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ABSTRACT
Despite potential quantum supremacy, state-of-the-art quantum
neural networks (QNNs) suffer from low inference accuracy. First,
the current Noisy Intermediate-Scale Quantum (NISQ) devices with
high error rates of 10−3 to 10−2 significantly degrade the accuracy
of a QNN. Second, although recently proposed Re-Uploading Units
(RUUs) introduce some non-linearity into the QNN circuits, the
theory behind it is not fully understood. Furthermore, previous
RUUs that repeatedly upload original data can only provide mar-
ginal accuracy improvements. Third, current QNN circuit ansatz
uses fixed two-qubit gates to enforce maximum entanglement ca-
pability, making task-specific entanglement tuning impossible, re-
sulting in poor overall performance. In this paper, we propose a
Quantum Multilayer Perceptron (QMLP) architecture featured by
error-tolerant input embedding, rich nonlinearity, and enhanced
variational circuit ansatz with parameterized two-qubit entangling
gates. Compared to prior arts, QMLP increases the inference accu-
racy on the 10-class MNIST dataset by 10% with 2× fewer quantum
gates and 3× reduced parameters. Our source code is available and
can be found in [1] 1.

CCS CONCEPTS
•Hardware→Quantum computation; •Computingmethod-
ologies → Supervised learning by classification.
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1 INTRODUCTION
Quantum Computing is a novel computing paradigm that solves
classically intractable problems with substantially higher efficiency
and speed. Due to the quantum parallelism and the effect of in-
terference and entanglement, it has been demonstrated to have
exponential advantage in various machine learning tasks [2–7]. A
quantum neural network (QNN) [8] is able to generate the corre-
lation between variables that are inefficient to represent through
classical computation by defining a feature map that maps classical
data into the quantum Hilbert space. Algorithms are developed
for both inferring [9] and training [10] a quantum neural network.

1This paper has been accepted by the ACM/IEEE International Symposium on Low
Power Electronics and Design (ISLPED ’22).

Although quantum advantage has been demonstrated, QNNs suffer
from low inference accuracy. State-of-the-art QNNs [2, 3] achieve
<60% accuracy when inferring a 10-class MNIST [11] dataset, i.e.,
the smallest and simplest benchmark in the classical machine learn-
ing domain. The low inference accuracy of state-of-the-art QNNs
is caused by three factors, i.e., the Noisy Intermediate-Scale Quan-
tum (NISQ) devices, the lack of nonlinearity, and the very limited
learning capability of the QNN circuit ansatz.

First, quantum gates in the NISQ era are highly error-prone, and
hence greatly decrease the inference accuracy of QNNs. Noises [12]
introduced by imperfect fabrication, crosstalk, and non-ideal control
and readout result in various types of errors, e.g., bit-flip and phase-
flip errors [13, 14]. Although recent work creates an automatic
framework, QuantumNAS [2], to search the most noise-resistant
QNN within the design space of a large variational quantum circuit
consisting of pre-defined parameterized quantum gates, Quantum-
NAS does not have any error awareness during model training. In
another word, the framework just naïvely searches the most accu-
rate QNN within the design space that is not optimized for error
tolerance, and then add noise during circuit mapping to retrain
the selected model. Moreover, QuantumNAS uses the entanglement
encoding that may greatly degrade quality of the encoded quantum
input feature maps (QIFPs) by propagating a single error to all
parts of a QIFP. Such encoded input produces only low inference
accuracy, since it is difficult for any type of networks to achieve
high inference accuracy when low-level features are wrong.

Second, prior QNNs [2] do not have much nonlinearity due to the
linear and unitary nature of quantum mechanics. A deep structure
cannot help such models to improve their performance, since vari-
ous nonlinear activations are a crucial factor for multi-layer deep
neural networks to achieve high inference accuracy. Recent QNNs
adopt data Re-Uploading Units (RUUs) [15] to gain nonlinearity
by repeatedly applying their data encoding unitaries to a QNN.
The orginal RUUs have demonstrated improved performance, but
the theory behind is not fully understood. Moreover, prior RUUs
just naïvely re-upload identical QIFPs into a QNN, providing only
limited amount of nonlinearity.

