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ABSTRACT
Graph-based recommender systems (GBRSs) have achieved promis-

ing performance by incorporating the user-item bipartite graph us-

ing the Graph Neural Network (GNN). Among GBRSs, the informa-

tion from each user and item’s multi-hop neighbours is effectively

conveyed between nodes through neighbourhood aggregation and

message passing. Although effective, existing neighbourhood in-

formation aggregation and passing functions are usually computa-

tionally expensive. Motivated by the emerging contrastive learning

technique, we design a simple neighbourhood construction method

in conjunction with the contrastive objective function to simulate

the neighbourhood information processing of GNN. In addition,

we propose a simple algorithm based on Multilayer Perceptron

(MLP) for learning users and items’ representations with extra

non-linearity while lowering computational burden compared with

multi-layers GNNs. Our extensive empirical experiments on three

public datasets demonstrate that our proposed model, i.e. MLP-

CGRec, can reduce the GPU memory consumption and training

time by up to 24.0% and 33.1%, respectively, without significantly

degenerating the recommendation accuracy in comparison with

competitive baselines.
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1 INTRODUCTION
Recommender systems are designed to efficiently and effectively

serve items of interest to users from a large amount of available

options. Recently, recommender systems based on graph neural

networks have attracted increasing attention in the community, and

state-of-the-art recommendation performance has been achieved

by such models including LightGCN [8] and UltraGCN [22]. The

advantages of applying a GNN, especially multi-layer or hetero-

geneous GNNs, for the recommendation task lie in two pivotal

functions, namely neighbourhood aggregation and message passing.
By applying a neighbourhood aggregation function, the interactive

information between users and items can be captured in their rep-

resentations through message passing over the edges of a user-item
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bipartite graph. Besides, stacking multiple layers of GNNs can help

recommender systems pass message over multi-hop neighbours.

However, the neighbourhood aggregation and message passing

of the existing graph-based recommender systems (GBRSs) heavily

rely on the pre-computed adjacency matrix A of the user-item bi-

partite graph, which is time- and memory-consuming to compute.

Although A is normally sparse, many epochs of iterative matrix

multiplications and gradient updates over the concatenation of

users and items’ embeddings is still less efficient, especially when

multiple stacked layers of GNNs are applied [8, 38]. We argue

that the inefficiency of the existing GBRSs is mainly caused by

the matrix multiplications over unnecessary neighbours. Indeed,

some frequently interacted items would be aggregated to most

users, causing more time- and memory-consumption with trivial

improvements. Given that the performance gained by the GBRSs is

attributed to neighbourhood aggregation and message passing [6],

the challenge here is to exploit a more efficient manner to per-

form similar functionalities without using the full neighbourhood

graph convolution. In this paper, we propose a Multilayer Percep-

tron (MLP) based Contrastive Graph Recommender, abbreviated

as MLP-CGRec, that uses an MLP-Mixer [31] to encode users and

items’ representations and conducts efficient contrastive learning.

The key idea of our approach is that, instead of aggregating and

passing message over all the neighbours, we sample each user and

item’s neighbours to form each positive pair. To conduct the mes-

sage passing function efficiently, we propose to sample multi-hop

neighbours by raising the adjacency matrix A to the power of n,
which is more efficient than the iterative matrix multiplications.

In particular, the used MLP-Mixer in our MLP-CGRec (motivated

by of MLP-Mixer in computer vision), is able to model complex

user-item interactions and enhance our model’s expressive power,

ensuring the effectiveness.

Our proposedMLP-CGRec offersmultiple positive samples, which

will lead to an unbalanced number of positive and negative items.

Instead of sampling more random negative items, we use an approx-

imate nearest neighbour search method to efficiently sample an

equal amount of contrastive negative items to rebalance learning.

To summarise, our contributions are threefold: (1) We incorporate a

contrastive loss and a novel graph sampling method to simplify the

neighbourhood aggregation and message passing of GBRSs; (2) We

employ an efficient MLP-based learning algorithm to enhance the

expressive power and recommendation accuracy; (3) We conduct

extensive experiments on three public datasets, and show that our

proposed MLP-CGRec can achieve high efficiency regarding both

the memory and time consumption compared with state-of-the-art

GBRSs without a significant loss of effectiveness.
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2 RELATEDWORK
Recently, GBRSs have achieved promising performance in not

only the general recommendation [8, 26, 38, 40] but also the se-

quential [24, 36, 42, 44], social [18, 34, 41, 45] and knowledge-

based [7, 35, 37] recommendations. The most crucial functional-

ities of GBRSs are neighbourhood aggregation and message pass-
ing functions. Specifically, by aggregating information from graph

neighbours, recommenders can learn more representative embed-

dings because neighbouring users are likely to share similar in-

terests, and neighbouring items might share the same properties.

