Lot IDs in the Pareto front
(City of Melbourne-1).

LotId Travel Time (min) Walk Dist. (km) Fare ($) Likelihood (%)

172 14 0.4 0.6 1.0
4729 13 0.8 0.3 1.0
4734 16 1.0 0.2 1.0
5129 29 1.9 0.0 0.73
4716 35 2.1 0.0 0.92



MoParkeR : Multi-objective Parking Recommendation Accepted at SSDBM 2021, July 6–7, 2021, Tampa, FL, USA

To generate these journeys, we first applied MoParkeR to cal-
culate a set of non-dominated (i.e., Pareto-optimal) parking lots.
The computed Pareto front can have a large number of parking
lots since we have four objectives to consider. To reduce the users’
information burden, this number is further reduced by applying a
crowding distance mechanism and objective-threshold in the com-
puted Pareto-front before presenting the final recommendations.
Upon calculation of final recommendations, the journeys can be
constructed by using direction services (e.g. Google API). We can
see from Figure 4 that the four recommended parking LotIDs have
non-dominated objective values in terms of travel time, walk to a
destination, parking fare, and parking likelihood. For instance, the
LotID-172 requires a driver smallest walking to the destination (i.e.
0.4 km) with an end-to-end travel time of 14 minutes, a fare of $0.6
and a very certain likelihood of parking. On the other hand, LotID-
5129 provides users with a free parking lot but costs a long walk to
destination after parking the car which also causes a longer travel
time. All these trade-off parking lots satisfy our recommendation
refinement criteria (i.e. likelihood ≥ 0.7) for an increased chance of
getting a parking spot available to park.

4.2 Case Study-2: Rye, VIC, Australia
This case study was conducted by selecting a random pair of source
and destination locations in Rye which is a tourist hot-spot of
regional Victoria in Australia. We employ MoParkeR recommen-
dation engine to construct journeys from Rye community house
to Rye pier on a Saturday afternoon (i.e., 11th of January 2020)
as it was peak-time for tourist visits before COVID-19 lock-down
in Australia. These locations are marked in Figure 5 as A and B
respectively. MoParkeR computed seven trade-off parking lots to
construct journeys between A and B. Our MoParkeR engine con-
structed seven journeys from A to B connecting all of these parking
lots. For illustration purpose, four journeys are projected in Fig-
ure 5. We can see that all these recommended parking lots reside
within four different routes are non-dominating to each other in
terms of our defined conflicting objectives (i.e. minimal travel time,
minimal walk to destination, minimal parking fare and maximal
parking likelihood) and all of those satisfy the objective-threshold
for likelihood which is 0.7 or more in our experiments.

Table 2: Recommended parking Lot IDs in the Pareto front
(Rye).

LotId Travel Time (min) Walk Dis. (km) Fare ($) Likelihood (%)

001 7 0.5 0.3 1.0
037 15 0.9 0.1 1.0
068 8 0.6 0.2 0.97
107 4 0.3 3.6 1.0
003 6 0.5 2.3 1.0
109 7 0.3 0.8 1.0
110 7 0.4 0.5 1.0

4.3 Comparison with Baseline
To demonstrate the effectiveness of MoParkeR, we conduct a utility
analysis. First, we conduct a utility comparison with currently avail-
able parking recommendation solutions. As can be seen from Table
3, no other solutions except MoParkeR provides trade-off parking
lots considering parking cost, walking distance to destination, total

Figure 5: Routes with four recommended parking lots
in Rye, VIC, Australia [source location: Rye Community
House, Nelson Street, Rye VIC (A); destination location: Rye
Pier, Bay Trail, VIC (B)]

Table 3: Utility comparison with parking services

Parking
service

Utilities

Parking cost Walk to dest. Likelihood Travel time

iParker [7] ✓
Smart Parking [5] ✓ proximity to dest.
Parking Assignment [6] ✓
Parking rank [4] ✓ parking space count
ROSAP [11] ✓
Park Indicator [12] proximity to parking
MoParkeR ✓ ✓ ✓ ✓

travel time from the source location to destination and likelihood
of getting a parking lot available. One of the solutions considers
two utilities (i.e. parking cost and proximity to destination). How-
ever, since this approach does not consider parking likelihood, the
recommendation can be ineffective when the driver arrives at the
parking location with no availability.