Third, the variational quantum circuit ansatz used in current
QNNs utilize fixed two-qubit gates, i.e., CNOT, to force maximum
entanglement between two qubits. The lack of trainablity on qubits
entangling power limits the function space that a QNN can learn.
Therefore, it is difficult for QNNs to obtain the optimal mapping
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function, as in classical machine learning, to capture all potential
correlations in the inputs.

In this paper, we propose a QuantumMultilayer Perceptron archi-
tecture, namely QMLP, to address the aforementioned challenges.
Our main contributions can be summarized as follows:
• An error-tolerant network architecture. We propose a new
network architecture featuring an error-tolerant encodingmethod
by which a QMLP encodes each input qubit separately, confining
errors on the encoding circuit to only a portion of the encoded
QIFPs. In this way, more accurate low-level features can be gen-
erated for processing by later QMLP components.

• A re-uploading layer with adjustable nonlinearity. We in-
vestigate the theory behind the data Re-Uploading Units [15] and
further present advanced RUU layer designs that are capable to
provide tunable nonlinearity. Compared to original RUUs, our
new RUU layers can simulate various types of nonlinearity that
pave the way for constructing deep QNNs.

• A circuit ansatz with enhanced trainability. We present a
circuit ansatz using parameterized two-qubit gates, which applies
appropriate entanglement between two qubits through model
training, making it easier to learn optimal QNN parameters.

• High inference accuracy. We implemented, evaluated, and
compared QMLP against prior QNNs such as QuantumFlow [3]
and QuantumNAS [2]. Compared to prior QNN designs, QMLP
increases the inference accuracy on the 10-class MNIST dataset
by 10% with 2× fewer quantum gates and 3× reduced parameters.

2 BACKGROUND AND MOTIVATION
2.1 Quantum Basics
Qubits. Unlike a conventional bit, a quantum bit (qubit) [10] can be
in a linear combination of the two basis states 0 and 1: |𝜙⟩ = 𝛼 |0⟩ +
𝛽 |1⟩, for 𝛼, 𝛽 ∈ C, and |𝛼 |2 + |𝛽 |2 = 1. A “superposition” of basis
states enables an 𝑛-qubit system to represent a linear combination
of 2𝑛 basis states. On the contrary, a classical 𝑛-bit register file can
store only one of these 2𝑛 states.

Quantum Neural Networks. A universal QNN architecture
based on trainable variational quantum circuits (VQCs) [8] is shown
in Figure 1 (a). Given a classical training set T = (xi, 𝑦𝑖 ) of 𝑛-
dimensional feature map vectors xi = (𝑥0

𝑖
, 𝑥1

𝑖
, . . .𝑥𝑛−1

𝑖
) and its

label 𝑦𝑖 , a quantum encoding layer, 𝑆0 (xi), is applied to the ground
quantum state |𝜙0⟩ = |0⟩⊗𝑁 , to generate the quantum input fea-
ture map (QIFP) |𝜙1⟩. A parameterized VQC ansatz is then uti-
lized to manipulated the QIFP through unitary transformation, i.e.,
|𝜙1⟩ → 𝑈 (𝜃 ) |𝜙1⟩, where 𝜃 is a set of free variables for adaptive
optimizations. The VQC ansatz consisting of a sequence of quan-
tum gates fundamentally defines the types of functions that a QNN
can compute. Similar to the “layers” that form the architecture of a
classical neural network, a QNN can be constructed by stackingmul-
tiple layers of a VQC ansatz. i.e., 𝑈 (𝜃 ) = 𝑈𝐿 (𝜃𝐿)· · ·𝑈2 (𝜃2)𝑈1 (𝜃1).
The predicted classification can be obtained by a quantum state
measurement, followed by necessary classical post-processing. A
loss function is predefined to calculate the difference between the
output of the QNN and the true target value 𝑦𝑖 . The training of
a QNN iteratively search for the best parameters in a VQC via a
hybrid quantum-classical optimization procedure.
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Figure 1: A standard QNN. (a) The circuit ansatz; (b) The er-
ror propagation in a noisy entanglement encoding circuit.

