
Streaming data preprocessing via online tensor recovery for
large environmental sensor networks

YUE HU, Vanderbilt University, USA
AO QU, Vanderbilt University, USA
YANBING WANG, Vanderbilt University, USA
DANIEL B. WORK, Vanderbilt University, USA

Measuring the built and natural environment at a fine-grained scale is now possible with low-cost urban
environmental sensor networks. However, fine-grained city-scale data analysis is complicated by tedious data
cleaning including removing outliers and imputing missing data. While many methods exist to automatically
correct anomalies and impute missing entries, challenges still exist on data with large spatial-temporal scales
and shifting patterns. To address these challenges, we propose an online robust tensor recovery (OLRTR)
method to preprocess streaming high-dimensional urban environmental datasets. A small-sized dictionary
that captures the underlying patterns of the data is computed and constantly updated with new data. OLRTR
enables online recovery for large-scale sensor networks that provide continuous data streams, with a lower
computational memory usage compared to offline batch counterparts. In addition, we formulate the objective
function so that OLRTR can detect structured outliers, such as faulty readings over a long period of time. We
validate OLRTR on a synthetically degraded National Oceanic and Atmospheric Administration temperature
dataset, with a recovery error of 0.05, and apply it to the Array of Things city-scale sensor network in Chicago,
IL, showing superior results compared with several established online and batch-based low rank decomposition
methods.

CCS Concepts: • Information systems→ Spatial-temporal systems;Datamining; •Computingmethod-
ologies → Anomaly detection; Factorization methods.

Additional Key Words and Phrases: robust tensor recovery, tensor factorization, multilinear analysis, outlier
detection, internet of things, urban computing

1 INTRODUCTION
1.1 Motivation
The United Nations established 17 Sustainable Development Goals that are to be achieved by 2030 [1].
One of the goals is to promote sustainable and resilient, inclusive and safe cities. To quantify the
effects of the built environment on micro climate and other environmental impacts, many urban-
scale environmental sensing initiatives exploiting emerging internet of things (IoT) technologies are
being developed (e.g., [2, 3]). These projects measure block-by-block micro-climate quantities to
inform better green infrastructure investment, transportation planning, and energy-saving designs.

Despite the high spatial resolution information provided by the low-cost sensors, data quality and
data treatment still remain major concerns that hinders a wider adoption of these technologies [4, 5].
Outliers and missing data are amongst the challenges. Current approaches to clean the datasets
prior to interpretation are often limited in functionality for which anomalies or missing data are
independently addressed [6–8].

A promising direction to overcome these limitations involves tensor factorization methods, which
have shown state-of-the-art performance in detecting outliers and imputing missing data [9, 10].
Because large-scale urban sensor networks usually produce higher-order data that contains spatial

Authors’ addresses: Yue Hu, Vanderbilt University, 1025 16th Ave S, Suite 102, Nashville, USA, yue.hu@vanderbilt.edu; Ao
Qu, Vanderbilt University, 1025 16th Ave S, Suite 102, Nashville, USA, ao.qu@vanderbilt.edu; Yanbing Wang, Vanderbilt
University, 1025 16th Ave S, Suite 102, Nashville, USA, yanbing.wang@vanderbilt.edu; Daniel B. Work, Vanderbilt University,
Nashville, USA, dan.work@vanderbilt.edu.

, Vol. 1, No. 1, Article . Publication date: September 2021.

ar
X

iv
:2

10
9.

00
59

6v
1

 [
cs

.L
G

]
 1

 S
ep

 2
02

1

2 Yue Hu, AoQu, Yanbing Wang, and Daniel B. Work

0 5 10 15
total number of entries 107

0

2

4

6

8

10

T
im

e
(s

)

104 time v.s. size

online
batch

Method

Fig. 1. Computation time as a function of input tensor size for batch-based method [10] and our online-based
method (proposed). For batch-based tensor decomposition, computation time increases sharply with data
size, thus impractical for large scale systems.

and temporal relationships, low-rank recovery can be naturally applied. Yet these batch-based
methods rely on collecting the data samples for all time, and re-solving the problem when new data
arrives, making them sub-ideal for streaming sensor networks deployed for continuous monitoring.
As depicted in Fig. 1, computation time increases sharply with data size, posing challenge for the
real-world applications.

1.2 Contribution
To overcome the challenges of batch tensor factorization methods, we develop an online
robust tensor recovery (OLRTR) algorithm to pre-process streaming data from large-scale
urban sensor networks.
The main contribution of this work is to introduce OLRTR to automatically correct errors and

impute missing data common to large distributed urban sensor networks. OLRTR computes and
sequentially updates a small-sized dictionary that stores the underlying, time-varying patterns of
the data, which significantly lowers the memory usage and can adapt to shifting patterns in the
datasets.

