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Abstract

We consider the classic Facility Location, k-Median, and k-Means problems in met-
ric spaces of doubling dimension d. We give nearly linear-time approximation schemes

for each problem. The complexity of our algorithms is Õ(2(1/ε)
O(d2)

n), making a sig-

nificant improvement over the state-of-the-art algorithms which run in time n(d/ε)O(d)

.
Moreover, we show how to extend the techniques used to get the first efficient

approximation schemes for the problems of prize-collecting k-Median and k-Means,
and efficient bicriteria approximation schemes for k-Median with outliers, k-Means
with outliers and k-Center.
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1 Introduction

The k-Median and k-Means problems are classic clustering problems that are highly popular
for modeling the problem of computing a “good” partition of a set of points of a metric
space into k parts so that points that are “close” should be in the same part. Since a
good clustering of a dataset allows to retrieve information from the underlying data, the
k-Median and k-Means problems are the cornerstone of various approaches in data analysis
and machine learning. The design of efficient algorithms for these clustering problems has
thus become an important challenge.

The input for the problems is a set of points in a metric space and the objective is to
identify a set of k centers C such that the sum of the pth power of the distance from each
point of the metric to its closest center in C is minimized. In the k-Median problem, p is
set to 1 while in the k-Means problem, p is set to 2. In general metric spaces both problems
are known to be APX-hard, and this hardness even extends to Euclidean spaces of any
dimension d = Ω(log n) [5]. Both problems also remain NP-hard for points in R

2 [33]. For
k-Center, the goal is to minimize the maximum distance from each point in the metric to its
closest center. This problem is APX-hard even in Euclidean Spaces [17], and computing

a solution with optimal cost but (1 + ε)k centers requires time at least Ω(n
√

1/ε) [30].
Therefore, to get an efficient approximation scheme one needs to approximate both the
number of centers and the cost. (See Section 1.3 for more related work).

To bypass these hardness of approximation results, researchers have considered low-
dimensional inputs like Euclidean spaces of fixed dimension or more generally metrics of
fixed doubling dimension. There has been a large body of work to design good tools for
clustering in metrics of fixed doubling dimension, from the general result of Talwar [37] to
very recent coreset constructions for clustering problems [23]. In their seminal work, Arora
et al. [4] gave a polynomial time approximation scheme (PTAS) for k-Median in R

2, which
generalizes to a quasi-polynomial time approximation scheme (QPTAS) for inputs in R

d.
This result was improved in two ways. First by Talwar [37] who generalized the result to
any metric space of fixed doubling dimension. Second by Kolliopoulos and Rao [25] who
obtained an f(ε, d) · n logd+6 n time algorithm for k-Median in d-dimensional Euclidean
space. Unfortunately, Kolliopoulos and Rao’s algorithm relies on the Euclidean structure
of the input and does not immediately generalize to low dimensional doubling metric. Thus,
until recently the only result known for k-Median in metrics of fixed doubling dimension
was a QPTAS. This was also the case for slightly simpler problems such as Uniform Facility
Location. Moreover, as pointed out in [12], the classic approach of Arora et al. [4] cannot
work for the k-Means problem. Thus no efficient algorithms were known for the k-Means
problem, even in the plane.

Recently, Friggstad et al. [19] and Cohen-Addad et al. [13] showed that the classic local

search algorithm for the problems gives a (1+ε)-approximation in time n1/ε
O(d)

in Euclidean
space, in time nO(1/ε2) for planar graphs (which also extends to minor-free graphs), and in
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time n(d/ε)
O(d)

in metrics of doubling dimension d [19]. More recently Cohen-Addad [12]
showed how to speed up the local search algorithm for Euclidean space to obtain a PTAS
with running time nk(log n)(d/ε)

O(d)
.

Nonetheless, obtaining an efficient approximation scheme (namely an algorithm running
in time f(ε, d)poly(n)) for k-Median and k-Means in metrics of doubling dimension d has
remained a major challenge.

The versatility of the techniques we develop to tackle these problems allows us to
consider a broader setting, where the clients do not necessarily have to be served. In the
prize-collecting version of the problems, every client has a penalty cost that can be paid
instead of its serving cost. In the k-Median (resp. k-Means) with outliers problems, the
goal is to serve all but z clients, and the cost is measured on the remaining ones with
the k-Median (resp. k-Means) cost. These objectives can help to handle some noise from
the input: the k-Median objective can be dramatically perturbed by the addition of a few
distant clients, which must then be discarded.

1.1 Our Results

We solve this open problem by proposing the first near-linear time algorithms for the k-
Median and k-Means problems in metrics of fixed doubling dimension. More precisely, we
show the following theorems.

Theorem 1.1. For any 0 < ε < 1/3, there exists a randomized (1+ε)-approximation algo-

rithm for k-Median in metrics of doubling dimension d with running time 2(1/ε)
O(d2)

n log4 n+
2O(d)n log9 n and success probability at least 1 − 2ε.

Theorem 1.2. For any 0 < ε < 1/3, there exists a randomized (1+ε)-approximation algo-

rithm for k-Means in metrics of doubling dimension d with running time 2(1/ε)
O(d2)

n log5 n+
2O(d)n log9 n and success probability at least 1 −O(ε).

Our results also extend to the Facility Location problem, in which no bound on the
number of opened centers is given, but each center comes with an opening cost. The aim
is to minimize the sum of the (1st power) of the distances from each point of the metric to
its closest center, in addition to the total opening costs of all used centers.

Theorem 1.3. For any 0 < ε < 1/3, there exists a randomized (1 + ε)-approximation
algorithm for Facility Location in metrics of doubling dimension d with running time

2(1/ε)
O(d2)

n+ 2O(d)n log n and success probability at least 1 − ε.

In all these theorems, we make the common assumption to have access to the distances
of the metric in constant time, as, e.g., in [22, 15, 20]. This assumption is discussed in
Bartal et al. [7].
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Note that the double-exponential dependence on d is unavoidable unless P = NP, since
the problems are APX-hard in Euclidean space of dimension d = O(log n). For Euclidean
inputs, our algorithms for the k-Means and k-Median problems outperform the ones of
Cohen-Addad [12], removing in particular the dependence on k, and the one of Kolliopoulos
and Rao [25] when d > 3, by removing the dependence on logd+6 n. Interestingly, for
k = ω(log9 n) our algorithm for the k-Means problem is faster than popular heuristics like
k-Means++ which runs in time O(nk) in Euclidean space.

We note that the success probability can be boosted to 1−εδ by repeating the algorithm
log δ times and outputting the best solution encountered.

After proving the three theorems above, we will apply the techniques to prove the
following ones. We say an algorithm is an (α, β)-approximation for k-Median or k-Means
with outliers if its cost is within an α factor of the optimal one and the solution drops
βz outliers. Similarly, an algorithm is an (α, β)-approximation for k-Center if its cost is
within an α factor of the optimal one and the solution opens βk centers.

Theorem 1.4. For any 0 < ε < 1/3, there exists a randomized (1 + ε)-approximation
algorithm for Prize-Collecting k-Median (resp. k-Means) in metrics of doubling dimension

d with running time 2(1/ε)
O(d2)

n log4 n+ 2O(d)n log9 n and success probability at least 1− ε.

Theorem 1.5. For any 0 < ε < 1/3, there exists a randomized (1 + ε, 1 + O(ε))-
approximation algorithm for k-Median (resp. k-Means) with outliers in metrics of doubling

dimension d with running time 2(1/ε)
O(d2)

n log6 n + T (n) and success probability at least
1 − ε, where T (n) is the running time to construct a constant-factor approximation.

We note as an aside that our proof of Theorem 1.5 could give an approximation where
at most z outliers are dropped, but (1 + O(ε))k centers are opened. For simplicity, we
focused on the previous case.

Theorem 1.6. For any 0 < ε < 1/3, there exists a randomized (1 + ε, 1 + O(ε))-
approximation algorithm for k-Center in metrics of doubling dimension d, with running

time 2(1/ε)
O(d2)

n log6 n+ n log k and success probability at least 1 − ε.

As explained above, this bicriteria is necessary in order to get an efficient algorithm:
it is APX-hard to approximate the cost [17], and achieving the optimal cost with (1 + ε)k
centers requires a complexity Ω(n1/

√
ε) [30]. To the best of our knowledge, this works

presents the first linear-time bicriteria approximation scheme for the problem of k-center.

1.2 Techniques

To give a detailed insight on our techniques and our contribution we first need to quickly
review previous approaches for obtaining approximation schemes on bounded doubling
metrics. The general approach, due to Arora [3] and Mitchell [36], which was generalized
to doubling metrics by Talwar [37], is the following.
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1.2.1 Previous Techniques

The approach consists in randomly partitioning the metric into a constant number of
regions, and applying this recursively to each region. The recursion stops when the regions
contain only a constant number of input points. This leads to what is called a split-tree
decomposition: a partition of the space into a finer and finer level of granularity. The
reader who is not familiar with the split-tree decomposition may refer to Section 2.2 for a
more formal introduction.

Portals The approach then identifies a specific set of points for each region, called portals,
which allows to show that there exists a near-optimal solution such that different regions
“interplay” only through portals. For example, in the case of the Traveling Salesperson
(TSP) problem, it is possible to show that there exists a near-optimal tour that enters
and leaves a region only through its portals. In the case of the k-Median problem a client
located in a specific region can be assigned to a facility in a different region only through a
path that goes to a portal of the region. In other words, clients can “leave” a region only
through the portals.

Proving the existence of such a structured near-optimal solution relies on the fact that
the probability that two very close points end up in different regions of large diameter is
very unlikely. Hence the expected detour paid by going through a portal of the region is
small compared to the original distance between the two points, if the portals are dense
enough.

For the sake of argument, we provide a proof sketch of the standard proof of Arora [3].
We will use a refined version of this idea in later sections. The split-tree recursively divides
the input metric (V, dist) into parts of smaller and smaller diameter. The root part consists
of the entire point set and the parts at level i are of diameter roughly 2i. The set of portals
of a part of level i is an ε02

i-net for some ε0, which is a small set such that every point of
the metric is at distance at most ε02

i to it. Consider two points u, v and let us bound the
expected detour incurred by connecting u to v through portals. This detour is determined
by a path that starting from u at the lowest level, in each step connects a vertex w to its
closest net point of the part containing w on the next higher level. This is done until the
lowest-level part Ru,v (i.e., the part of smallest diameter) is reached, which contains both
u and v, from where a similar procedure leads from this level through portals of smaller
and smaller levels all the way down to v. If the level of Ru,v is i then the detour, i.e., the
difference between dist(u, v) and the length of the path connecting u and v through portals,
is O(ε02

i) by the definition of the net. Moreover, the proof shows that the probability that u
and v are not in the same part on level i is at most dist(u, v)/2i. Thus, the expected detour
for connecting u to v is

∑
level i Pr[Ru,v is at level i] · O(ε02

i) =
∑

level iO(ε0dist(u, v)).
Hence, setting ε0 to be some ε divided by the number of levels yields that the expected
detour is O(εdist(u, v)).
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Dynamic programming The portals now act as separators between different parts and
allows to apply a dynamic programming (DP) approach for solving the problems. The DP
consists of a DP-table entry for each part and for each configuration of the portals of the
part. Here a configuration is a potential way the near-optimal solution interacts with the
part. For example, in the case of TSP, a configuration is the information at which portal
the near-optimal tour enters and leaves and how it connects the portals on the outside
and inside of the part. For the k-Median problem, a configuration stores how many clients
outside (respectively inside) the part connect through each portal and are served by a
center located inside (respectively outside). Then the dynamic program proceeds in a
bottom-up fashion along the split-tree to fill up the DP table. The running time of the
dynamic program depends exponentially on the number of portals.

How many portals? The challenges that need to be overcome when applying this ap-
proach, and in particular to clustering problems, are two-fold. First the “standard” use of
the split-tree requires O(( lognε )d) portals per part in order to obtain a (1+ε)-approximation,
coming from the fact that the number of levels can be assumed to be logarithmic in the
number of input points. This often implies quasi-polynomial time approximation schemes
since the running time of the dynamic program has exponential dependence on the num-
ber of portals. This is indeed the case in the original paper by Talwar [37] and in the
first result on clustering in Euclidean space by Arora et al. [4]. However, in some cases,
one can lower the number of portals per part needed. In Euclidean space for example, the
celebrated “patching lemma” [2] shows that only a constant number (depending on ε) of
portals are needed for TSP. Similarly, Kolliopoulos and Rao [25] showed that for k-Median
in Euclidean space only a constant number of portal are needed, if one uses a slightly
different decomposition of the metric.

Surprisingly, obtaining such a result for doubling metrics is much more challenging. To
the best of our knowledge, this work is the first one to reduce the number of portals to a
constant.