QNN Circuit Ansatz. VQC ansatzes are empirically designed
based on prior knowledge of the target problem, as it is often impos-
sible to clearly predict and explain how different circuit ansatzes
will perform on various datasets. The circuit ansatz shown in Fig-
ure 1 (a), consisting of parameterized single-qubit rotation gates
(i.e., RX, RY, RZ, or a combination thereof) followed by nearest-
neighbor coupling of all qubits using fixed two-qubit CNOT gates,
has demonstrated superior prediction accuracy compared to other
counterparts and is adopted as a basic VQC ansatz in various clas-
sification tasks [2, 8, 16]. The central idea of such designs is that
single-qubit rotations provide a way to parameterize circuits, while
two-qubit gates entangle the circuit.

Errors on NISTMachines. In quantum computing, noises hap-
pen due to the imperfect control signals, unavoidable crosstalk inter-
actions between qubits, or interference from the environment [12].
NISQ devices are severely limited in circuit width and depth because
they suffer from decoherence error over time, making it impracti-
cal to implement complex quantum circuits. In addition, quantum
gates introduce operation errors, e.g., bit-flip errors and phase-flip
errors [13, 14], into the quantum machine. As a result, a quantum
machine needs to be characterized and calibrated frequently to
mitigate noise impacts.

2.2 Quantum Data Encoding
Recent QNNs such as QuantumNAS [2] prepares the quantum input
feature maps (QIFPs) by encoding classical data into the amplitudes
of a quantum state, e.g., |𝜙1⟩ = 𝑥0

𝑖
|00⟩ + 𝑥1

𝑖
|01⟩ + 𝑥2

𝑖
|10⟩ + 𝑥3

𝑖
|11⟩

for a 4-dimensional input vector as shown in Figure 1 (b). Since
the information contained in the classical input is entangled in the
quantum system and embedded in each encoded qubit, we refer
it as entanglement encoding in this paper. The efficiency of such
entanglement encoding is higher than other encoding schemes as
it only requires 𝑙𝑜𝑔2 (𝑛) qubits to represent an 𝑛-dimensional input.

QIFP Quality. Input data encoding is crucial to the overall de-
sign and performance of a QNN because it is impossible to learn an
accurate model and hence achieve high inference accuracy using
inaccurate quantum input feature maps. While in the current NISQ
era, it is very likely that an error may happen on the quantum gates
used in the encoding layer. The entanglement encoding, however,
will propagates errors on even a single gate to all parts of a QIFP
as concepturally illustrated in Figure 1 (b). Furthermore, despite
the benefits for encoding efficiency, such entanglement encoding is
achieved with complex quantum state preparation circuitry con-
sisting a sequence of quantum rotation gates, e.g. two RY gates, one
RX gate, and one RZ gate per qubit in [2], resulting >30% hardware
overhead and increased error rates. Therefore, it is important to
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Figure 4: Comparison be-
tween VQCs with CNOT and
CROT gates.

investigate a new quantum encoding architecture that is easy to
implement and capable of mitigating the negative impact of noisy
encoding circuits on QIFP quality.

Input Re-Uploading. Following the analogy of classical neural
networks, deep QNNs can be constructed by casting a parameter-
ized VQC ansatz multiple times in a structure with hidden layers.
However, the obstacle that arises is how to achieve nonlinearity in
the hidden units with unitary quantum circuits. Prior works [6, 15]
proposed an input Re-Uploading Unit, where the quantum encoding
layer, 𝑆0 (xi), are repeatedly applied before each parameterized VQC
ansatz. This method outperforms the default variational quantum
algorithm onmodel expressiveness and final prediction accuracy be-
cause, as the authors observed – “it introduces nonlinear behavior",
but the theory behind input re-uploading is not fully understood.
Therefore, it is desirable to provide a technical discussion and ex-
plain why and how an RUU provides nonlinearity. Furthermore, a
generic RUU with flexible and tunable nonlinearity will potentially
be beneficial to implement very wide and deep QNN circuits.