Although effective, we notice that GBRSs have higher model com-

plexity than traditional embedding-based recommenders, leading to

higher training time and memory consumption. Therefore, building

on NGCF [38], LightGCN [8] is proposed as a lightweight variant by

dropping the redundant neural operations. Afterwards, GF-CF [30]

is proposed by leveraging the low-pass graph filtering theorem to

avoid the training process with back-propagation, which requires

a large embedding dimension for competitive performance. Ultra-

GCN [22] was proposed to speed up the training by avoiding the

message passing function. However, it requires the graph repre-

sentation learning on dual graphs, i.e. the user-item graph and

item-item graph, which even aggravates the memory consumption.

Another line of research focuses on graph contrastive learning,

where graph augmentation techniques are used to create differ-

ent views of nodes for the following contrastive objective func-

tion [19, 19, 24, 25, 39, 40]. However, graph augmentations based

on stochastic perturbations, including random walk and random

node/edge dropout [19, 40, 47], are usually performed for every

training epoch, which will increase the training time and memory

consumption. Different from existing GBRSs, our MLP-CGRec uses

a simple neighbourhood construction method and a contrastive

objective function to learn information from neighbours. Further-

more, we use a straightforward MLP-Mixer [31] to encapsulate

more non-linearity for learnt users and items’ embeddings. There-

fore, compared with existing GBRSs, our proposed MLP-CGRec is

highly efficient and effective.

3 METHODOLOGY
3.1 Preliminaries
We consider a recommender system with a set of users U (|𝑈 | =
𝑀) and a set of items I (|𝐼 | = 𝑁 ). Let R ∈ R𝑀×𝑁

be the user-

item interaction matrix, where the content of the matrix R𝑀×𝑁

corresponds to implicit feedback [11, 27]. We consider implicit

feedback here because it is more abundant, therefore, R𝑢𝑖 = 1 if the

user u has interacted with the item i, otherwise R𝑢𝑖 = 0. Following

the BPR [27] framework for training, each triplet (𝑢, 𝑖+, 𝑖−) contains
a user, a positive item and a randomly selected negative item.

3.2 Graph Neighbourhood Construction
From the user-item interaction matrix R, we can obtain its cor-

responding adjacency matrix A(𝑀+𝑁 )×(𝑀+𝑁 )
. The elements of A

indicate whether the pairs of users and items are adjacent or not

in the interaction graph. In existing GBRSs, the multi-hop graph

embeddings of users and items are usually computed by:

E(𝑙+1) = (D− 1

2AD− 1

2 )E(𝑙) (1)

where E(𝑙) containing embeddings of all users and items at l-th
layer of the GNN, and D is the diagonal degree matrix of A.

Starting from the initial embeddings E(0) , we follow Equation (1)

to compute 𝑙−1 times to obtain the 𝑙-hop embeddings. Although the

adjacency matrix and the diagonal degree matrix are both sparse,

the users and items’ embeddings are however dense and the whole

process not only involves the matrix multiplication but also the

iterative gradient update for the GNNs at each training epoch. This

is why existing GBRSs have a relatively unsatisfactory training

efficiency. To avoid this costly operation, we derive how to use the

adjacency matrix to explore the 𝑙-hop neighbours by raising A to

the power of 𝑙 below with an induction process:

Lemma 3.1. The (𝑖, 𝑗)𝑡ℎ entry 𝑎 (𝑙)
𝑖 𝑗

of A𝑙 , where A is the adjacency
matrix of R, counts the number of walks of length 𝑙 having start and
end nodes i and j respectively.