A second challenge when working with split-tree decompositions and the k-Means prob-
lem is that because the cost of assigning a point to a center is the squared distance, the
analysis of Arora, Mitchell, and Talwar does not apply. If two points are separated at
a high level of the split-tree, then making a detour to the closest portal may incur an
expected cost much higher than the cost of the optimal solution.

1.2.2 Our Contributions

Our contribution can be viewed as a “patching lemma” for clustering problems in doubling
metrics. Namely, an approach that allows to solve the problems mentioned above: (1) it
shows how to reduce the number of portals to a constant, (2) it works for any clustering
objective which is defined as the sum of distances to some constant p (with k-Median and

6



Figure 1: Illustration of badly cut. The black point is c (resp. l), the gray one is L(c)
(resp. f0), and the blue point is q. The dashed line is the boundary of a part with “large”
diameter.

k-Means as prominent special cases), and (3) it works not only for Euclidean but also for
doubling metrics.

Our starting point is the notion of badly cut vertices of Cohen-Addad [11] for the
capacitated version of the above clustering problems. To provide some intuition on the
definition, let us focus on k-median and start with the following observation: consider a
center f of the optimal solution and a client c assigned to f . If the diameter of the lowest-
level part containing both f and c is of order dist(c, f) (say at most dist(c, f)/ε2), then by
taking a large enough but constant size net as a set of portals in each part (say an ε32i-net
for a part of level i), the total detour for the two points is at most O(εdist(c, f)), which is
acceptable.

The problematic scenario is when the lowest-level part containing f and c is of diameter
much larger than dist(c, f). In this case, it is impossible to afford a detour proportional to
the diameter of the part in the case of the k-Median and k-Means objectives. To handle
this case we first compute a constant approximation L (via some known algorithm) and
use it to guide us towards a (1 + ε)-approximation.

Badly cut clients and facilities Consider a client c and the center L(c) serving c in
L (i.e., L(c) is closest to c among the centers in L), and call OPT(c) the facility of an
optimum solution OPT that serves c in OPT. We say that c is badly cut if there is a
point q in the ball centered at c of radius dist(c, L(c))/ε such that the highest-level part
containing c and not q is of diameter much larger than dist(c, L(c))/ε (say greater than
dist(c, L(c))/ε2). In other words, there is a point q in this ball such that paying a detour
through the portal to connect c to q yields a detour larger than εdist(c, q) (see Figure 1).

Similarly, we say that a center l is badly cut if there is a point q in the ball centered
at l of radius dist(l, f0)/ε (where f0 is the facility of OPT that is the closest to l) such
that the highest-level part containing l and not q is of diameter dist(l, f0)/ε

2. The crucial
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property here is that any client c or any facility l is badly cut with probability O(ε3), as
we will show.

Using the notion of badly cut We now illustrate how this notion can help us. Assume
for simplicity that OPT(c) is in the ball centered at a client c of radius dist(c, L(c))/ε (if
this is not the case then dist(c,OPT(c)) is much larger than dist(c, L(c)), so this is a
less problematic scenario and a simple idea can handle it). If c is not badly cut, then
the lowest-level part containing both c and OPT(c) is of diameter not much larger than
dist(c, L(c))/ε. Taking a sufficiently fine net for each part (independent of the number of
levels) allows to bound the detour through the portals to reach OPT(c) from c by at most
εdist(c, L(c)). Since L is an O(1)-approximation, this is fine.

If c is badly cut, then we modify the instance by relocating c to L(c). That is, we will
work with the instance where there is no more client at c and there is an additional client
at L(c). We claim that any solution in the modified instance can be lifted to the original
instance at an expected additional cost of O(ε3OPT). This comes from the fact that the
cost increase for a solution is, by the triangle inequality, at most the sum of distances of the
badly cut clients to their closest facility in the local solution. This is at most O(ε3OPT)
in expectation since each client is badly cut with probability at most O(ε3) and L is an
O(1)-approximation.

Here we should ask, what did we achieve by moving c to L(c)? Note that c should now
be assigned to facility f of OPT that is the closest to L(c). So we can make the following
observation: If L(c) is not badly cut, then the detour through the portals when assigning c
to f is fine (namely at most ε times the distance from L(c) to its closest facility in OPT).
Otherwise, if L(c) is also badly cut, then we simply argue that there exists a near-optimal
solution which contains L(c), in which case c is now served optimally at a cost of 0 (in the
new instance).

From bicriteria to opening exactly k centers Since L(c) is badly cut with probability
O(ε3), this leads to a solution opening (1 + O(ε3))k centers. At first, it looks difficult to
then reduce the number of centers to k without increasing the cost of the solution by a
factor larger than (1 + ε). However, and perhaps surprisingly, we show in Lemma 4.6 that
this can be avoided: we show that there exists a near-optimal solution that contains the
badly cut centers of L(c).

We can then conclude that a near-optimal solution can be computed by a simple
dynamic-programming procedure on the split-tree decomposition to identify the best solu-
tion in the modified instance.

Our result on Facility Location in Section 3 provides a simple illustration of these ideas
— avoiding the bicriteria issue due to the hard bound on the number of opened facilities
for the k-Median and k-Means problems. Our main result on k-Median and k-Means is
described in Section 4. We discuss some extensions of the framework in Section 5.
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1.3 Related work

On clustering problems The clustering problems considered in this paper are known to
be NP-hard, even restricted to inputs lying in the Euclidean plane (see Mahajan et al. [29]
or Dasgupta and Freund [16] for k-Means, Megiddo and Supowit [34] for the problems with
outliers, and Masuyama et al. [31] for k-Center). The problems of Facility Location and
k-Median have been studied since a long time in graphs, see e.g. [24]. The current best
approximation ratio for metric Facility Location is 1.488, due to Li [27], whereas it is 2.67
for k-Median, due to Byrka et al. [8].

The problem of k-Means in general graphs also received a lot of attention (see e.g.,
Kanungo et al. [24]) and the best approximation ratio is 6.357, due to Ahmadian et al. [1].

Clustering problems with outliers where first studied by Charikar et al. [10], who de-
vised an (O(1), (1 +O(ε))-approximation for k-Median with outliers and a constant factor
approximation for prize-collecting k-Median. More recently, Friggstad et al. [18] showed
that local search provides a bicriteria approximation, where the number of centers is ap-
proximate instead of the number of outliers. However, the runtime is nf(ε,d), and thus
we provide a much faster algorithm. To the best of our knowledge, we present the first
approximation scheme that preserves the number of centers.

The k-Center problem is known to be NP-hard to approximate within any factor better
than 2, a bound that can be achieved by a greedy algorithm [17]. This is related to the
problem of covering points with a minimum number of disks (see e.g. [28, 30]). Marx and

Pilipczuk [30] proposed an exact algorithm running in time n
√
k+O(1) to find the maximum

number of points covered by k disks and showed a matching lower bound, whereas Liao
et al. [28] presented an algorithm running in time O(mnO(1/ε2 log2 1/ε)) to find a (1 + ε)-
approximation to the minimal number of disks necessary to cover all the points (where m
is the total number of disks and n the number of points). This problem is closely related
to k-Center: the optimal value of k-Center on a set V is the minimal number L such that
there exist k disks of radius L centered on points of V covering all points of V . Hence, the
algorithm from [28] can be directly extended to find a solution to k-Center with (1 + ε)k
centers and optimal cost. The local search algorithm of Cohen-Addad et al. [] can be
adapted to k-center and generalizes the last result to any dimension d: in R

d, one can
find a solution with optimal cost and (1 + ε)k centers in time n1/ǫ

O(d)
. Loosing on the

approximation allows us to present a much faster algorithm.

On doubling dimension Despite their hardness in general metrics, these problems
admit a PTAS when the input is restricted to a low dimensional metric space: Friggstad
et al. [19] showed that local search gives a (1 + ε)-approximation. However, the running

time of their algorithm is n(d/ε)
O(d)

in metrics with doubling dimension d.
A long line of research exists on filling the gap between results for Euclidean spaces

and metrics with bounded doubling dimension. This started with the work of Talwar [37],
who gave QPTASs for a long list of problems. The complexity for some of these problems
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was improved later on: for the Traveling Salesperson problem, Gottlieb [20] gave a near-
linear time approximation scheme, Chan et al. [9] gave a PTAS for Steiner Forest, and
Gottlieb [20] described an efficient spanner construction.

2 Preliminaries

2.1 Definitions

Consider a metric space (V, dist). For a vertex v ∈ V and an integer r ≥ 0, we let
β(v, r) = {w ∈ V | dist(v, w) ≤ r} be the ball around v with radius r. The doubling
dimension of a metric is the smallest integer d such that any ball of radius 2r can be
covered by 2d balls of radius r. We call ∆ the aspect-ratio (sometimes referred to as spread
in the literature) of the metric, i.e., the ratio between the largest and the smallest distance.

Given a set of points called clients and a set of points called candidate centers in a
metric space, the goal of the k-Median problem is to output a set of k centers (or facilities)
chosen among the candidate centers that minimizes the sum of the distances from each
client to its closest center. More formally, an instance to the k-Median problem is a 4-
tuple (C,F, dist, k), where (C ∪ F, dist) is a metric space and k is a positive integer. The
goal is to find a set S ⊆ F such that |S| ≤ k and

∑
c∈C minf∈S(dist(c, f)) is minimized.

Let n = |C ∪ F |. The k-Means problem is identical except from the objective function
which is

∑
c∈C minf∈S(dist(c, f))2.

In the Facility Location problem, the number of centers in the solution is not limited
but there is a cost wf for each candidate center f and the goal is to find a solution S
minimizing

∑
c∈C minf∈S(dist(c, f)) +

∑
f∈S wf .

For those clustering problems, it is convenient to name the center serving a client. For
a client c and a solution S, we denote S(c) the center closest to c, and Sc := dist(c, S(c))
the distance to it.

In this paper, we consider the case where the set of candidate centers is part of the
input. A variant of the k-Median and k-Means problems in Euclidean metrics allows to
place centers anywhere in the space and specifies the input size as simply the number
of clients. We note that up to losing a polylogarithmic factor in the running time, it is
possible to reduce this variant to our setting by computing a set of candidate centers that
approximate the best set of centers in R

d [32].
A δ-net of V is a set of points X ⊆ V such that for all v ∈ V there is an x ∈ X such

that dist(v, x) ≤ δ, and for all x, y ∈ X we have dist(x, y) > δ. A net is therefore a set
of points not too close to each other, such that every point of the metric is close to a net
point. The following lemma bounds the cardinality of a net in doubling metrics.

Lemma 2.1 (from Gupta et. al [21]). Let (V, d) by a metric space with doubling dimension
d and diameter D, and let X be a δ-net of V . Then |X| ≤ 2d·⌈log2(D/δ)⌉.
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Another property of doubling metrics that will be useful for our purpose is the existence
of low-stretch spanners with a linear number of edges. More precisely, Har-Peled and
Mendel [22] showed that one can find a graph (called a spanner) in the input metric that
has O(n) edges such that distances in the graph approximate the original distances up to a
constant factor. This construction takes time 2O(d)n. We will make use of these spanners
only for computing constant-factor approximations of our problems: for this purpose, we
will therefore assume that the number of edges is m = 2O(d)n.

We will also make use the following lemma.

Lemma 2.2 ([14]). Let p ≥ 0 and 1/2 > x > 0. For any a, b, c ∈ V , we have dist(a, b)p ≤
(1 + x)pdist(a, c)p + dist(c, b)p(1 + 1/x)p.

2.2 Decomposition of Metric Spaces

As pointed out in our techniques section, we will make use of hierarchical decompositions
of the input metric. We define a hierarchical decomposition (sometimes simply a decom-
position) of a metric (V, dist) as a collection of partitions D = {B0, . . . ,B|D|} that satisfies
the following:

• each Bi is a partition of V ,

• Bi is a refinement of Bi+1, namely for each part B ∈ Bi there exists a part B′ ∈ Bi+1

that contains B,

• B0 contains a singleton set for each v ∈ V , while B|D| is a trivial partition that
contains only one set, namely V .

We define the ith level of the decomposition to be the partition Bi, and call B ∈ Bi a
level-i part. If B′ ∈ Bi−1 is such that B′ ⊂ B, we say that B′ is a subpart of B.

For a given decomposition D = {B0, . . . ,B|D|}, we say that a vertex u is cut from v at
level j if j is the maximum integer such that v is in some B ∈ Bj and u is in some B′ ∈ Bj

with B 6= B′. For a vertex v and radius r we say that the ball β(v, r) is cut by D at level j
if j is the maximum level for which some vertex of the ball is cut from v at level j.