2.3 Related Work
Multiple QNNs [2–7] are proposed to demonstrate the quantum
supremacy by predicting the correlation between variables that are
inefficient to represent through classical computation. Quantum-
Flow [3] realizes the functionality of a neuron by non-trainable
quantum gates. By using binary weights, the non-trainable-gate-
based network is supposed to be more tolerant of errors. However,
its high circuit complexity (e.g., 1114 quantum gates) negates the
potential robustness advantage and conversely leads to ∼10% in-
ference accuracy on 10-class MNIST classification when noise is
considered. Most QNNs [2, 4–7] use and train variational quantum
circuits to achieve their neural network function. Specifically, Quan-
tumNAS [2] creates a search framework to automatically build a
sub-variational-quantum-circuit that can achieve state-of-the-arts
10-class MNIST classification accuracy on NISQ devices using differ-
ent circuit components inherited from a big SuperCircuit. However,
neither the large SuperCircuit or any of its sub-circuit has error
tolerance awareness during model training (i.e., circuit noise is only
considered during subsequent mapping and retraining process)
or implements strong nonlinearity, limiting further performance
improvement and system scalibility.

3 THE QMLP ARCHITECTURE
Figure 2 shows the overview of the proposed QMLP architecture
and its relevant components. In this example we consider a two-
layer QMLP with four qubits. The number of layers and qubits in a

generic QMLP circuit can be adjusted to fit the problem of inter-
est. QMLP prepare the quantum input feature maps using a linear
encoding layer, 𝑆0 (x), consisting only RX gates. Similar to the archi-
tecture of a classical neural network, QMLP is implemented from
multiple layers by stacking a parameterized VQC ansatz several
times. The circuit ansatz, 𝑈𝑖 (𝜃i), proposed in this work is imple-
mented as parameterized single-qubit rotation gates (i.e., ROT) on
each qubit followed by nearest-neighbor coupling of all qubits us-
ing parameterized two-qubit gates (i.e., CRX, CRY). The parameter
matrix 𝜃𝑖 are subject to iterative optimization, which can be seen as
the weights in classical neural networks. For all layers except the
input one, we apply an re-uploading unit, 𝑅𝑖 (x), which provides
adjustable nonlinearity to the QMLP. We measure each qubits on
Pauli-Z basis and obtain a classical value in the range of [-1, 1]. We
then obtain the 10-class probability by using a small fully-connected
layer for post-processing.

3.1 Input Data Encoding and Re-Uploading
QMLP encodes the inputs into the rotation angles of qubits by
using single Pauli-rotation gates. The encoding scheme can be
mathematically formulated as,

𝑆 (xi) = 𝑒−𝑖
𝑥0
𝑖
2
𝜎 𝑗 ⊗ · · · ⊗𝑒−𝑖

𝑥𝑛−1
𝑖
2

𝜎 𝑗 (1)
where 𝜎 𝑗 ∈ {𝜎𝑥 , 𝜎𝑦, 𝜎𝑧 }, xi = (𝑥0

𝑖
, 𝑥1

𝑖
, . . .𝑥𝑛−1

𝑖
) represents the n

dimensional input data, and ⊗ represents the tensor product opera-
tion which combines the state spaces of all the individual qubits.
Compared with entanglement encoding scheme [2], our scheme
confines each single input information to a distinct qubit. This
forced isolation minimizes the impact of errors on encoding circuits,
thereby maximizing the fidelity transformation between classical
input data and quantum input feature maps. In particular, the linear
representation in Equation 1 does not necessarily imply that the
gate or function it computes is linear. Below we show how the
generic encoding scheme is adjusted for linear input embedding and
non-linear input re-uploading.