Additionally, since there is no standard approach for multi-
objective parking recommendation, we design a greedy approach
to conduct a further comparison with MoParkeR. Unlike consid-
ering the proximity of the parking lots in relation to the current
location of the vehicle, the greedy approach recommends a parking
slot based on a predefined proximity threshold with respect to the
destination location.

Since MoParkeR employs a non-dominated sort, it generates a
set of trade-off recommendations considering four utilities associ-
ated with a parking lot: fare, walking to a destination, travel time,
and parking likelihood. It is guaranteed to always pick parking
lots with the lowest travel time, smallest walking distance to des-
tination, lowest parking fare, and high likelihood in addition to
other trade-off recommendations. On the other hand, the greedy
algorithm rarely picks parking lots with these finest constraints
as it employs a random approach. We run both approaches 100
times and log the proportion of times a parking lot with these finest
constraints were chosen.MoParkeR always selects parking lots with
the smallest fare, travel time, walking, and the largest likelihood in
both Melbourne and Rye datasets. In contrast, the greedy approach
rarely picks parking lots with the lowest fare in Melbourne and
Rye datasets (i.e. 14% and 18% cases respectively). For the smallest
travel time, these ratios are 11% and 14% for Melbourne and Rye
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respectively. The greedy approach selects parking lots that require
the smallest walking to destination in 13% and 16% cases in these
two datasets. However, the likelihood of getting parking spaces
available within the recommended solutions is very low (i.e. 7% and
10% in Melbourne and Rye datasets respectively).

We also show that the parking likelihood used for recommen-
dation generation is predictable. The prediction API resides in the
‘Response generator’ module of MoParkeR implements three state-
of-the-art time-series prediction models to both of our datasets.
Table 4 shows that LightGBM outperforms the other two deep
learning models for both datasets and ConvLSTM does a better
job in the Melbourne data in terms of MAE. All methods achieve
good results in parking availability prediction, which suggests that
the parking vacancy is predictable. Therefore, seeking for a vacant
parking slot in advance considering the likelihood is possible by
using time-series prediction approaches.

Table 4: Prediction of parking likelihood

Prediction
Model

Melbourne data Rye data

MAE RMSE MAE RMSE

15 min 30 min 15 min 30 min 15 min 30 min 15 min 30 min

LightGBM 0.0924 0.1381 0.1563 0.2090 0.0174 0.0228 0.0294 0.0335
ConvLSTM 0.0882 0.1231 0.1667 0.2268 0.0368 0.0324 0.0430 0.0426
LSTM 0.0889 0.1253 0.1640 0.2282 0.0355 0.0321 0.0420 0.0422

5 DISCUSSION
The primary goals of the paper are to formalize a novel problem
called multi-objective parking recommendation and to present a
solution by designing a multi-objective parking recommendation
engine that considers various conflicting goals together. These goals
have been achieved by formalizing a novel problem and employing
a non-dominated sorting technique to calculate a set of recom-
mended parking spots in the Pareto-front. The results show that
our MoParkeR is able to provide a wide range of reasonably good
parking lots in terms of travel time, walking distance to the destina-
tion, parking fare, and parking likelihood. The developedMoParkeR
can make several implications and benefits to the users including:

• Improved total journey information provided by MoParkeR
could be ultimately accessible for users to find the optimal
parking location will only assist to support the economic,
environmental, and amenity of towns and cities.

• Tourists and visitors will also be able to plan trips more
effectively dependant on their individual needs for a more
enjoyable visit to a high demand attraction consequently
ensuring economic stimulus to regions.

• Social benefits are also feasible with special users with for
example that need to locate the convenient disabled parking
bay that minimises walking distances and total trip time.

• For parking management and planning, MoParkeR could
be utilised to assess the ratings of various trip scenarios to
establish the optimal parking fees and parking control time
limits to match user tolerances and requirements.

6 CONCLUSION
We presented a solution to the multi-objective parking recommen-
dation problem. We adopted an epsilon-domination approach to
compute trade-off parking lots in the Pareto front considering four
objectives: total travel time, walking distance to destination, parking
fare, and parking likelihood.We further refine the recommendations
using a crowding distance and objective-threshold computation.
The applicability of our MoParkeR engine is illustrated by the de-
ployment in two cities in Australia. Future research may include
a user study to investigate the user experience of using such a
multi-objective parking recommendation engine along with the
inclusion of more objectives and ways to provide a reduced number
of parking recommendations by considering the actions of other
drivers. Parking allocation upon the recommendation in real-time
is another avenue of research that will be inspired by our work.
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