A key ingredient for our result is the following lemma, that introduces some properties of
the hierarchical decomposition (sometimes referred to as split-tree) proposed by Talwar [37]
for low-doubling metrics.
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Lemma 2.3 (Reformulation of [37, 6]). For any metric (V, dist) of doubling dimension d
and any ρ > 0, there is a randomized hierarchical decomposition D such that the diameter
of a part B ∈ Bi is at most 2i+1, |D| ≤ ⌈log2(diam(V ))⌉, each part B ∈ Bi is refined in at
most 2O(d) parts at level i− 1, and:

1. Scaling probability: for any v ∈ V , radius r, and level i, we have

Pr[D cuts β(v, r) at a level i] ≤ 22d+2r/2i.

2. Portal set: every set B ∈ Bi where Bi ∈ D comes with a set of portals PB ⊆ B
that is

(a) concise: the size of the portal set is bounded by |PB| ≤ 1/ρd; and

(b) precise: for every node u ∈ B there is a portal p ∈ PB close-by, i.e., dist(u, p) ≤
ρ2i+1; and

(c) nested: any portal of level i + 1 that lies in B is also a portal of B, i.e., for
every p ∈ PB′ ∩B where B′ ∈ Bi+1 we have p ∈ PB.

Moreover, this decomposition can be found in time (1/ρ)O(d)n log ∆.

2.3 Formal Definition of Badly Cut Vertices

As sketched in the introduction, the notion of badly cut lies at the heart of our analysis. We
define it formally here. We denote κ(ε, p) = ε2 p

(p+ε)p and τ(ε, d) = 2d+ 2 + log(1/κ(ε, p)),
two parameters that are often used throughout this paper.

Definition 2.4. Let (C ∪ F, dist) be a metric with doubling dimension d, let D be a hier-
archical decomposition of the metric, and ε > 0. Let also L be a solution to the instance
for any of the problems Facility Location, k-Median, or k-Means. A client v ∈ C is badly
cut w.r.t. D if the ball β(v, 3Lv/ε) is cut as some level j greater than log(3Lv/ε) + τ(ε, d),
where Lv is the distance from v to the closest facility of L.

Similarly, a center f ∈ F of L is badly cut w.r.t. D if β(f, 3OPTf ) is cut at some
level j greater than log(3OPTf )+τ(ε, d), where OPTf is the distance from f to the closest
facility of OPT.

In the following, when D is clear from the context we simply say badly cut. The
following lemma bounds the probability of being badly cut.

Lemma 2.5. Let (C ∪ F, dist) be a metric, and D a random hierarchical decomposition
given by Lemma 2.3. Let v be a vertex in C ∪ F . The probability that v is badly cut is at
most κ(ε, p).

Proof. Consider first a vertex v ∈ C. By Property 1, the probability that a ball β(v, r) is
cut at level at least j is at most 22d+2r/2j . Hence the probability that a ball β(v, 3Lv/ε)
is cut at a level j greater than log(3Lv/ε) + 2 + 2d+ log(1/κ(ε, p)) is at most κ(ε, p).

The proof for v ∈ F is identical.
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2.4 Preprocessing

In the following, we will work with the slightly more general version of the clustering
problems where there is some demand on each vertex: there is a function χ : C 7→ {1, . . . , n}
and the goal is to minimize

∑
c∈C χ(c)·minf∈S dist(c, f)+

∑
f∈S wf for the Facility Location

problem, or
∑

c∈C χ(c) · minf∈S dist(c, f) and
∑

c∈C χ(c) · minf∈S dist(c, f)2 for k-Median
and k-Means respectively. This also extends to any

∑
c∈C χ(c) · minf∈S dist(c, f)p with

constant p. For simplicity, we will consider in the proof that the client set is actually a
multiset, where a client c appears χ(c) times.

We will preprocess the input instance to transform it into several instances of the more
general clustering problem, ensuring that the aspect-ratio ∆ of each instance is polynomial.
We defer this construction to Appendix A.1.

3 A Near-Linear Time Approximation Scheme for Non-Uniform

Facility Location

To demonstrate the utility of the notion of badly cut, we show how to use it to get a near-
linear time approximation scheme for Facility Location in metrics of bounded doubling
dimension. In this context we refer to centers in the set F of the input as facilities.

We first show a structural lemma that allows to focus on instances that do not contain
any badly cut client. Then, we prove that these instances have portal-respecting solutions
that are nearly optimal, and that can be computed with a dynamic program. We conclude
by providing a fast dynamic program, that takes advantage of all the structure provided
before.

3.1 An instance with small distortion

Consider a metric space (V, dist) and an instance I of the Facility Location problem on
(V, dist). Here we generalize slightly, as explained in Section 2.4, and restrict the set of
candidate center to a subset C of V . Our first step is to show that, given I, a randomized
decomposition D of (V, dist) and any solution L for I on (V, dist), we can build an instance
ID on the same metric (but different client and center sets) such that any solution S has
a similar cost in I and in ID, and more importantly ID does not contain any badly cut
client with respect to D. The definition of ID depends on the randomness of D.

Let costI0(S) =
∑

c∈C minf∈S(dist(c, f))p be the cost incurred by only the distances
to the facilities in a solution S to an instance I0, and let ε > 0. For any instance ID on
(V, dist), we let

νID = max
solution S

{
costI(S) − (1 + 2ε)costID(S), (1 − 2ε)costID(S) − costI(S)

}
.

Note that in the particular case of Facility Location, p = 1, but we allow it to be more
general in order to make the proof adjustable to k-Means. If BD denotes the set of badly
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cut facilities (w.r.t D) of the solution L from which instance ID is constructed, we say that
ID has small distortion w.r.t. I if

∑
f∈BD

wf ≤ ε · ∑f∈Lwf , and νID ≤ εcostI(L), and
there exists a solution S that contains BD with

costID(S) ≤ (1 +O(ε))costI(OPT) +O(ε)costI(L). (1)

When I is clear from the context we simply say that ID has small distortion. We will
show that the solution OPT′ = OPT ∪ BD (where OPT is the optimal solution for the
instance I) fulfills the condition of (1).

In the following, we will always work with a particular ID constructed from I and a
precomputed approximate solution L for I as follows: I is transformed such that every
badly cut client c is moved to L(c), namely, χ(L(c)) is increased by χ(c) after which we
set χ(c) = 0. Recall however that we treat the client set as a multiset, so that costI0(S)
counts the distance from c to the closest facility χ(c) times.

What we would like to prove is that the optimal solution in I can be transformed to a
solution in ID with a small additional cost, and vice versa. The intuition behind this is the
following: a client of the solution L is badly cut with probability κ(ε, p) (from Lemma 2.5),
hence every client contributes with κ(ε, p)Lc to transform any solution S for the instance I
to a solution for the instance ID, and vice versa.

However, we will need to convert a particular solution in ID (think of it as OPTID) to
a solution in I: this particular solution depends in the randomness of D, and this short
argument does not apply because of dependency issues. It is nevertheless possible to prove
that ID has a small distortion, as done in the following lemma.

Lemma 3.1. Given an instance I of Facility Location, a randomized decomposition D,
an ε such that 0 < ε < 1/4 and a solution L, let ID be the instance obtained from I by
moving every badly cut client c to L(c) (as described above). The probability that ID has
small distortion is at least 1 − ε, where the solution fulfilling (1) is OPT′ = OPT ∪BD.

Proof. To show the lemma, we will show that E
[∑

f∈BD
wf

]
≤ ε2

∑
f∈Lwf/2 and E [ νID ] ≤

ε2cost(L)/2. Then, Markov’s inequality and a union bound over the probabilities of fail-
ure yield

∑
f∈BD

wf ≤ ε · ∑f∈Lwf and νID ≤ εcostI(L). Since OPT ⊆ OPT′ and
(1 − 2ε)costID(OPT′) − costI(OPT′) ≤ νID ≤ εcostI(L), the cost incurred by connect-
ing clients to facilities in OPT′ is

costID(OPT′) ≤ (1 +
2ε

1 − 2ε
)(costI(OPT′) + εcostI(L)) (as νID ≤ εcostI(L))

< (1 + 4ε)(costI(OPT′) + εcostI(L)) (as ε < 1/4)

≤ (1 + 4ε)(costI(OPT) + εcostI(L)) (as OPT ⊆ OPT′),

which shows that ID has small distortion.
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Note that E

[∑
f∈BD

wf

]
=

∑
f∈L Pr[f badly cut] · wf ≤ ε2

∑
f∈Lwf/2 is immediate

from Lemma 2.5. It remains to show that E [ νID ] ≤ ε2cost(L)/2. For the sake of lightening
equations, we will denote by

∑
bcc. c

the sum over all badly cut clients c.

By definition, we have that for any solution S,

cost(S) − costID(S) ≤
∑

bcc. c

dist(c, S)p − dist(S,L(c))p

≤
∑

bcc. c

(
(1 + ε/p)pdist(S,L(c))p

+ (1 + p/ε)pdist(c, L(c))p − dist(S,L(c))p
)

using Lemma 2.2 with parameter x = ε/p.
To bound (1 + ε/p)p, we use that ∀x ≤ 1/p, (1 + x)p ≤ exp(xp) ≤ 1 + px + e(px)2/2.

Hence, since ε ≤ 1/4, (1 + ε/p)p ≤ 1 + ε + eε2/2 ≤ 1 + 2ε. Plugging this into the right
hand side, we get

cost(S) − costID(S) ≤
∑

bcc. c

(
(1 + 2ε)dist(S,L(c))p

+ (1 + p/ε)pdist(c, L(c))p − dist(S,L(c))p
)

=
∑

bcc. c

2ε · dist(S,L(c))p + (1 + p/ε)pdist(c, L(c))p.

Subtracting
∑

bcc. c 2ε ·dist(S,L(c))p ≤ ∑
c∈C 2ε ·dist(S,L(c))p from the right and left side,

respectively, yields

cost(S) − (1 + 2ε)costID(S) ≤
∑

bcc. c

(1 + p/ε)pdist(c, L(c))p

Similarly, we have that

costID(S) − cost(S) ≤
∑

bcc. c

dist(S,L(c))p − dist(c, S)p

≤
∑

bcc. c

(
(1 + 2ε)dist(c, S)p

+ (1 + p/ε)pdist(c, L(c))p − dist(c, S)p
)

≤
∑

bcc. c

2ε · dist(c, S)p + (1 + p/ε)pdist(c, L(c))p
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and we conclude

(1 − 2ε)costID(S) − cost(S) ≤
∑

bcc. c

(1 + p/ε)pdist(c, L(c))p

Therefore, the expected value of νID is

E[νID ] ≤
∑

client c

Pr[c badly cut] · (1 + p/ε)pdist(c, L(c))p.

Applying Lemma 2.5 and using κ(ε, p) = ε2( p
p+ε)p, we conclude E[νID ] ≤ ε2 · cost(L). The

lemma follows for a sufficiently small ε.

3.2 Portal Respecting Solution

In the following, we fix an instance I, a decomposition D, and a solution L. By Lemma 3.1,
ID has small distortion with probability at least 1 − ε and so we condition on this event
from now on.

We explore the structure that this conditioning can give to solutions. We will show
that in the solution OPT′ = OPT∪BD with small cost, each client c is cut from its serving
facility f at a level at most log(3Lc/ε+ 4OPTc)) + τ(ε, d). This will allow us to consider
portal-respecting solution, where every client to facility path goes in and out parts of the
decomposition only at designated portals. Indeed, the detour incurred by using a portal-
respecting path instead of a direct connection depends on the level where its extremities
are cut, as proven in Lemma A.3. Hence, ensuring that this level stays small implies that
the detour made is small (in our case, O(ε(Lc + OPTc)). Such a solution can be computed
by a dynamic program that we will present afterwards.

Recall that Lc and OPTc are the distances from the original position of c to L and
OPT, although c may have been moved to L(c) and BD is the set of badly cut facilities of
L w.r.t D.

Lemma 3.2. Let I be an instance of Facility Location with a randomized decomposition D,
ε < 1/4 and L be a solution for I, such that ID has small distortion. Let OPT′ =
OPT ∪ BD, and for any client c in ID, let OPT′(c) be the closest facility to c in OPT′.
Then c and OPT′(c) are cut in D at level at most log(3Lc/ε+ 4OPTc) + τ(ε, d).

Proof. Let c be a client. To find the level at which c and OPT′(c) are separated, we
distinguish between two cases: either c in I is badly cut w.r.t. D, or not.
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If c is badly cut, then it is now located at L(c) in the instance ID. In that case, either:

1. L(c) is also badly cut, and therefore L(c) ∈ BD ⊆ OPT′ and so OPT′(c) = L(c).
Since c and L(c) are collocated, it follows that c and OPT′(c) are never cut.