Error-Tolerant Linear Input Embedding.QMLP applies single-
qubit rotation gate RX on the ground state |𝜙0⟩ = |0⟩⊗𝑁 , where the
rotation angle is determined by the classical inputs. There are two
main reasons for choosing this encoding scheme. First, such linear
feature-embedding circuit ensures that the relative value/distance of
the input data remains unchanged, thereby preserving all the corre-
lation in the original data to the greatest extent. Second, we reduce
the complexity of the encoding circuit to one RX gate per qubit. Com-
pared to the ∼30% encoding circuit overhead in QuantumNAS [2],
our encoding scheme greatly avoids the adverse effects of noise in
complex circuits, resulting improved QIFP quality. The comparison
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between entanglement encoding used in QuantumNAS [2] and our
encoding methods is visually illustrated in Figure 5. With ideal
quantum encoding circuits, the quantum input feature maps gen-
erated by both methods preserve the correlation exhibited in the
original data as shown in Figure 5 (a) and (b). We then assume a
bit-flip error occurs on only one of the RX gates. As shown in the
top row of Figure 5 (c) and (d), the single error is propagated in the
whole QIFP when entanglement encoding is applied. In contrast,
our method ensures that the error is confined within a limited spa-
tial region in the QIFP, thereby resulting strong error tolerance.
It is worth mentioning that our encoding method also improves
the overall noise immunity of QNNs as it reduces potential noise
propagation paths due to information decoupling between qubits.
The system effectiveness is demonstrated in model accuracy results
reported in Section 5.

Nonlinear Input Re-Uploading. The empirical RUU config-
uration in [15] is to apply identical input encoding, e.g., 𝑆0 (x) in
Figure 2, before each trainable layer, i.e.,𝑈𝑖 (𝜃𝑖 ), to introduce nonlin-
earity into a unitary quantum circuit. Below we provide a technical
discussion and explain why and how input re-uploading provides
nonlinearity. We then demonstrate a generic re-uploading unit with
flexible and tunable nonlinearity.

Equation 2 denotes the quantum state evolution with the original
identical RUUs applied in each layer. Different from the linear
quantum state prepared by a VQC without RUUs, i.e., |𝜓 (𝑥, 𝜃 )⟩ =
𝑈 (𝜃 ) |𝜙1⟩, it is clear that input re-uploading produces higher-order
terms of the quantum input feature map, thereby enabling the
quantum system to perform nonlinear functions with respect to
the input. For ease of understanding, we show a special case of
Equation 2 in Equation 3 by forcing the VQC circuit function in
each layer to be identity transformation.

|𝜓 (𝑥, 𝜃 ) ⟩ = 𝑈𝐿 (𝜃𝐿)𝑆0 (x) · · ·𝑈2 (𝜃2)𝑆0 (x)𝑈1 (𝜃1)𝑆0 (x) |𝜙0 ⟩
= 𝑈𝐿 (𝜃𝐿)𝑆0 (x) · · ·𝑈2 (𝜃2)𝑆0 (x)𝑈1 (𝜃1) |𝜙1 ⟩

(2)

|𝜓 (𝑥, 𝜃 ) ⟩ = 𝐼𝐿 (𝜃𝐿)𝑆0 (x) · · · 𝐼2 (𝜃2)𝑆0 (x)𝐼1 (𝜃1)𝑆0 (x) |𝜙0 ⟩

= (𝑆0 (x))𝐿−1 |𝜙1 ⟩
(3)

Based on the theoretical study andmotivated by the original RUU
designs [6, 15], we set out to explore and design RUUs, denoted
as 𝑅𝑖 (x) in Figure 2, that can provide more flexible and tunable
nonlinearities. Instead of applying identical input re-uploading, we
evaluated RUUs with single-qubit rotation gates, i.e., RX(x), RY(x),
RZ(x), classical nonlinear pre-processing, e.g., ReLU(x), or combina-
tion of them, e.g., RX(ReLu(x)). Figure 3 shows several examples of
nonlinear functions when different 𝑅𝑖 (x) are applied in a two-layer
network with only one qubit. In practical multilayer QNNs, the
nonlinearity introduced by RUU is related to the input encoding
method and circuit structure. Therefore, specific adjustment and
evaluation of the RUU structure should be carried out.