Proof. Base case: When 𝑙 = 1,A𝑙
=A, and there is walk between

node 𝑖 and 𝑗 if and only if 𝑎𝑖 𝑗=1, thus the result holds. Induction
step: Assume the proposition holds for 𝑙 = 𝑛 and consider the case

when 𝑙 = 𝑛 + 1, i.e. the matrix A𝑛+1
= A𝑛A. From the induction

hypothesis, the value of (𝑖, 𝑗) of the matrix A𝑛
is the count of walks

of length n from 𝑖 to 𝑗 . Now, the number of walks of length 𝑛 + 1

between node 𝑖 and node 𝑗 equals the number of walks of length 𝑛

from node 𝑖 to each node 𝑣 , which is adjacent to node 𝑗 . Therefore,

the number of walks of length 𝑛 + 1 from node 𝑖 to node 𝑗 , i.e.

the (𝑖, 𝑗)𝑡ℎ entry A𝑛+1
is the non-zero entries of the column of A,

which corresponds exactly to the first neighbours of 𝑣 . Thus the

result holds for 𝑙 = 𝑛 + 1 as well. Conclusion: By the principle of

induction, Lemma 3.1 is true for all 𝑙 ∈ Z+. □

From the induction above, we can draw the conclusion that the

𝑙-hop neighbours of R can be obtained by raising A to the power

of 𝑙 . For example, we can refer to the 𝑢-th row of the matrix A
2

to find user 𝑢’s 2-hop neighbours. Therefore, by pre-defining how

many neighbourhoods we aim to incorporate, we can pre-compute

the corresponding graph neighbourhood matrices. For the most

commonly adopted case in GBRSs, where 3-hop neighbours are

included, we can pre-compute A2
and A3

of R for the subsequent

sampling. With the graph neighbourhood construction, we ob-

tain additional positive samples but without a balanced number of

negative samples, which might lead to the over-repelling of some

negative samples from other data points [2]. Therefore, in the next

section, we describe how to use the contrastive negative sampling

approach to select negative samples to balance the number of posi-

tive and negative samples.

3.3 Contrastive Negative Sampling
Given that each training triplet (𝑢, 𝑖+, 𝑖−) is extended to a training

instance with multiple positive samples, we need to obtain more

negative samples to reach a balance. Similar to how we get 𝑖−, the
most straightforward way is to randomly sample more negative

items. However, inspired by the recent work of contrastive negative

sampling [29, 43], we propose to sample negative items based on a

similarity function instead of sampling from random ones.

In the existing work, contrastive negative items are usually de-

fined as those generated negative items obtained from the positive

items using the data augmentation method [13, 40]. The motivation



of this sampling method is to obtain hard negative items which can

be used to enhance the model’s discriminative power. Although

effective, generating contrastive negative items can pose challenges

regarding the training and memory efficiencies. Since both the aug-

mented and original graphs are created, stored and processed at

every epoch, the time consumption will increase and the memory

consumption will experience a surge. Besides, there is no theoretical

analysis of why those data augmentation techniques, including the

random edge/node dropouts, can enhance the overall accuracy [46].

Therefore, we propose to re-sample negative items from existing

items, which avoids the redundant data augmentation step.

We use the cosine similarity [3, 29] as the distance metric to

search for contrastive negative items from each user’s pool of unin-

teracted items. Specifically, we select those negative items 𝑖−𝑢
′
that

have lower cosine similarity towards the target user 𝑢.

𝑖−𝑢
′ ∈ 𝑓

top-k

(
− cos(e𝑢 , E𝐼−𝑢 )

)
(2)

where e𝑢 is the embedding of the target user and E𝐼−𝑢 represents all

embeddings of this user’s negative item.

To further increase the training efficiency, we adopt the fast

neighbour search library, Faiss [14], to reduce the search time. Given

the number of users and items in used datasets, we follow the

advice in [14] to use the flat indexes and the brute-force search
1
to

avoid accuracy loss. In particular, we select those negative items

with lower similarity scores to avoid the false-negative items. As

the recommendation accuracy increases along the model training,

we can become more confident that target users are unlikely to

prefer items with lower similarity scores, which will benefit the

subsequent contrastive training.