2. L(c) is not badly cut: Definition 2.4 implies that L(c) and OPT(L(c)) are cut at a
level at most log(3OPTL(c)) + τ(ε, d). By triangle inequality, OPTL(c) ≤ Lc + OPTc,
and thus c (located at L(c) in ID) and OPT′(c) are also cut at level at most log

(
3Lc+

3OPTc

)
+ τ(ε, d).

We now turn to the case where c is not badly cut. In this case c is not moved to L(c) and
the ball β(c, 3Lc/ε) is cut at level at most log(3Lc/ε) + τ(ε, d). We make a case distinction
according to OPTc and Lc.

1. If Lc ≤ εOPTc, then we have the following. If L(c) is badly cut, L(c) is open in
OPT′ and therefore OPT′

c = Lc. Moreover, since c is not badly cut the ball β(c, Lc)
is cut at level at most log(3Lc/ε) + τ(ε, d). Therefore c and OPT′(c) are cut at level
at most log(3Lc/ε) + τ(ε, d).

Now consider the case where L(c) is not badly cut. Both c and OPT′(c) lie in the ball
centered at L(c) and of diameter 2OPTL(c): indeed, we use Lc ≤ εOPTc to derive

dist(c, L(c)) ≤ εdist(c,OPT(c)) ≤ εdist(c,OPT(L(c)))

≤ εdist(c, L(c)) + εdist
(
L(c),OPT(L(c))

)
,

and therefore dist(c, L(c)) ≤ ε
1−εOPTL(c) ≤ 2OPTL(c), since ε ≤ 1/4. On the other

hand,

dist(OPT′(c), L(c)) ≤ dist(c,OPT′(c)) + dist(c, L(c))

≤ dist(c,OPT(c)) + dist(c, L(c))

≤ dist(c,OPT(L(c))) + dist(c, L(c))

≤ 2dist(c, L(c)) + dist(L(c),OPT(L(c)))

≤
(

1 +
2ε

1 − ε

)
OPTL(c),

which is smaller than 2OPTL(c) for any ε ≤ 1/4. Hence we have c,OPT′(c) ∈
β(L(c), 2OPTL(c)).

By definition of badly cut, c and OPT′(c) are therefore cut at level at most log(3OPTL(c))+
τ(ε, d). Since OPTL(c) ≤ dist(L(c),OPT(c)) ≤ dist(L(c), c) + dist(c,OPT(c)) ≤
(1 + ε)OPTc as Lc ≤ εOPTc, we have that log(3OPTL(c)) ≤ log(4OPTc). Hence c
and OPT′(c) are cut at level at most log(4OPTc) + τ(ε, d).

2. If OPTc ≤ Lc/ε, then since c is not badly cut the ball β(c, Lc/ε) in which lies OPTc

is cut at level at most log(3Lc/ε) + τ(ε, d).
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In all cases, c and L(c) are cut at level at most log(3Lc/ε+4OPTc)+τ(ε, d). This concludes
the proof.

We then aim at proving that there exists a near-optimal “portal-respecting” solution,
as we define below. A path between two nodes u and v is a sequence of nodes w1, . . . , wk,
where u = w1 and v = wk, and its length is

∑
dist(wj , wj+1). A solution can be seen as a

set of facilities, together with a path for each client that connects it to a facility, and the
cost of the solution is given by the sum over all path lengths. We say that a path w1, . . . , wk

is portal-respecting if for every pair wj , wj+1, whenever wj and wj+1 lie in different parts
B,B′ ∈ Bi of the decomposition D on some level i, then these nodes are also portals at
this level, i.e., wj , wj+1 ∈ PB ∪ PB′ . As explained in Lemma A.3, if two vertices u and v
are cut at level i, then there exists a portal-respecting path from u to v of length at most
dist(u, v) + 16ρ2i. We define a portal-respecting solution to be a solutions such that each
path from a client to its closest facility in the solution is portal-respecting.

The dynamic program will compute an optimal portal-respecting solution. Therefore,
we need to prove that the optimal portal-respecting solution is close to the optimal solution.
We actually show something slightly stronger. Given a solution S, we define b(S) :=∑
c,i: c and S(c) cut at level i

ε2i: one can see b(S) as a budget, given by the fact that vertices are

not badly cut. Next we show a structural lemma, that bounds the cost of a structured
solution and of its budget.

Lemma 3.3 (Structural lemma). Given an instance I, an ε such that 0 < ε ≤ 1/4 and
a solution L, it holds with probability 1 − ε (over D) that there exists a portal-respecting
solution S in ID such that costID(S) + b(S) = (1 +O(ε))costI(OPT) +O(εcostI(L)).

Proof. From Lemma 3.1, with probability 1 − ε it holds that the instance ID has small
distortion, and costID(OPT′) ≤ (1+4ε)(costI(OPT)+εcostI(L)). We now bound the cost
of making OPT′ portal respecting by applying Lemma 3.2. Since each client c of ID is
cut from OPT′(c) at level at most log(3Lc/ε+ 4OPTc) + τ(ε, d), we have that the detour
for making the assignment of c to OPT′(c) portal-respecting is at most O(ρ2τ(ε,d)(Lc/ε+
OPTc)). Choosing ρ = ε22−τ(ε,d) ensures that the detour is at most O(ε(Lc + OPTc)).
Summing over all clients c gives a total detour of O(ε)(costI(L) + costI(OPT)). The
resulting portal respecting tour is the solution S we are looking for. The above calculation
also bounds b(S) = b(OPT′) ≤ O(ε)(costI(L) + costI(OPT)), and so costID(S) + b(S) =
(1 +O(ε))costI(OPT) +O(εcostI(L)).

3.3 The Algorithm

Using Lemma A.1 and A.2, we can assume that the aspect-ratio of the instance is O(n5/ε).
Our algorithm starts by computing a constant-factor approximation L, using Meyerson’s
algorithm [35]. It then computes a hierarchical decomposition D, as explained in the
Section 2.2, with parameter ρ = ε2−τ(ε,d).
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Given L and the decomposition D, our algorithm finds all the badly cut clients as
follows. For each client c, to determine whether c is badly cut or not, the algorithm checks
whether the decomposition cuts β(c, 3Lc/ε) at a level higher than log(3Lc/ε) + τ(ε, d),
making c badly cut. This can be done efficiently, since c is in exactly one part at each
level, by verifying whether c is at distance smaller than 3Lc/ε to such a part of too high
level. Thus, the algorithm finds all the badly cut clients in near-linear time.

The next step of the algorithm is to compute instance ID by moving every badly cut
client c to its facility in L. This can be done in linear time.

A first attempt at a dynamic program. We now turn to the description of the
dynamic program (DP) for obtaining the best portal-respecting solution of ID. This is the
standard dynamic program for Facility Location and we only describe it for the sake of
completeness. The reader familiar with this can therefore skip to the analysis.

There is a table entry for each part of the decomposition, and two vectors of length |PB|,
where PB is the set of portals in the part B. We call such a triplet a configuration. Each
configuration given by a part B and vectors 〈ℓ1, . . . , ℓ|PB |〉 and 〈s1, . . . , s|PB |〉 (called the
portal parameters), encodes a possible interface between part B and a solution for which
the ith portal has distance ℓi to the closest facility inside of B, and distance si to its
closest facility outside of B. The value stored for such a configuration in a table entry is
the minimal cost for a solution with facilities respecting the constraints induced by the
vectors on the distances between the solution and the portals inside the part (as described
below).

To fill the table, we use a dynamic program following the lines of Arora et al. [4] or
Kolliopoulos and Rao [25]. If a part has no descendant (meaning the part contains a single
point), computing the solution given the configuration is straightforward: either a center is
opened on this point or not, and it is easy to check the consistency with the configuration,
where only the distances to portals inside the part need to be verified. At a higher level
of the decomposition, a solution is simply obtained by going over all the sets of parameter
values for all the children parts. It is immediate to see whether sets of parameter values
for the children can lead to a consistent solution:

• for each portal p1 of the parent part, there must be one portal p2 of a child part such
that the distance from p1 to a center inside the part prescribed by the configuration
corresponds to dist(p1, p2) plus the distance from p2 to a center inside the child part;

• for each portal p2 of a child part, there must exist either:

– a portal p1 of the parent part such that the distance from p2 to a center outside
its part prescribed by the configuration is dist(p1, p2) plus the distance from p1
to a center outside of the part,

– or a portal p1 of another child part such that this distance is dist(p1, p2) plus
the distance from p1 to a center inside the child part.
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The runtime of this algorithm depends on the number of possible distances determining
the number of possible portal parameters. Even if the aspect ratio is polynomial, there
can be a large number of possible distances, so that the number of configurations might
be exponential. Using the budget given by Lemma 3.3, one can approximate the distances
and obtain an efficient algorithm, as we show next.

A faster dynamic program. We now describe a faster dynamic program. Consider
a level where the diameter of the parts is say D. Each configuration is again given by a
part B and portal parameters 〈ℓ1, . . . , ℓ|PB |〉 and 〈s1, . . . , s|PB |〉, but with the restriction
that ℓi and si are multiples of εD in the range [0, D/ε+D]. A boolean flag is additionally
attached to the configuration (whose meaning will be explained shortly).

We sketch here the intuition behind this restriction. Since the diameter of the part is
D we can afford a detour of εD, that can be charged to the budget b(S). Hence, distances
can be rounded to the closest multiple of εD.

Now, suppose that the closest facility outside the part is at distance greater than D/ε,
and that there is no facility inside the part. Then, since the diameter is D, up to losing
an additive D ≤ εOPT in the cost of the solution computed, we may assume that all the
points of the part are assigned to the same facility. So the algorithm is not required to have
the precise distance to the closest center outside the part, and it uses the flag to reflect
that it is in this regime. We can then treat this whole part as a single client (weighted
by the number of clients inside the part) to be considered at higher levels. Assuming that
the closest facility is at distance less than D/ε, we have that for any portal of the part the
closest facility is at distance at most D/ε+D (since D is the diameter of the part).

On the other hand, if there is some facility inside the part and the closest facility
outside the part is at distance at least D/ε, then each client of the part should be served
by a facility inside the part in any optimal assignment. Thus it is not necessary that
the algorithm iterates over configurations where the distances outside the part are more
than D/ε: it is enough to do it once and use the answer for all other queries.

Analysis – Proof of Theorem 1.3. The following lemmas show that the solution
computed by this algorithm is a near-optimal one, and that the complexity is near-linear:
this proves Theorem 1.3. We first bound the connection cost in ID.

Lemma 3.4. Let S be as in Lemma 3.3. The algorithm computes a solution S∗ with cost
at most costID(S∗) ≤ (1 +O(ε))costID(S) + b(S).

Proof. We show that the solution S can be adapted to a configuration of the DP with extra
cost b(S). For this, let c be a client served by a facility S(c), and let w1, . . . , wk be the
portal-respecting path from c to S(c) with w1 = c and wk = S(c). The cost contribution
of c to S is therefore

∑k−1
i=1 dist(wi, wi+1). For each wi, let also li be the level at which wi

is a portal.
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The distance between c and S(c) is approximated at several places of the DP. Consider
any node wi on the path from c to S(c):

• When dist(wi, S(c)) ≤ 2li/ε+2li , the distance between wi and S(c) is rounded to the
closest multiple of ε2li , incurring a cost increase of ε2li .

• When dist(wi, S(c)) ≥ 2li/ε+ 2li , the whole part is contracted and served by a single
facility at distance at least 2li/ε. The cost difference for client c is therefore 2li . Since
the diameters of the parts are geometrically increasing, the total cost difference for all
contractions of regions containing c is bounded by 2lj+1, where lj is the highest level
where d(wj , S(c)) ≥ 2ji/ε + 2lj . This inequality implies that 2lj+1 ≤ 2εd(wj , S(c)),
which is smaller than 2ε

∑
d(wi, wi+1), the cost of c in the portal-respecting solu-

tion S.

Hence, summing over all clients, the additional cost incurred by the DP is at most b(S)+
4εcostID(S). Since it computes a solution with minimal cost, it holds that costID(S∗) ≤
(1 + 4ε)costID(S) + b(S).

Next we bound the connection cost in I. If ID has small distortion, the facility cost
increase due to badly cut clients is bounded by

∑
f∈BD

wf ≤ ε
∑

f∈Lwf , since we have
OPT′ = OPT ∪ BD. Thus due to the following corollary the total solution cost of S∗ is
bounded as required.

Corollary 3.5. Let S∗ be the solution computed by the algorithm. With probability 1 − ε,
it holds that costI(S∗) = (1 +O(ε))costI(OPT).