3.2 Enhanced VQC with Parameterized
Two-Qubit Gates

Previous QNN circuit ansatz [2, 8, 16] is implemented with param-
eterized single-qubit gates to provide circuit trainability and fixed
two-qubit CNOT gates to entangle the circuit with maximum entan-
glement power. In this work, we explore trainable entanglement
by replacing fixed CNOT gates with parameterized two-qubit gates,
hoping that adaptive and flexible entanglement capabilities can be

(a) classical input
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(b) w/o noise (c) w/noise (d) MSE error

Figure 5: A comparison between entanglement encoding
and our method under a single gate bit-flip error: (a) Orig-
inal classical MNIST image (top) and downsampled image
(bottom); (b-c) The QIFPs generated with ideal and noisy
encoding circuits using entanglment encoding (top) and
our method (bottom); (d) The pixel-wise mean-square error
(MSE) between column (a) and (c).
better utilized for QNN algorithms on different tasks. For practical
candidate gates, we consider two commonly used parameterized
two-qubit gates, i.e., CRX(𝜃) and CROT(𝜙, 𝜃, 𝜔). Our preliminary
results shows that CRX(𝜃) gates outperforms CROT(𝜙, 𝜃, 𝜔) gates
in terms of final classification accuracy, hardware overhead, and
training complexity. Below we briefly explain the case when CNOT
is replaced by its parameterized version, CRX(𝜃). CNOT and CRX(𝜃)
are defined by the following matrices. The entangling power of
CRX(𝜃) increases between the value of 𝜃 from 0 to 𝜋 . For 𝜃 = 0, a
CRX gate is an identity gate, while for 𝜃 = 𝜋 it implement a fixed
CNOT gate.

Note: When preparing for the final submission of this paper, we
were made aware that the effects of parameterized two-qubit gates in
the variational quantum eigensolvers has already been studied in [17].
While there is conceptual overlap between this work and ours, we
are studying different candidate gates, different circuit ansatz, and
targeting a different quantum algorithm.

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 CRX(𝜃 ) =


1 0 0 0
0 1 0 0

0 0 𝑐𝑜𝑠 ( 𝜃
2
) −𝑖 ·𝑠𝑖𝑛 ( 𝜃

2
)

0 0 −𝑖 ·𝑠𝑖𝑛 ( 𝜃
2
) 𝑐𝑜𝑠 ( 𝜃

2
)


To evaluate the performance of the VQC ansatz with different

parameterized two-qubit gates, i.e., 𝑈𝑖 (𝜃𝑖 ) in Figure 2, we imple-
mented a simple two-layer QMLP with two qubits. We sweep the
classical value that is encoded in one qubit and report how the
learned function space changes subject of the sweep in Figure 4. By
relaxing the forced maximum entanglement, it shows that VQCs
with parameterized two-qubit gates are able to learn mapping func-
tions in an enlarged search space, indicating that QNNs constructed
from such circuit ansatz is also likely to learn amore accurate model.

3.3 Scalability of the QMLP Architecture
Without RUU, nonlinearity can only be introduced through in-
put encoding (and output measurement that is not studied in this
work), and subsequent evolution is linear. RUU guarantees the non-
linearity of the quantum feature map after each processing layer
in the Hilbert space of the quantum system. We demonstrate deep
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Table 1: Different QMLP schemes.
Schemes Re-upload Gate Qubit # 2-qubit Gate Parameterized Gate. Total Gates # Total Param. # Block #
RX-CNOT RX 16 CNOT ROT 94 96 2

DEEP-RX-CNOT RX 16 CNOT ROT 188 192 4
RX-CRX RX 16 CRX ROT, CRX 96 128 2

DEEP-RX-CRX RX 16 CRX ROT, CRX 192 256 4
RXY(Relu)-CRX RX, RY(2×RELU(x)) 16 CRX ROT, CRX 96 128 2
RXX(Relu)-CRX RX, RX(RELU(x)) 16 CRX ROT, CRX 96 128 2
RXY-CRXY RX, RY 16 CRX, CRY ROT, CRX, CRY 96 128 2
RXY-CNOT RX, RY 16 CNOT ROT 94 96 2

Table 2: Design overhead comparison.
Design 1-qubit Gate # 2-qubit Gate # Param. # Depth Qubit # Input Size Gate List

QuantumFlow1 [3] 386∗ N/A 256 16 × 16 RY, H, X, CONT, CZ
QuantumFlow2 [3] 1114∗ N/A 64 8 × 8 RY, H, X, CONT, CZ
QuantumNAS [2] 116(80) 80 480 88 10 6 × 6 RX, RZ, RY, CU3, U3

QMLP 64(32) 32 128 36 16 4 × 4 RX, ROT, CRX
∗[3] only reported the total number of gates.