3.4 MLP-Mixer
Although the graph neighbourhood construction and contrastive

negative sampling are efficient, the model’s expressive power is

limited without a nonlinear activation. Recently, some advanced

variants of Multilayer Perceptron (MLP) [17, 31, 32] have been

proposed for more efficient deep model training. Inspired by their

high efficiency and competitive accuracy on the image classification

and NLP tasks, we propose to adopt MLP-Mixer to enhance our

model’s expressive power without a high computational cost. Our

MLP module is defined as:

E𝑛+1 = E𝑛 +W2𝜎

(
W1LayerNorm(E𝑛)

)
(3)

where E𝑛+1 contains embeddings for all users and items at the

𝑛 + 1 epoch; 𝜎 (·) is the GELU [10] activation; W1 and W2 are

trainable weight matrices; and LayerNorm(·) denotes the layer

normalisation [1], which is used to enhance the training stability.

In Equation (3), we use a self-addition loop i.e. adding the original

E𝑛 to E𝑛+1, which is inspired by the tying parameter technique in

MLP-Mixer [31]. The self-addition loop can help the model preserve

the information from the previous epoch and avoid overfitting. To

justify our choice, we also implement a variant without the self-

addition loop, which is identical to the MLP architecture used by

the Graph-MLP model. We term this variant as plain MLP and we

will compare our model to it in an ablation study.

1
Using flat indexes and the brute-force search is mathematically the same with the

commonly used exact search. However, the overall search process is accelerated by

optimising the General Matrix Multiply (GEMM) routines in the cuBLAS library for

the GPU acceleration.

Table 1: Statistics of the datasets.

MovieLens Yelp Amazon

Users 6,038 19,539 65,387

Items 3,533 21,266 38,776

Interactions 575,281 450,884 739,380

Density(%) 2.697 0.108 0.029

3.5 Contrastive Training
Contrastive learning aims to encourage similar pairs to stay close

to each other while dissimilar ones are far apart in the latent

space [4, 5]. In the contrastive recommendation scenario [39, 47],

we target learning representations for users and items, where in-

teracted users and items stay closer in the learnt space. Inspired

by the performance of InfoNCE loss, we construct our objective

function as follows:

L =
∑︁

−log
𝑓s (e𝑢 , e𝑖+𝑢 ) +

∑𝑛
2
𝑓s (e𝑢 , e𝑛+ )

𝑓s (e𝑢 , e𝑖+𝑢 ) + 𝑓s (e𝑢 , e𝑖−𝑢 ) +
∑𝑛
2
𝑓s (e𝑢 , e𝑖−𝑐𝑜𝑛 )

(4)

where 𝑓s (·) = 𝑒cos( ·) ; 𝑖+𝑢 , 𝑛
+
, 𝑖−𝑢 and 𝑖−𝑐𝑜𝑛 denote a positive item, a

𝑛-hop neighbour, a random negative item and a contrastive nega-

tive item of user 𝑢, respectively; 𝑛 determines how many hops of

neighbours to incorporate.

With Equation (4), we aim to encourage users to stay closer with

their positive items andmulti-hop neighbours while maximising the

distance between users with their random and contrastive negative

items. To predict each user’s preferred items, we use the dot product

between the embedding of each user and embeddings of all items,

where more preferable items will receive higher scores.

4 DATASETS AND EXPERIMENTAL SETUP
Three public datasets, i.e. MovieLens-1M

2
, Yelp

3
and Amazon-

electronics
4
, are used to evaluate our proposed MLP-CGRec model.

In particular, MovieLens-1M is a dataset containing interactions

between users and movies; Yelp is a venue check-ins dataset; and

Amazon-electronics is a subset of the Amazon review dataset. For

the rest of the paper, we respectively denote ‘MovieLens’ and ‘Ama-

zon’ as ‘MovieLens-1M’ and ‘Amazon-electronics’. Table 1 provides

the statistics of the three used datasets. In the following, we aim to

answer the following research questions:

RQ1. CanMLP-CGRec achieve higher efficiency compared with the

existing GBRS without significantly degrading its recommendation

effectiveness?

RQ2. What is the impact of these additional samples?

RQ3. What is the impact of the MLP-based learning method?