Proof. Lemma 3.3 ensures that, with probability 1 − ε, the cost of S in ID and b(S) is at
most (1 + O(ε))costI(OPT) + O(εcostI(L)). Since L is a constant-factor approximation
of OPT in I, this cost turns out to be (1 + O(ε))costI(OPT). Using that ID has small
distortion, and combining this with Lemma 3.4 concludes the proof:

costI(S∗) ≤ (1 + 2ε)costID(S∗) + εcostI(L)

≤ (1 +O(ε))(costID(S) + b(S)) + εcostI(L)

≤ (1 +O(ε))costI(OPT)

Lemma 3.6. This algorithm runs in 2(1/ε)
O(d2)

n+ 2O(d)n log n time.

Proof. The preprocessing step (computing L, the hierarchical decomposition D, and the
instance ID) has a running time O(n log n), as all the steps can be done with this complex-
ity: a fast implementation of Meyerson’s algorithm [35] tailored to graphs can compute L
in time O(m log n). Using it on the spanner with constant stretch computed with [22] gives
a O(1)-approximation in time O(n log n). As explained earlier, the hierarchical decomposi-
tion D and the instance ID can also be computed with this complexity. The decomposition
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can moreover be transformed in order to remove part that do not contain any point, as
well as degree 2 nodes. This ensures to have O(n) part in total, since there are n leaves
and a degree at least 3.

The DP has a linear time complexity: in a part of diameter D, the portal set is a
(ε2−τ(ε,d)D)-net, and hence has size 2d⌈log(2

τ(ε,d)/ε)⌉ by Lemma 2.1. Since τ(ε, d) = 2d +

2 + log (p+ε)p

ε2pp
, this number can be simplified to 2O(d2+d log(1/ε)). Since each portal stores

a distance that can take only 1/ε2 values, there are at most T = (1/ε2)2
O(d2+d log(1/ε))

=

22
O(d2+d log(1/ε))

possible table entries for a given part.
To fill the table, notice that a part has at most 2O(d) children, due to the properties of the

hierarchical decomposition. For any given part, going over all the sets of parameter values

for all the children parts therefore takes time T 2O(d)
= 22

O(d2+d log(1/ε))
. This dominates the

complexity of computing all table entry for one part of the decomposition.
Since the hierarchical decomposition is a tree with n leaves (one per vertex) and without

degree-one internal nodes (those can be compressed), there are at most n parts in the

decomposition: the complexity of the dynamic program is therefore n · 22
O(d2+d log(1/ε))

,
The total complexity of the algorithm is thus

n · 22
O(d2+d log(1/ε))

+ 2O(d)n log n

4 The k-Median and k-Means Problems

We aim at using the same approach as for Facility Location. We focus the presentation on
k-Median, and only later show how to adapt the proof for k-Means.

We will work with the more general version of k-Median as defined in Section 2.4, where
the instance consists of a set of clients C, a set of candidate centers F , an integer k, and
a function χ : C 7→ {1, . . . , n} and the goal is to minimize

∑
c∈C χ(c) · minf∈S dist(c, f).

We will consider in the proof that C is actually a multiset, instead of carrying along the
multiplicity χ.

The road-map is as for Facility Location: we show in Lemma 4.2 that an instance ID
has a small distortion with good probability, and then in Lemma 4.5 that if an instance
has small distortion then there exists a near-optimal portal-respecting solution. We finally
present a dynamic program that computes such a solution.

A key ingredient of the proof for Facility Location was our ability to add all badly-cut
facilities to the solution OPT′. This is not directly possible in the case of k-Median and
k-Means, as the number of facilities is fixed. Hence, the first step of our proof is to show
that one can make some room in OPT, by removing a few centers without increasing the
cost by too much.
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4.1 Towards a Structured Near-Optimal Solution

Let OPT be an optimal solution to I and L and approximate solution. We consider the
mapping of the facilities of OPT to L defined as follows: for any f ∈ OPT, let L(f) denote
the facility of L that is the closest to f . Recall that for a client c, L(c) is the facility serving
c in L.

For any facility ℓ of L, define ψ(ℓ) to be the set of facilities of OPT that are mapped
to ℓ, namely, ψ(ℓ) = {f ∈ OPT | L(f) = ℓ}. Define L1 to be the set of facilities ℓ of
L for which there exists a unique f ∈ OPT such that L(f) = ℓ, namely L1 = {ℓ ∈ L |
|ψ(ℓ)| = 1}. Let L0 = {ℓ ∈ L | |ψ(ℓ)| = 0}, and L≥2 = L − (L1 ∪ L0). Similarly, define
OPT1 = {f ∈ OPT | L(f) ∈ L1} and OPT≥2 = {f ∈ OPT | L(f) ∈ L≥2}. Note that
|OPT≥2| = |L0| + |L≥2|, since |OPT1| = |L1| and, w.l.o.g., |OPT| = |L| = k.

The construction of a structured near-optimal solution is made in 3 steps. The first
one defines a solution OPT′ as follows. Start with OPT′ = OPT.

• Step 1. For each facility ℓ ∈ L≥2, fix one in OPT≥2 that is closest to ℓ, breaking
ties arbitrarily, and call it fℓ. Let H ⊆ OPT≥2 be the set of facilities of OPT≥2 that
are not the closest to their corresponding facility in L≥2, i.e., f ∈ H if and only if
f ∈ ψ(ℓ) and f 6= fℓ for some ℓ ∈ L≥2. Among the facilities of H, remove from OPT′

the subset of size ⌊ε · |OPT≥2|/2⌋ that yields the smallest cost increase. Note that
this subset is well-defined if ε ≤ 1.

This step makes room to add the badly cut facilities without violating the constraint on
the maximum number of centers, while at the same time ensures near-optimal cost, as the
following lemma shows.

Lemma 4.1. After Step 1, OPT′ has cost (1 +O(ε))cost(OPT) +O(ε)cost(L)

Proof. We claim that for a client c served by f ∈ H in the optimum solution OPT, i.e.,
f = OPT(c), the detour entailed by the deletion of f is O(OPTc + Lc). Indeed, let f ′ be
the facility of OPT that is closest to L(f), and recall that L(c) is the facility that serves
c in the solution L. Since f ′ /∈ H, the cost to serve c after the removal of f is at most
dist(c, f ′), which can be bounded by dist(c, f ′) ≤ dist(c, f) + dist(f, L(f)) + dist(L(f), f ′).
But by definition of f ′, dist(f ′, L(f)) ≤ dist(L(f), f), and by definition of the function
L we have dist(L(f), f) ≤ dist(L(c), f), so that dist(c, f ′) ≤ dist(c, f) + 2dist(f, L(c)).
Using the triangle inequality finally gives dist(c, f ′) ≤ 3dist(c, f) + 2dist(c, L(c)) which is
O(OPTc + Lc). For a facility f of OPT, we denote by C(f) the set of clients served by f ,
i.e. C(f) = {c ∈ C | OPT(c) = f}. The total cost incurred by the removal of f is then∑

c∈C(f)O(OPTc + Lc), and the cost of removing all of H is O(cost(OPT) + cost(L)).

Recall that in Step 1 we remove the set Ĥ of size ⌊ε|OPT≥2|/2⌋ from H, such that Ĥ
minimizes the cost increase. We use an averaging argument to bound the cost increase:
the sum among all facilities f ∈ H of the cost of removing the facility f is less than
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O(cost(OPT) + cost(L)), and |H| = O(1/ε) · ⌊ε|OPT≥2|⌋. Therefore removing Ĥ increases
the cost by at most O(ε)(cost(OPT) + cost(L)), so that Step 1 is not too expensive.

We can therefore use this solution OPT′ as a proxy for the optimal solution, and
henceforth we will denote this solution by OPT. In particular, the badly cut facilities are
defined for this solution and not the original OPT.

4.2 An instance with small distortion

As in Section 3, the algorithm computes a randomized hierarchical decomposition D, and
transforms the instance of the problem: every badly cut client c is moved to L(c), namely,
there is no more client at c and we add an extra client at L(c). Again, we let ID denote the
resulting instance and note that ID is a random variable that depends on the randomness
of D.

Moreover, similar as for Facility Location, we let BD be the set of centers of L that are
badly cut from OPT, i.e., f ∈ BD if the ball β(f, 3OPTf ) is cut at some level greater than
log(3OPTf ) + τ(ε, d). We call costI(S) the cost of a solution S in the original instance I,
and costID(S) its cost in ID. We let

νID = max
solution S

{
costI(S) − (1 + 2ε)costID(S), (1 − 2ε)costID(S) − costI(S)

}
.

We say that an instance ID has small distortion if νID ≤ εcostI(L), and there exists a
solution S that contains BD with costID(S) ≤ (1+O(ε))costI(OPT)+O(ε)costI(L). That
is, the condition is the same as for Facility Location, except that we do not need a bound
on the opening costs. In contrast to the Facility Location problem, here we need to be
more careful when identifying the solution fulfilling the latter inequality.

For this, we go on with the next two steps of our construction, defining a solution S∗.
Recall that we defined fℓ ∈ OPT≥2 to be the closest facility to ℓ ∈ L≥2, breaking ties
arbitrarily. For any ℓ ∈ L1, we also denote by fℓ ∈ OPT1 the unique facility closest to ℓ.
We start with S∗ = OPT obtained from Step 1. Note that for every ℓ ∈ L1 ∪ L≥2 the
closest facility fℓ ∈ OPT is still present after Step 1, since only some of the other facilities
in H were removed.

• Step 2. For each badly-cut facility ℓ ∈ BD − L0 (i.e., ψ(ℓ) 6= ∅), replace fℓ by ℓ
in S∗.

• Step 3. Add all badly cut facilities of L0 to S∗.
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We show next that S∗ satisfies the conditions for ID to have small distortion with good
probability.

Lemma 4.2. The probability that ID has small distortion is at least 1 − ε, if ε ≤ 1/4.

Proof. The proof that νID ≤ εcostI(L) with probability at least 1 − ε/2 is identical to the
one in Lemma 3.1. We thus turn to bound the probability that solution S∗ satisfies the
cardinality and cost requirements. Our goal is to show that this happens with probability
at least 1 − ε/2. Then, taking a union bound over the probabilities of failure yields the
proposition.

By Steps 2 and 3, we have that S∗ contains BD. We split the proof of the remaining
properties into the following claims.

Claim 4.3. With probability at least 1 − ε/4, the set S∗ is an admissible solution, i.e.,
|S∗| ≤ k.

Proof. We let b be the number of facilities of L0 that are badly cut. By Lemma 2.5, we have
that E [ b ] ≤ ε2|L0|/4 as p = 1. By Markov’s inequality, the probability that b > ⌊ε|L0|/2⌋ is
at most ε/2. Now, condition on the event that b ≤ ⌊ε|L0|/2⌋. Since |L0|+ |L≥2| = |OPT2|,
we have that b ≤ ⌊ε|OPT≥2|/2⌋. Moreover, the three steps converting OPT into S∗

ensure that |S∗| ≤ k+ b− ⌊ε|OPT≥2|/2⌋, as Step 1 removes ⌊ε|OPT≥2|/2⌋ facilities, while
Step 2 only swaps facilities so their number does not change, and Step 3 adds b facilities.
Combining the two inequalities gives |S∗| ≤ k.

Claim 4.4. If ε < 1/4, then with probability at least 1−ε/4, costID(S∗) ≤ (1+O(ε))costI(OPT)+
O(ε · costI(L))

Proof. We showed in Lemma 4.1 that the cost increase in I due to Step 1 is at most
O(ε)(costI(OPT)+costI(L)). We will prove below that this implies that also Step 2 leads to
a cost increase of O(ε)(costI(OPT)+costI(L)) in I with good probability. Step 3 can only
decrease the cost. Hence we have costI(S∗) ≤ (1 +O(ε))costI(OPT) +O(ε · costI(L)). To
bound the cost of S∗ in ID, we use that (1−2ε)costID(S∗)− costI(S∗) ≤ νID ≤ εcostI(L).
The cost incurred by connecting clients to facilities in S∗ is

costID(S∗) ≤ (1 +
2ε

1 − 2ε
)(costI(S∗) + ε · costI(L)) (as νID ≤ εcostI(L))

≤ (1 + 4ε)(costI(S∗) + ε · costI(L)) (as ε ≤ 1/4)

≤ (1 +O(ε))costI(OPT) +O(ε · costI(L)) (by above bound on costI(S∗)).