QMLP models can be effectively implemented with our proposed
adjustable RUUs due to the increased expressivity introduced by
the nonlinear data reuploading. In addition, recent work [18] has
shown that implementing deep QNNswithmultiple RUUs vertically
or horizontally produces no difference on model accuracy. This ob-
servation provides a practical implementation for deep QNNs by
trading depth for width. We implemented the two-layer QMLP in
Figure 2 in both vertical and horizontal ways and train both models
with same configuration. We compare their inference accuracy in
Figure 6. The two models demonstrated similar performance with
<5% qualitative accuracy difference. The slight distinction in per-
formance is mainly caused by the difference in trainable circuit and
measurement. In practice, the implementation of a deep QMLP can
be adjusted according to the available hardware resource, i.e., num-
ber of qubits and circuit depth, and requirement on error-tolerance.

R X - C N O T R X - C R X
R X Y ( R e l u ) - C R X

R R X ( R e l u ) - C R X
R X Y - C R X Y R X Y - C N O T0 . 0

0 . 1
0 . 2
0 . 3
0 . 4
0 . 5

Ac
cur

acy

 h o r i z o n t a l     v e r t i c a l  

Figure 6: The comparison between vertical QMLP and hori-
zontal QMLP.

4 EXPERIMENTAL METHODOLOGY
Benchmarks. We use MNIST [11] dataset on 10-class classification
to evaluate QNN performance. Since quantum computing resources
are limited and simulation time increase exponentially with the
number of qubits, we down-sampled the 28×28 MNIST images to
4×4, similar to prior work [2, 3]. The whole MNIST dataset are used
for noise-free training and testing on a simulator. We select the first
1000 images as testing data on real quantum processors.

Simulation. We build QMLP circuits using PennyLane [19], a
quantum computing software library. The PennyLane APIs trans-
form quantum circuits into torch layers, which can be used as
torch.nn.Sequentialmodules and then simulated in PyTorch [20].

The trainable parameters in QMLP are converted as the weights
of torch layers. We use the ADAM optimizer with a weight decay of
0.0001. We set the training rate, batch size, and epoch respectively
as 0.001, 32, and 30. The source code for this paper is open and can
be found in [1].

For performance comparison, we evaluate QMLP against the
QuantumNAS [2] and QuantumFlow [3]. We retain the original
configuration (e.g., classical pre- and post-processing, circuit orga-
nization, etc.) of QuantumNAS and QuantumFlow, but adapt them
to the same task (i.e., 10-class instead of the 4-class MNIST classifi-
cation in [3]). For QMLP design space exploration, we implement 8
QMLP circuits with various RUU configuration and different types
of two-qubit gates in the trainable circuit ansatz. Details of the 8
QMLP schemes are summarized in Table 1.

Noise modeling. Quantum errors on NISQ devices that most
significantly impact circuit performance are bit-flip and phase-
flip [13, 14] that respectively erroneously recording an outcome
as 𝛽 |0⟩ + 𝛼 |1⟩ or 𝛼 |0⟩ − 𝛽 |1⟩ given it was actually 𝛼 |0⟩ + 𝛽 |1⟩, and
vice versa. The bit-flip and phase-flip errors can be equivalently
modeled as probabilistic insertion of X or Z gates in a quantum
circuit [14]. In our model, we set the probability of phase-flip to
1%. We set single-bit bit-flip to 1%, and the bit-flip probability on a
two-qubit gate is obtained based on the four probabilistic output
combination, i.e., 99% × 99%, 99% × 1%, 1% × 99%, 1% × 1%
respectively. We validate our noise model with ibmq_quito [21],
a 5-qubit IBM quantum processor, and confirm that the model is
reasonably accurate in approximating gate errors.