To answer RQ1, we compare our MLP-CGRec model with the

following baselines: BPRMF [27], NeuMF [9], NGCF [38], Light-

GCN [8], UltraGCN [22],MixGCF [13] and SGL [40]. Since efficiency

and effectiveness are both critical in our study, we compare our

MLP-CGRec with all baselines in terms of Normalised Discounted

Cumulative Gain@10 (NDCG), Hit Ratio@10 (HR), max memory

consumption, average epoch time and total training time, where the

max memory consumption is monitored by Tensorboard. Following

a common setup, we use a leave-one-out evaluation strategy to split

2
https://grouplens.org/datasets/movielens/

3
https://www.yelp.com/dataset

4
https://jmcauley.ucsd.edu/data/amazon/



Table 2: Experimental results of MLP-CGRec and other baselines on the three used datasets w.r.t. HR@10, NDCG@10, max
memory consumption (gigabytes), average epoch time (seconds) and total training time (minutes). The best accuracy is
highlighted in bold and the second best result is highlighted with underline. * denotes a significant difference compared to the
result of MLP-CGRec using the two one-sided test with p<0.05.

MovieLens Yelp Amazon

NDCG HR Mem Epoch Total NDCG HR Mem Epoch Total NDCG HR Mem Epoch Total

BPRMF 0.2031∗ 0.1274∗ 2.91 45.8 61.2 0.1221∗ 0.1520∗ 5.42 84.5 96.7 0.0745∗ 0.1138∗ 5.78 95.1 147.6

NeuMF 0.2114∗ 0.1398∗ 3.88 58.7 100.5 0.1330∗ 0.1598∗ 6.07 98.9 123.3 0.1093∗ 0.1678∗ 6.31 132.2 188.5

NGCF 0.2517∗ 0.1665∗ 4.13 65.7 161.0 0.1420∗ 0.1736∗ 7.64 112.4 168.6 0.1297∗ 0.1927∗ 7.91 168.9 241.4

LightGCN 0.3303 0.2329 3.96 59.8 118.5 0.2233 0.2597 6.43 102.3 136.6 0.1519 0.2177 7.01 149.2 206.0

UltraGCN 0.2646∗ 0.1862∗ 3.98 61.3 147.5 0.2111 0.2619 6.70 108.9 166.8 0.1302∗ 0.2021∗ 7.11 145.2 208.2

MixGCF 0.2737∗ 0.1989∗ 4.38 60.3 132.2 0.2003∗ 0.2378∗ 6.91 107.8 158.4 0.1403∗ 0.2107 8.03 143.9 211.4

SGL 0.3116 0.2260 4.08 69.3 135.6 0.1673∗ 0.2098∗ 6.61 101.9 145.8 0.1581 0.2201 6.58 151.5 184.8

MLP-CGRec 0.3004 0.2176 3.01 48.2 78.5 0.2164 0.2501 5.71 91.3 121.2 0.1593 0.2190 5.90 101.3 152.2

Diff (%) -6.02 -6.57 -24.0 -19.4 -33.7 -3.09 -4.51 -11.2 -10.1 -12.7 +4.87 -0.50 -10.3 -33.1 -17.6

the interactions of each dataset into training, validation and testing

sets. However, different from prior works [9, 28] that only use one

oracle testing set per dataset with the sampled negative items, we

construct 10 different testing sets with different sampled negative

items for each dataset using different random seeds, in order to

reduce the evaluation bias on some specific testing negatives [15].

Hence, the reported performance of each run is based on the av-

erage of the 10 testing sets. For a fair comparison, we conduct all

experiments on the same machine with a GeForce RTX 2080Ti GPU.

For significant testing, we apply a two one-sided of equivalence

test (TOST), with ΔAP=0.05 [16, 20, 21, 23]. The purpose of the

TOST test is to examine if MLP-CGRec is significantly equivalent

to a baseline with the acceptable range of inequality being ±5%.
We define success as outperforming a baseline regarding accuracy

and efficiency or outperforming a baseline regarding efficiency but

significantly equivalent to it regarding accuracy.

To answer RQ2, we compare the following variants of MLP-

CGRec: (i) 2-hop neighbours with contrastive negative items and

(ii) 3-hop neighbours with contrastive negative items. Hence, we

can clearly examine the effect of each type of neighbours. Recall

that contrastive negative items are sampled as complements only

when multi-hop neighbours are incorporated so we can neglect the

condition when only contrastive negative items are sampled. To

answer RQ3, we use an ablation study to examine the effectiveness

of the proposed method when: (i) the MLP module is not applied;

(ii) a plain MLP is applied; (iii) MLP-mixer is applied.