To bound the cost increase of Step 2, we first show that starting with OPT and replacing
every fℓ ∈ OPT by ℓ ∈ L1∪L≥2 results in a solution S′ of cost O(costI(OPT) + costI(L)).
For that, let c be a client that in OPT is served by a facility fℓ that is closest to some
ℓ ∈ L1 ∪L≥2. Recall that every facility of OPT that is closest to some facility of L1 ∪L≥2
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is in OPT, as only some of those from H are removed in Step 1. Hence if c is served by
some ℓ′ ∈ L1 ∪ L≥2 in the solution L, then this facility ℓ′ is in S′ since it will replace
the closest facility fℓ′ . Thus the cost of serving c in S′ is dist(c, ℓ′) = dist(c, L). On the
other hand, if c is served by a facility ℓ0 of L0 in L, then it is possible to serve it by the
facility ℓ that replaces fℓ. The serving cost then is dist(c, ℓ) ≤ dist(c, fℓ) + dist(fℓ, ℓ) ≤
dist(c, fℓ) + dist(fℓ, ℓ0), using that fℓ is the closest facility to ℓ in the last inequality. Using
again the triangle inequality, this cost is at most 2dist(c, fℓ) + dist(c, ℓ0). Moreover, any
client served by a facility of H in OPT, i.e., which is not the closest to a facility of L, can
in S′ be served by the same facility as in OPT, with cost dist(c,OPT). Hence the cost of
the obtained solution is at most 2costI(OPT) + costI(L) ≤ O(costI(OPT) + costI(L)) by
Lemma 4.1 and assuming, say, ε ≤ 1.

The probability of replacing fℓ by ℓ ∈ L1 ∪ L≥2 in Step 2 is the probability that ℓ is
badly cut. This is κ(ε, p) by Lemma 2.5 (note that this probability is the same whether BD
is defined for OPT or OPT). Finally, with linearity of expectation, the expected cost to
add the badly cut facilities ℓ ∈ L1∪L≥2 instead of their closest facility fℓ of OPT in Step 2
is O(κ(ε, p)(costI(OPT) + costI(L))). Markov’s inequality thus implies that the cost of

this step is at most O(ε)(costI(OPT) + costI(L)) with probability 1 − O(κ(ε,p))
ε ≥ 1 − ε/4,

since κ(ε, p) ≤ ε2/2 in the case of k-Median where p = 1, and ε < 1/4.

Lemma 4.2 follows from taking a union bound over the probabilities of failure of
Claim 4.3 and 4.4.

4.3 Portal respecting solution

We have to prove the same structural lemma as for Facility Location, to say that there
exists a portal-respecting solution in ID with cost close to cost(S∗) where S∗ is the solution
obtained from the three steps above. Recall that for any solution S and client c, Sc is the
distances from the original position of c to S in I, but c may have been moved to L(c)
in ID. Recall also that OPT is defined after removing some centers in Step 1.

Lemma 4.5. Let I be an instance of k-Median with a randomized decomposition D, and
L be a solution for I, such that ID has small distortion. Let S∗ be the solution obtained
by applying Steps 1, 2 and 3. Then, for any client c in ID, c and S∗(c) are cut at level
at most log(4OPTc + 3Lc/ε) + τ(ε, d) in D, whenever ε ≤ 1/5, where S∗(c) is the closest
facility to c in S∗.

Proof. The proof of this lemma is very similar to the one of Lemma 3.2. However, since
some facilities of OPT were removed in Step 2 to obtain S∗, we need to adapt the proof
carefully. In particular, we will use the following inequality. Let c be a client. If OPT(c) was
moved in Step 2, it was replaced by facility ℓ for which OPT(c) = fℓ and dist(OPT(c), ℓ) ≤
dist(OPT(c), L(c)), since fℓ is the closest facility to ℓ. Using the triangle inequality we
obtain dist(OPT(c), L(c)) ≤ dist(c,OPT(c)) + dist(c, L(c)). On the other hand, as ℓ ∈ S∗
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we get dist(c, S∗(c)) ≤ dist(c, ℓ) ≤ dist(c,OPT(c)) + dist(OPT(c), ℓ), again applying the
triangle inequality. Putting these inequalities together we obtain

dist(c, S∗(c)) ≤ 2dist(c,OPT(c)) + dist(c, L(c)). (2)

Furthermore, if OPT(c) is not moved in Step 2 we have OPT(c) ∈ S∗, and so Inequality (2)
holds trivially as dist(c, S∗(c)) ≤ dist(c,OPT(c)).

To find the level at which c and S∗(c) are cut, we distinguish between two cases: either
c in I is badly cut w.r.t. D, or not. If c is badly cut, then it is now located at L(c) in the
instance ID. In that case, either:

1. L(c) is also badly cut, i.e., L(c) ∈ BD ⊆ S∗, and so S∗(c) = L(c). It follows that c
and S∗(c) are collocated, thus they are never cut.

2. L(c) is not badly cut. Then, since c is now located at L(c), dist(c, S∗(c)) = dist(L(c), S∗(L(c)).
OPT(L(c)) is not necessarily in S∗: in that case, it was replaced by a facility f that
is closer to OPT(L(c)) than L(c), and so d(L(c), f) ≤ 2d(L(c),OPT(L(c)). Hence,
either if OPT(L(c)) is in S∗ or not, it holds that d(L(c), S∗) ≤ 2OPTL(c).

Since L(c) is not badly cut, the ball β(L(c), 3OPTL(c)) is cut at level at most
log(3OPTL(c)) + τ(ε, d). By triangle inequality, OPTL(c) = dist(L(c),OPT(L(c))) ≤
Lc + OPTc, and thus c and S∗(c) are also separated at level at most log

(
3Lc +

3OPTc

)
+ τ(ε, d).

In the other case where c is not badly cut, the ball β(c, 3Lc/ε) is cut at level at most
log(3Lc/ε) + τ(ε, d). We make a case distinction according to Lc and OPTc.

1. If Lc ≤ εOPTc, then we have the following. If L(c) is badly cut, L(c) ∈ BD ⊆ S∗

and therefore S∗
c ≤ Lc. Moreover, since c is not badly cut the ball β(c, Lc) is cut

at level at most log(3Lc/ε) + τ(ε, d). Therefore c and S∗(c) are cut at a level below
log(4OPTc + 3Lc/ε) + τ(ε, d).

In the case where L(c) is not badly cut, both c and S∗(c) lie in the ball centered at
L(c) and of diameter 3OPTL(c), which can be seen as follows. We use Lc ≤ εOPTc

to derive

dist(c, L(c)) ≤ εdist(c,OPT(c)) ≤ εdist(c,OPT(L(c)))

≤ εdist(c, L(c)) + εdist
(
L(c),OPT(L(c))

)

And therefore, since ε ≤ 1/4, dist(c, L(c)) ≤ ε
1−εOPTL(c) ≤ OPTL(c)/3.
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Using these inequalities we also get

dist(S∗(c), L(c)) ≤ dist(S∗(c), c) + dist(c, L(c))

≤ 2dist(c,OPT(c)) + 2dist(c, L(c)) (using Inequality (2))

≤ 2dist(c,OPT(L(c))) + 2dist(c, L(c))

≤ 4dist(c, L(c)) + 2dist(L(c),OPT(L(c)))

≤
(

2 +
4ε

1 − ε

)
OPTL(c),

which is smaller than 3OPTL(c) for any ε ≤ 1/5. Hence we have c, S∗(c) ∈ β(L(c), 3OPTL(c)).
Since L(c) is not badly cut, c and S∗(c) are cut at level at most log(3OPTL(c))+τ(ε, d).
Since dist(L(c),OPT(L(c))) ≤ dist(L(c),OPT(c)) ≤ dist(L(c), c)+dist(c,OPT(c)) ≤
(1 + ε)OPTc, we have that log(3OPTL(c)) + τ(ε, d) ≤ log(4OPTL(c)) + τ(ε, d).

2. If OPTc ≤ Lc/ε, then 2OPTc + Lc ≤ 3Lc/ε and since c is not badly cut, the ball
β(c, 2OPTc +Lc) is cut at level at most log(3Lc/ε) + τ(ε, d). Moreover, S∗(c) lies in
this ball by Inequality (2).

In all cases, c and S∗(c) are separated at level at most log(3Lc/ε + 4OPT(c)) + τ(ε, d),
which concludes the lemma.

Equipped with these two lemmas, we can prove the following lemma, which concludes
the section. Note again, that the bounds are for OPT defined after removing some centers
in Step 1.

Lemma 4.6. Condition on ID having small distortion. There exists a portal-respecting
solution S in ID such that costID(S) + b(S) ≤ (1 +O(ε))costI(OPT) +O(εcostI(L)).

Proof. The proof follows exactly the one of Lemma 3.3, making S∗ portal-respecting,
and using Lemma 4.2 and Lemma 4.5 to prove that the resulting solution S in ID has
costID(S) + b(S) ≤ (1 +O(ε))costI(OPT) +O(εcostI(L)).

Extension to k-Means The adaptation to k-Means – and more generally k-Clustering
– can be essentially captured by the following inequality: (x+ y)p ≤ 2p(xp + yp). Indeed,
taking the example of Claim 4.4, the detour dist(c, f ′) ≤ 3dist(c, f)+2dist(c, l) gives a cost
dist(c, f ′)p = O(dist(c, f)p + dist(c, l)p). This follows through all the other lemmas, and
therefore the above lemmas also hold for k-Means with larger constants.
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4.4 The Algorithm

The algorithm follows the lines of the one for Facility Location, in Section 3.3. It first
computes a constant-factor approximation L, then the hierarchical decomposition D (with
parameter ρ = ε2−τ(ε,d)) and constructs instance ID. A dynamic program is then used to
solve efficiently the problem, providing a solution S of cost at most (1 + ε)costI(OPT) –
conditioned on the event that the instance ID has small distortion.

Dynamic programming. The algorithm proceeds bottom up along the levels of the
decomposition. We give an overview of the dynamic program which is a slightly refined
version of the one presented for Facility Location in Section 3.3. We make use of two
additional ideas.

To avoid the dependency on k we proceed as follows. In the standard approach, a cell
of the dynamic program is defined by a part of the decomposition D, the portal parameters
(as defined in Section 3.3), and a value k0 ∈ [k]. The value of an entry in the table is then
the cost of the best solution that uses k0 centers, given the portal parameters.

For our dynamic program for the k-Median and k-Means problems, we define a cell of
the dynamic program by a part B, the portal parameters 〈ℓ1, . . . , ℓnp〉 and 〈s1, . . . , snp〉
and a value c0 in [cost(L)/n; (1 + ε)cost(L)]. The entry of the cell is equal to the minimum
number k0 of centers that need to be placed in part B in order to achieve cost at most c0,
given the portal parameters. Moreover, we only consider values for c0 that are powers of
(1 + ε/ log n). The output of the algorithm is the minimum value c0 such that the root
cell has value at most k (i.e., the minimum value such that at most k centers are needed
to achieve it).

The DP table can be computed the following way. For the parts that have no descen-
dant, namely the base cases, computing the best clustering given a set of parameters can
be done easily: there is at most one client in the part, and verifying that the parameter
values for the centers inside the part are consistent can be done easily. At a higher level
of the decomposition, a solution is obtained by going over all the sets of parameter values
for all the children parts. It is immediate to see whether sets of parameter values for the
children can lead to a consistent solution (similar to [25, 4]). Since there are at most 2O(d)

children parts, this gives a running time of q2
O(d)

, where q is the total number of parameter
values.

This strategy would lead to a running time of f(ε, d)n log2
O(d)

n. We can however treat
the children in order, instead of naively testing all parameter values for them. We use a
classical transformation of the dynamic program, in which the first table is filled using an
auxiliary dynamic program. A cell of this auxiliary DP is a value c0 in [cost(L)/n; (1 +
ε)cost(L)], a part C, one of its children Ci, and the portal parameters for the portals of
C and all its children before Ci in the given order. The entry of the cell is equal to the
minimum number of centers k0 that need to be placed in the children parts following Ci to
achieve a cost of c0 given the portal parameters. To fill this table, one can try all possible
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sets of parameters for the following children, see whether they can lead to a consistent
solution, and compute the minimum value among them.

Analysis – proof of Theorem 1.1 and Theorem 1.2. We first show that the solution
computed by the algorithm gives a (1 +O(ε))-approximation, and then prove the claim on
the complexity.

Lemma 4.7. Let S∗ be the solution computed by the algorithm. With probability 1 − 2ε,
it holds that costI(S∗) = (1 +O(ε))costI(OPT) +O(εcostI(L))

Proof. With probability 1−2ε, ID has small distortion (Lemma 4.2). Following Lemma 4.6,
let S be a portal-respecting solution such that costI(S) +B(S) ≤ (1 +O(ε))costI(OPT) +
O(εcostI(L)).