5 RESULTS AND ANALYSIS
Comparison on QNN inference accuracy. We compare the in-
ference accuracy of QMLP with the best performance of Quantm-
Flow [3] and QuantumNAS [13]. For QuantumFlow, we adopt their
best design with a large 16×16 MNIST image size. For Quantum-
NAS, we report its highest accuracy by using the SuperCircuit. The
QMLP model reported here is the default QMLP model, i.e., RX-CRX
in Table 1. As shown in Figure 7, QuantumFlow, QuantumNAS, and
QMLP respectively achieved 69%, 67%, and 75% accuracy on 10-
class MNIST classification in the noise-free simulation. When gate
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Figure 7: The comparison between different QNNs.

errors are considered, the accuracy on QuantumFlow drops sharply
to 10%, equivalent to random guessing, mainly due to its noise-
unawareness and highly complex circuit with > 1000 quantum
gates. QuantumNAS delivers 52% and 57% inference accuracy with
bit-flip and phase-flip errors are considered. In contrast, QMLP
can mitigate the negative effect of gate errors, demonstrating a
respective 63% and 67% inference accuracy.

Comparison on QNN design overhead. Table 2 compares
the design overhead of QuantumFlow [3], QuantumNAS [13], and
QMLP. Note that QuantumFlow provides difference implementa-
tions based on different input sizes.We report hardware cost for two
representative designs. Compared with QuantumFlow, Quantum-
NAS and QMLP significantly reduce the circuit complexity. QMLP
uses more qubits than QuantumNAS as the entanglement encoding
in QuantumNAS uses a more compact data representations than our
method. However, such an encoding circuit requires more quantum
gates. Furthermore, the basic circuit ansatz used in QuantumNAS is
more complex in both gate count and trainable parameters. Overall,
QMLP reduces the number of gates and parameters by respectively
2× and 3× compared to QuantumNAS.

Results on different QMLP configuration. Figure 8 shows
the performance of different QMLP configuration. First, it shows
thatmodels with fixed two-qubit CNOT gates, i.e., RX-CNOT, DEEP-RX-CNOT,
and RXY-CNOT only deliver <70% accuracy. In contrast, all QMLP
models with parameterized two-qubit CRX gates leads to >5% im-
provement, showing increased learning capability. Second, the com-
parison between RX-CRX and DEEP-RX-CRX on noise-free simulation
shows that RUUs provide an effective way to develop deep QNNs
with improved model accuracy. However, as circuits become more
complex, performance improvements are offset by the side effect of
gate errors when noise is involved. Therefore, the trade-off between
model depth and noise tolerance should be carefully considered
when designing a practical QMLP model. In addition, the design
of nonlinear RUUs should take into account the influence of noise.
For instance, RX-CRX achieved the best performance in noise-free
simulation, however, RXY-CRXY preforms the best on noisy devices.

Impact of input sizes. We explore the impact of input sized on
QMLP performance and show the results in Figure 9. We down-
sample the original MNIST images to 2×2, 3×3, and 4×4, and eval-
uate the inference accuracy on different QMLP circuits. QMLP
performance increase monotonically with the input sizes, which
can be intuitively interpreted as the richer the preserved correla-
tions in the low-level quantum input feature maps, the easier it is
to be captured by a QNN model to achieve high performance.

6 CONCLUSION
In this paper, we propose QMLP, an error-tolerant quantum net-
work architecture. QMLP paves the way for implementing scalable
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Figure 8: The comparison between different QMLP config.
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Figure 9: The impact of input sizes on differentQMLP config.

deep quantum neural networks with error-tolerant linear input em-
bedding, adjustable nonlinearity, and enhanced variational circuit
ansatz. We evaluate QMLP on MNIST 10-class inference against
state-of-the-art quantum neural networks. QMLP achieves 10% ac-
curacy improvement with 2× fewer quantum gates and 3× reduced
parameters.
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