The latent dimension and batch size are fixed to 64 and 1000,

respectively, for all models. For each dataset, we use 20% of the

interactions as a test set; of the remaining, we use 10% as a valida-

tion set, and the remainder for training. For the trainable matrices

W1 and W2 used in MLP-CGRec, we closely follow the implemen-

tation details in [31] and set W1 and W2 to 32, which is half of

the input latent dimension. For the 𝑓
top−k function, we empirically

set k to 100 according to our early stage experiments. To tune

all hyper-parameters, we apply a grid search, where the learning

rate is tuned in

{
10

−2, 10−3, 10−4
}
; and the 𝐿2 normalisation in{

10
−1, 10−2, ..., 10−5

}
. The node dropout technique is adopted in

the NGCF, SGL and LightGCN models, and the ratios vary amongst

{0.3, 0.4, ..., 0.8} as suggested in [33]. We use 3-hop neighbours in

MLP-CGRec following other GBRSs.
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Figure 1: Comparison between different variants of MLP-
CGRec, where the green bars are variants with multiple
neighbours, orange bars are variants with different MLPs
and red bar is the final MLP-CGRec model.

5 RESULTS
Table 2 reports the overall performances of our MLP-CGRec model

and all other baselines. The results show that MLP-CGRec achieves

competitive performance on all used datasets. On MovieLens, al-

though LightGCN and SGL slightly outperform our MLP-CGRec,

both models do not surpass MLP-CGRec by a significant difference

according to a TOST test. More importantly, our model generally

performs better on larger datasets than on smaller datasets. For

example, MLP-CGRec achieves the second-best and the best on

the larger Yelp and Amazon datasets regarding NDCG@10, respec-

tively. This observation is consistent with the findings in [12, 31],

where both Graph-MLP and MLP-Mixer models only outperform

state-of-the-art models on larger datasets for both node and image

classification tasks. We notice that SGL and UltraGCN do not al-

ways outperform LightGCN as reported in [22] and [40]. This is

due to the difference in experimental setup where we additionally

use 10 different testing sets to reduce the evaluation bias. There-

fore, our results further demonstrate the promising generalisability

of a simple MLP-based learning architecture, whose scalability is

better than complicated networks. Furthermore, our proposed MLP-

CGRec model consistently achieves the best efficiency among all

neural recommenders regarding GPU memory consumption and

training time. We owe this high efficiency of MLP-CGRec to the

simple design of the MLP module and the neighbourhood construc-

tion, which can be accomplished quickly using the sparse matrix



multiplication. Therefore, we conclude that our MLP-CGRec can

achieve competitive recommendation effectiveness with a higher

efficiency compared with existing GBRSs.

Figure 1 plots the NDCG@10 performances of all different vari-

ants of MLP-CGRec on all used datasets. In order to answer RQ2,
we compare the variants of MLP-CGRec without using encoders

over different hops of neighbours (green bars). Recall that a user’s

1-hop, 2-hop and 3-hop neighbours are items, users, and items, re-

spectively. Here, 1-hop neighbours are neglected because they are

already included in the interaction graph neglected. By comparing

the performances of variants with 2-hop and 3-hop neighbours, we

find that the 3-hop neighbours bring more gains over the 2-hop

neighbours, which means that users sharing one interacted item

may not necessarily share the same overall interests. This explains

why the 3-hop neighbourhood aggregation becomes the most com-

mon setup of the GBRSs. In answer to RQ3, the variant using Mixer

constantly outperforms the one with a plain MLP and the plain

MLP surpasses the one with no MLP on all datasets. This obser-

vation justifies our choice of incorporating the MLP architecture

inspired by the MLP-Mixer as our representation learning module.

Lastly, none of the variants can outperform MLP-CGRec, which

means the integration of all proposed modules can achieve the best

performance.

6 CONCLUSIONS
We propose MLP-CGRec, an MLP-based recommender that uses a

neighbourhood construction method and a contrastive objective to

replace the classic neighbourhood aggregation andmessage passing

to achieve a competitive recommendation accuracy with an up to

33.7% running time reduction. Our proposed MLP-CGRec model

has been demonstrated to achieve the best efficiency and compara-

ble effectiveness compared with state-of-the-art graph-based and

contrastive baselines on three public datasets. Furthermore, our

ablation study reveals the effects of different proposed modules.
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