As in Lemma 3.4, S can be adapted to a configuration of the DP with a small extra
cost. The cost incurred to the rounding of distances can be charged either to B(S) or is a
O(ε)costID(S), as in Lemma 3.4. The cost to round the value c0 is a (1 + ε/ log n) factor
at every level of the decomposition. Since there are O(log n) of them, the total factor is
(1 + ε/ log n)O(logn) = 1 +O(ε). Hence, we have the following:

costI(S∗) = (1 +O(ε))costID(S∗) (as ID has small distortion)

= (1 +O(ε))(costID(S) +B(S)) (by previous paragraph)

≤ (1 +O(ε))costI(OPT) +O(εcostI(L)) (by definition of S)

Lemma 4.8. The running time of the DP is 2(1/ε)
O(d2) · n log4 n.

Proof. The number of cells in the auxiliary DP is given by the number of parts (O(n)) ,

the number of children of a part (2O(d)), the number of portal parameters ((1/ε)2
O(d2)/ε)

and the possible values for c0 (O(log2 n)): it is therefore n · 2O(d) · (1/ε)2
O(d2)/ε · log2 n.

The complexity to fill the table adds a factor (1/ε)2
O(d2)/ε · log2 n, to try all possible

combination of portal parameters and value of c0 . Hence, the overall running time of the

DP is n · (1/ε)2
O(d2)/ε · log4 n = 2(1/ε)

O(d2) · n log4 n.

The proof of Theorem 1.1 and Theorem 1.2 are completed by the following lemma,
which bounds the running time of the preprocessing steps.

Lemma 4.9. For k-Median and k-Means, the total running time of the algorithms are

respectively 2O(d)n log9 n+ 2(1/ε)
O(d2)

n log4 n and 2O(d)n log9 n+ 2(1/ε)
O(d2)

n log5 n

Proof. We need to bound the running time of three steps: computing an approximation,
computing the hierarchical decomposition, and running the dynamic program.
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For k-Median, a constant-factor approximation can be computed in O(m log9 n) =
2O(d)n log9 n time with Thorup’s algorithm [38]. The split-tree decomposition can be found
in 2O(d)n log n time as explained in Section 2. Moreover, as explained in Lemma 4.8, the

dynamic program runs in time 2(1/ε)
O(d2)

n log4 n, ending the proof of the Theorem 1.1.
Another step is required for k-Means. It is indeed not known how to find a constant-

factor approximation in near-linear time. However, one can notice that a c-approximation
for k-Median is an nc-approximation for k-Means, using the Cauchy-Schwarz inequality.
Moreover, notice that starting from a solution S, our algorithm finds a solution with cost

(1 +O(ε))cost(OPT) +O(ε)cost(S) in time 2(1/ε)
O(d2)

n log4 n, as for k-Median.
Repeating this algorithm N times, using in step i+ 1 the solution given at step i, gives

thus a solution of cost (1 + O(ε))cost(OPT) + O(εN )cost(S). Starting with cost(S) =
O(n)cost(OPT) and taking N = O(log n) ensures to find a solution for k-Means with cost
(1 +O(ε))cost(OPT). The complexity for k-Means is therefore the same as for k-Median,
with an additional log n factor for the dynamic program term. This concludes the proof of
Theorem 1.2.

5 Other Applications of the Framework

Our techniques can be generalized to variants of the clustering problems where outliers
are taken into account. We consider here two of them: k-Median with Outliers and its
Lagrangian relaxation, Prize-Collecting k-Median. It can also be used to find a bicreteria
approximation to k-Center.

5.1 Prize-Collecting k-Median

In the “prize-collecting” version of the problems, it is possible not to serve a client c by
paying a penalty πc (these problems are also called clustering “with penalties”). For a
solution S, we call an outlier for S a client that is not served by S. Formally, an instance is
a quintuple (C,F, dist, π, k) where (C ∪F, dist) is a metric, k is an integer and π : C → R

+

the penalty function, and the goal is to find S = (SF , SO) with SF ⊆ F and SO ⊆ C such
that |SF | = k and cost(SF , SO) =

∑
c∈C−SO

dist(c, SF ) +
∑

c∈SO
πc is minimized. cost(SF )

denotes the cost of solution SF with the best choice of outliers (which is easy to determine)
Looking at the Prize-Collecting k-Median problem, we aim at applying the framework

from Section 4. Let L = (LC , LO) be an approximate solution. We define badly cut for
outliers as we did for centers: an outlier c of LO is badly cut w.r.t. D if the ball β(v, 3OPTc/)
is cut at some level j greater than i + τ(ε, d), where OPTc is the distance from c to the
closest facility of the optimum solution OPT. Hence, Lemma 2.5 extends directly, and the
probability that an outlier in LO is badly cut is κ(ε, p).

We now turn to the previous framework, showing how to construct a near-optimal
solution containing all badly-cut centers of L. For that we transfer the definitions of the
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mappings LC , ψ (LC maps a client to its closest center of L, and ψ(ℓ) = {f ∈ OPT | L(f) =
ℓ}) and of the sets L0, L1, L≥2,OPT1, and OPT≥2. We will show that this framework, with
only a few modifications, leads to an approximation scheme for Prize-Collecting k-Median.
Let T = OPT. As in Section 4, we start by removing a few centers from the optimal
solution, without increasing the cost too much:

• Step 1. Among the facilities of OPT≥2 that are not the closest of their corresponding
facility in L≥2, remove from T the subset Ĥ of size ⌊ε · |OPT≥2|/2⌋ that yields the
smallest cost increase, i.e. the smallest value of

∑
c∈C−LO:OPT(c)∈Ĥ dist(c, T − Ĥ) +∑

c∈LO:OPT(c)∈Ĥ πc.

The function minimized by Ĥ corresponds to redirecting all clients served in the local
solution to a center of T −Ĥ and paying the penalty for clients c ∈ LO such that OPT(c) ∈
Ĥ. Those clients are thus considered as outliers in the constructed solution.

Lemma 5.1. After step 1, T has cost (1 +O(ε))cost(OPT) +O(ε)cost(L)

Proof sketch. The proof is essentially the same as Lemma 4.1, with an averaging argument:
the only difference comes from the cost of removing a center from T . For any client c, the
cost of removing OPT(c) from T is O(OPTc +Lc): if c /∈ L0, the argument is the same as
in Lemma 4.1, and if c ∈ LO the cost is πc, which is what c pays in L. Hence the proof
follows.

Again, we denote now by OPT this solution T and define the instance ID according
to this solution. Recall that BD is the set of badly cut centers of LC , and denote OD
the set of badly cut outliers of L. We say that an instance ID has small distortion if
νID ≤ εcost(L) and there exists a solution S that contains BD as centers and OD as
outliers with costI(S) ≤ (1 + ε)costI(OPT) + εcostI(L).

To deal with the badly cut centers, there is only one hurdle to be able to apply the
proof of Lemma 4.6. Indeed, when a center of OPT that serves a client c is deleted during
the construction, the cost of reassigning c is bounded in Lemma 4.6 by dist(c, S). However
this is not possible to do when c is an outlier for S: there is no control on the cost dist(c, S),
and hence one has to pay the penalty πc. It is thus necessary to find a mechanism that
ensures to pay this penalty only with a probability ε for each client c. Similar to Section 4,
this is achieved with the following three steps:

• Step 2. For each badly-cut facility f ∈ L for which ψ(f) 6= ∅, let f ′ ∈ ψ(f) be the
closest to f . Replace f ′ by f in T ∗. For all clients c ∈ LO such that OPT(c) = f ′,
add c as outliers.

• Step 3. Add all badly cut facility f ′ of L0 to T ∗

• Step 4. Add all badly cut outliers of L to the outliers of T ∗.
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We show next that T ∗ satisfies the conditions for ID to have small distortion with good
probability.

Lemma 5.2. The probability that ID has small distortion is at least 1 − ε.

Proof. When bounding the cost increase due to Step 2, it is necessary to add as outliers
all clients served by f ′ that are outliers in L. Since f ′ is deleted from T ∗ with probability
κ(ε, p), the expected cost due to this is

∑
c∈LO

κ(ε, p)·πc ≤ κ(ε, p)costI(L). Using Markov’s
inequality, this is at most (ε/3)costI(L) with probability 1 − ε/3.

tep 3 does not involve outliers at all. Hence, Claim 4.3 and 4.4 are still valid. Combined
with the previous observation about Step 2, this proves that after Step 3, T ∗ contains at
most k centers — including the ones in BD — and has cost at most (1 + ε)costI(OPT) +
(ε/3)costI(L) with probability at least 1 − ε/3.

Step 4 implies that all outliers in OD are also outliers in the constructed solution.
Moreover, since an outlier of L is badly cut with probability κ(ε, p), the expected cost
increase due to this step is at most κ(ε, p)costI(L). Using again Markov’s inequality, this
cost is at most (ε/3)costI(L) with probability 1 − ε/3.

By union-bound, the solution T ∗ has cost at most (1 + ε)costI(OPT) + εcostI(L) with
probability 1 − ε. Hence, ID has small distortion with probability 1 − ε.

Given an instance with low distortion, it is again possible to prove that there exists a
near optimal portal-respecting solution, and the same DP as for k-Median can find it.

Therefore, using the polynomial time algorithm of Charikar et al. [10] to compute a
constant-factor approximation, the algorithm presented in Section 4 can be straightfor-
wardly adapted, concluding the proof of Theorem 1.4.

5.2 k-Median with Outliers

In the k-Median with Outliers problem, the number of outliers allowed is bounded by some
given integer z. We do not manage to respect this bound together with having at most k
facilities and a near-optimal solution: we need to relax it a little bit, and achieve a bicriteria
approximation, with k facilities and (1 + O(ε))z outliers. For this, our framework applies
nearly without a change.

The first step in the previous construction does not apply directly: the “cost” of remov-
ing a center is not well defined. In order to fix this part, Step 1 is randomized: among the
facilities of OPT≥2 that are not the closest of their corresponding facility in L≥2, remove
from T ∗ a random subset Ĥ of size ⌊ε · |OPT≥2|/2⌋.
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Lemma 5.3. After the randomized Step 1, T ∗ has expected cost (1 + O(ε))cost(OPT) +
O(ε)cost(L)

Proof. Since there are at least |OPT≥2|/2 facilities of OPT≥2 that are not the closest of
their corresponding facility in L≥2, the probability to remove one of them is O(ε). Hence,
every outlier of L that is served in OPT must be added as an outlier in T ∗ with probability
O(ε) – when its serving center in OPT is deleted. Hence, the expected number of outliers
added is O(εz).

Moreover, the proof of Lemma 4.1 shows that the sum of the cost of deleting all possible
facilities is at most O(cost(OPT) + cost(L)) (adding a point as outlier whenever it is
necessary). Removing each one of them with probability O(ε) ensures that the expected
cost of T ∗ after step 1 is (1 +O(ε))cost(OPT) +O(ε)cost(L).

The three following steps are the same as in the previous section, and the proof follows:
with constant probability, the instance ID has small distortion (defined as for k-Median
with penalties), and one can use a dynamic program to solve the problem on it. The DP is
very similar to the one for k-Median. The only difference is the addition of a number x to
each table entry, which is a power of (1+ε/ log(n/ε)), and represents the (rounded) number
of outliers allowed in the subproblem. This adds a factor log2(n/ε)/ε to the complexity.

It is possible to compute a constant factor approximation S in polynomial time (using
Krishnaswamy et al. [26]). Hence, this algorithm is a polynomial time bicriteria approxima-
tion scheme for k-Median with outliers. As in Section 4, this directly extends to k-Means
with outliers.

This concludes the proof of Theorem 1.5.

5.3 k-Center

In the k-Center problem, the goal is to place k centers such as to minimize the largest
distance from a point to its serving center. We propose a bicriteria approximation, allowing
the algorithm to open (1 +O(ε))k centers.

For this, we change slightly the definition of badly-cut. Given a solution L with cost γ
and a hierarchical decomposition D, a center f of L is badly cut w.r.t D if the ball β(f, 2i)
is cut at some level j greater than i+ τ(ε, d), for i such that 2i−1 ≤ 2γ < 2i.

Note that Lemma 2.5 still holds with this definition : a center f is badly cut with
probability at most κ(ε, p). Let BD be the set of badly cut centers. We assume in the
following that L is a 2-approximation, i.e. γ ≤ 2OPT.

We make the crucial following observation, using the doubling property of the metric.
Let f be a center of L. By definition of doubling dimension, the ball β(f, γ) can be covered
by 2d balls of radius γ/2 ≤ OPT. Let Cc be the set of centers of such balls, such that
β(f, γ) ⊆ ⋃

f ′∈Cc
β(f ′, γ/2).
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Given an instance I, we construct ID the following way: for each badly cut facility f ,
force all the facilities in Cf to be opened in any solution on ID, and remove all the clients
in β(f, γ) from the instance. We let C =

⋃
f badly cut

Cf . The structural lemma of this section

is the following:

Lemma 5.4. It holds that for all solution S of ID:

• costID(S) ≤ costI(S)

• costI(S ∪ C) ≤ max(costID(S),OPT)

Proof. Since the instance ID contains a subset of clients of I, it holds that costID(S) ≤
costI(S).

Let S be a solution in ID. It serves all client in I but the one removed: these ones are
served by C at a cost γ/2 ≤ OPT. Hence, the cost of S∪C is at most max(costID(S),OPT).

We now show, in a similar fashion as Lemma 3.2, that the clients in ID are cut from
their serving facility of OPT at a controlled level. Recall that OPT is defined for instance I.

Lemma 5.5. Let c be a client in ID and OPT(c) its serving facility in OPT. C and
OPT(c) are cut at level at most log(2γ) + τ(ε, d).

Proof. Let c be a client, L(c) its serving center in L and OPT(c) its serving center in
OPT. If c is still a client in ID, it means that L(c) is not badly cut. Observe that
dist(L(c),OPT(c)) ≤ dist(c, L(c)) + dist(c,OPT(c)) ≤ γ + OPT ≤ 2γ

Let i such that 2i−1 ≤ 2γ ≤ 2i. Since L(c) is not badly cut, the ball β(L(c), 2i) is not
badly cut neither: hence, c and OPT(c) (that are in this ball) are cut at level at most
i+ τ(ε, d) ≤ log(2γ) + τ(ε, d).

This lemma is stronger than Lemma 3.2 and 4.5: it allows us to consider only levels of
the decomposition with diameter less than 21+τ(ε,d)γ.

Since the set C has expected size κ(ε, p)k, Markov’s inequality ensures that with prob-
ability 1 − ε this set has size O(ε)k. If every part with diameter D of the hierarchical
decomposition is equipped with a ρD-net (for ρ = ε2−τ(ε,d)), Lemma 5.5 ensure that there
exists a portal-respecting solution S with cost costID(S) ≤ OPT+O(ε)γ = (1+O(ε))OPT.
Lemma 5.4 ensures that lifting this solution back to I and adding C as centers gives a near-
optimal solution.

Using the same algorithm as for k-Median to compute a good portal-respecting solution,
and computing a 2-approximation with a simple greedy algorithm (see e.g. [17]), that runs
in time O(n log k) concludes the proof of Theorem 1.6.
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A Appendix

A.1 Proofs for Section 2

Proof of Lemma 2.3. We present the algorithm constructing the hierarchical decomposi-
tion, and prove the lemma as a second step.

Without loss of generality, assume that the smallest distance in the metric is 1: the
aspect-ratio ∆ is therefore the diameter of the metric. Start from a hierarchy of nets
Y0 := V, . . . , Ylog(∆) such that Yi is a 2i−2-net of Yi−1. Moreover, pick a random order
on the points V and a random number τ ∈ [1/2, 1). The hierarchical decomposition D
is defined inductively, starting from B⌈log∆⌉ = V . To partition a part B at level i into
subparts at level i− 1, do the following: for each y ∈ Yi−1 ∩B taken in the random order,
define B ∩ β(y, τ2i) to be a part at level i− 1 and remove B ∩ β(y, τ2i) from B.

When we assume access to the distances through an oracle, it is possible to construct
this hierarchy and augment it with the set of portals in time (1/ρ)O(d)n log(∆). Moreover,
these portals can be made nested, meaning that portals at level i + 1 are also portals at
level i [22, 15].

We prove now that this hierarchical decomposition has the required properties. The
diameter of each part is bounded by 2i+1 by construction; therefore to have Property 2 it
is enough to make Pi an (ρ2i+1)-net of V . Property 2.1 ensures the conciseness, and the
definition of a net ensures that every point is at distance ρ2i+1 of Pi, which implies the
preciseness. The construction ensures that a part B at level i−1 is split in at most |B∩Yi−1|
parts of level i, which is 2O(d) following Property 2.1. Proving the scaling property requires
a bit more work.
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The two ingredients needed for this part stem from the construction of the decomposi-
tion: the diameter of any part at level i is at most 2i+1, and the minimum distance between
two points of Yi is bigger than 2i−2.

These two properties are enough in order to prove our lemma. Let i be a level such
that 2i ≤ r: then r/2i = Ω(1) so there is nothing to prove. Otherwise, we proceed in two
steps. First, let us count the number of level i parts that could possibly cut a ball β(x, r).
A level i part is included in a ball β(y, 2i) for some y ∈ Yi; therefore if dist(x, y) > r + 2i

then y’s part cannot cut β(x, r). So it is required that dist(x, y) ≤ r+ 2i ≤ 2 ·2i. But since
the minimum distance between two points of Yi is 2i−2, and Yi has doubling dimension d,
we have |Yi ∩ β(x, 2 · 2i)| = 2d log(2

i/2i−2) = 22d. Thus there is only a bounded number of
parts to consider.

We prove for each of them that the probability that it cuts β(x, r) is O(r/2i). A union-
bound on all the possible parts is then enough to conclude. Let therefore y ∈ Yi∩β(x, 2·2i),
and xm and xM be the respective closest and farthest point of β(x, r) from y. A necessary
condition for y’s part to cut β(x, r) is that the diameter of the part is in the open interval
(d(y, xm), d(y, xM )). Since xm, xM ∈ β(x, r) this interval has size 2r, and the radius of the
part is picked uniformly in [2i/2, 2i). Therefore the probability that the radius of the part
falls in (d(y, xm), d(y, xM )) is at most 4r/2i. And finally, the probability that y’s part cuts
β(x, r) is indeed 4r/2i.

By a union-bound over all the parts that could possibly cut β(x, r) we obtain the
claimed probability Pr[C cuts β(x, r) at a level i] = 22d+2r/2i.

Lemma A.1. Let P be a problem among Facility Location, k-Median or k-Means. Given
an instance I on a metric (V, dist) with n points, ε > 0, and a constant-factor approx-
imation for P on I, there exists a linear-time algorithm that outputs a set of instances
I1, . . . , Im on metrics (V1, dist1), . . . , (Vm, distm), respectively, such that

• V1, . . . , Vm is a partition of V

• for all i, (Vi, disti) has aspect-ratio O(n5/ε),

• if (V, dist′) is the metric where distances between points of the same part Vi are given
by disti while distances between points of different parts is set to ∞, and OPT is the
optimum solution to I, then

– there exists a solution on (V, dist′) with cost (1 + ε/n)cost(OPT), and

– any solution on (V, dist′) of cost X induces a solution of cost at most X +
εcost(OPT)/n in I.

Proof. The cost of the constant-factor approximation is an estimate γ on the cost of the
optimum solution OPT: γ = Θ(cost(OPT)). It is then possible to replace all distances
longer than 2γ by ∞: distances longer than γ will indeed never be used by solution with
cost better than γ, so the cost of these solutions is preserved after this transformation. The
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distance matrix do not respect the triangle inequality anymore: thus we replace it with its
metric closure. We say that two vertices are connected if their distance is not ∞, and call a
connected component any maximal set of connected vertices. The transformation ensured
that any connected component has diameter at most 2nOPT, and that every cluster of OPT
is contained inside a single connected component. Moreover, any connected component has
doubling dimension 2d: indeed, a subspace of a metric with doubling dimension d has a
doubling dimension at most 2d. Note also that this transformation can be made implicitly:
every time the algorithm queries an edge, it can replace the result by ∞ if necessary.

To identify the connected component, the algorithm builds a spanner with the algorithm
of [22]: the connected components of the spanner are exactly the ones of our metric, and
can be found in linear time.

Then, for each connected component, the algorithm defines an instance of the more
general version of the clustering problem by the following way. It first sets χ(v) = 1 for
all vertex v. Then, it iterates over all edges, it contracts every edge (u, v) with length less
than (ε · γ/n3) to form a new vertex w and sets χ(w) = χ(u) + χ(v).

Now, we aim at reconstructing a metric from this graph. We will do it in an approximate
way: for all connected points u, v of connected component i, we set disti(u, v) to be 0 if
u and v are merged in the graph, and otherwise dist(u, v). This ensures that ε · γ/n3 ≤
disti(u, v) ≤ 2nγ, hence the aspect-ratio of Ii is O(n5/ε). Moreover, every distance is
preserved up to an additive O(ε · cost(OPT)/n2).

Since every cluster of OPT is contained inside a single connected component, this
ensures that OPT induces a solution of cost (1 + ε/n)cost(OPT) on

⋃ Ii. Moreover, lifting
a solution in

⋃ Ii to I costs at most εcost(OPT)/n2 per pair (client, center) and therefore
εcost(OPT)/n in total.

If the problem considered is Facility Location, it is easy to merge the solutions on
subinstances: since there is no cardinality constraint, the global solution is simply the
union of all the solutions. The hard constraint on k makes things a bit harder. Note that
the dynamic program presented in Section 4 naturally handles it without any increase in
its complexity: however, for completeness we present now a direct reduction.

Lemma A.2. Given a problem P among k-Median or k-Means, a set of instances (I1, dist1),
. . ., (Im, distm) given by Lemma A.1 and an algorithm running in time ni(log ni)

αt(∆) to
solve P on instances with ni points and aspect-ratio ∆, there exists an algorithm that runs
in time O(n(log n)α+2t(O(n4/ε))) to solve P on

⋃ Ii.

Proof. First, note that the optimal solution in
⋃ Ii is O(n5/ε), since the maximal distance

in any of I1, . . . Im is n4/ε. Using this fact, we build a simple dynamic program to prove
the lemma. For all i ≤ m and j ≤ log1+ε/ logn(n5/ε), let ki,j be the minimal k′ such that

the cost of P with k′ centers in Ii is at most (1 + ε/ log n)j . ki,j can be computed with a
simple binary search, using the fact that the cost of a solution is decreasing with k′.
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Given all the ki,j , a simple dynamic program can compute k≥i,j , the minimal number
of centers needed to have a cost at most (1+ε)j on Ii, . . . Im (the ε/ log n becomes a simple
ε because of the accumulation of errors). The solution for our problem is (1 + ε)j , where
j is the minimal index such that k≥1,j ≤ k.

The complexity of computing ki,j isO(log k·ni(log n)αt(O(n4/ε))), hence the complexity
of computing all the ki,j is O(n(log n)α+2t(O(n4/ε)). The complexity of the dynamic
program computing k≥i,j is then simply O(m log n) = O(n log n), which concludes the
proof.

A.2 Portal Respecting Paths and Solutions

Recall that any part B ∈ Bi of the decomposition D = {B0, . . . ,B|D|} comes with a set
of portals PB with the properties listed in Lemma 2.3. In a portal-respecting solution,
every client connects to a facility by going in and out of parts of the decomposition only
at designated portals. More concretely, a path in a metric between two nodes u and v
is given by a sequence of nodes w1, . . . , wk, where u = w1, v = wk, and its length is∑k−1

j=1 dist(wj , wj+1). A solution can be seen as a set of facilities, together with a path
for each client that connects it to a facility, and the cost of the solution is given by the
sum over all path lengths. We say a path w1, . . . , wk is portal-respecting if for every pair
wj , wj+1, whenever wj and wj+1 lie in different parts B,B′ ∈ Bi of the decomposition D
on some level i, then these nodes are also portals at this level, i.e., wj , wj+1 ∈ PB ∪ PB′ .
As explained in Lemma A.3, if two vertices u and v are cut at level i, then there exists
a portal-respecting path from u to v of length at most dist(u, v) + 16ρ2i. We define a
portal-respecting solution to be a solution such that each path from a client to its closest
facility in the solution is portal-respecting.

Lemma A.3. If two vertices u and v are cut by a decomposition at level i, there exists a
portal-respecting path of length dist(u, v) + 16ρ2i that connects u to v.

Proof. If u and v are cut on level i, then they lie in the same part B ∈ Bi+1 on level i+ 1
of the decomposition D. As each part on level 0 of D is a singleton set, both u and v are
portals on that level. Now consider the path that starts in u = w1, and for each j ≥ 1
connects wj to the closest portal wj+1 ∈ PB of the part B ∈ Bj on the next level j, until
level i + 1 is reached. This yields a portal-respecting path Pu, as portals are nested, i.e.,
each wj is a portal on every level less than j. A similar procedure finds a portal-respecting
path Pv from the other endpoint v up to level i + 1 through portals of levels below i + 1.
Since u and v lie in the same part on level i + 1, we may obtain a portal-respecting path
from u to v by first following Pu up to level i + 1, then connecting to the endpoint of Pv

that is a portals of level i+ 1, and then following Pv all the way down to v. The length of
this portal-respecting path is at most dist(u, v)+4

∑
j≤i+1 ρ2j+1 = dist(u, v)+O(ρ2i), due

to the triangle inequality and the preciseness property of the portals (cf. Lemma 2.3).
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