Two real-world experiments demonstrate the effectiveness of OLRTR. The first uses a complete,
high quality National Oceanic and Atmospheric Administration (NOAA) temperature dataset [11],
which is artificially degraded by injecting known outliers and also by removing some entries to
simulate missing data. We demonstrate that the proposed tensor factorization approach correctly
identifies the outliers and recovers accurate values for the missing data. The second experiment
applies the method to raw and incomplete temperature data from the state of the art IoT platform
known as the Array of Things (AoT) urban sensing platform in Chicago, IL [12]. The recovered
temperature data is validated by comparing to nearby NOAA readings. The experimental results
show the superiority of OLRTR over several online and batch-based methods, as well as the potential
of OLRTR to provide reliable data streams for real-world sensor networks.

1.3 Overview of the proposed method
We briefly summarize the batch-based tensor factorization approach to remove outliers and impute
missing data, then give an overview how we adapt it to online settings.

The sensor observation data is organized in a tensor [13, 14], to exploit the spatial and temporal
structures in the data. An example of a three-way tensor storing sensor data is shown in the first

, Vol. 1, No. 1, Article . Publication date: September 2021.

Streaming data preprocessing via online tensor recovery for large environmental sensor networks 3

sensor 1
sensor 2
sensor 3

sensor#

day #

day 2
day 3

…
day M

…

sensor	𝐼!

day 1
1 2 3 … 23 24

hour of week (h)
1 2 3 … 23 24

hour of day (h)
sensor 1
sensor 2
sensor 3

sensor#

day #

day 2
day 3

…
day M

…
sensor	𝐼!

day 1
1 2 3 … 23 24 sensor 1

sensor 2
sensor 3

day #

day 2
day 3

…
day M

…

sensor	𝐼!

day 1

sensor#

hour of day (h)

Fig. 2. Observation data decomposed into low rank tensor for clean data and fiber-sparse tensor for outlier
data caused by malfunctioning sensors.

column of Fig. 2, where the first mode corresponds to each sensor, the second mode to each hour
in a 24-hour period, and the third mode to each 24-hour period in the dataset. Tensor factorization
approaches [13, 14] exploit the fact that such large, noisy, and incomplete datasets actually have
low intrinsic dimensionality. Furthermore we assume that the outliers in the sensor network have
a specific sparsity pattern, persisting across one of the orders of the tensor, as shown in the third
column of Fig. 2. This outlier structure reflects the observation that some sensors degrade and
produce faulty data for extended periods of time.

To reconstruct the underlying clean complete data and detect the outliers, we solve the following
optimization problem for𝑀 days of data:

min
X𝑀 ,E𝑀

rank(X𝑀) + 𝜆 sparsity(E𝑀)

s.t. BM𝑖1𝑖2 ...𝑖𝑁 = (X𝑀 + E𝑀)𝑖1𝑖2 ...𝑖𝑁 ,
where (𝑖1, 𝑖2, . . . , 𝑖𝑁) is an observed entry,

(1)

where tensor X𝑀 represents the clean complete data, tensor E𝑀 denotes the outliers, and B𝑀

denotes the observation data. The size of X𝑀 , E𝑀 and B𝑀 grows with the number of days𝑀 . We
regularize the low dimensionality of X𝑀 measured by the Tucker rank [15], and the sparsity of
the outlier tensor E𝑀 , under the constraint that X𝑀 and E𝑀 adds up to the raw data B𝑀 in the
observed entries.
In the batch-based approach [10], Problem (1) is solved by singular value thresholding [16, 17]

based on the alternating direction method of multipliers (ADMM) framework [10, 14] in an iterative
manner. However, singular value thresholding can only be computed after all samples are collected.
This practically means that after we conduct the tensor decomposition at day𝑀 , when new data
comes in on day𝑀 + 1, we have to solve Problem (1) from scratch. It is inefficient that we cannot
reuse the results from earlier computations, and that we have to store all observation data in
memory, which can grow large quickly. Moreover, in each iteration of solving (1), we need to
compute a singular value decomposition, which is computationally expensive especially as the
tensor size grows. Thus, the batch-based method is hardly scalable to large streaming systems.
To enable online processing and compute the data in a sequential manner, we develop OLRTR,

which regularizes the rank of tensor X in a new way. Namely, we keep a small dictionary forming
a basis for the low-rank subspace, and find the corresponding coefficients to represent X in terms
of the basis. The size of the dictionary gives an upper bound on the rank of X, and we aim to
find the dictionary to best capture all the samples. In practice, we update the dictionary after each
sample estimation so that the dictionary can also adapt to the shifting dynamics of the underlying

, Vol. 1, No. 1, Article . Publication date: September 2021.

4 Yue Hu, AoQu, Yanbing Wang, and Daniel B. Work

subspace. In this way, the computation for each sample is decoupled. Furthermore, we only need a
small space to store the dictionary, and there is no need to store all observation data in memory.
Thus, our approach enables online recovery for large-scale sensor networks.

The remainder of this article is as follows. Section 2 reviews the most related works. Section 3
introduces the basic tensor notations, and reviews batch-based tensor robust decomposition. Sec-
tion 4 develops our proposed OLRTR method. Section 5 shows our experiments on both synthetic
and real-world datasets. We finally conclude the work in Section 6.

2 RELATEDWORK
2.1 Other data preprocessing efforts
Data preprocessing is fundamental to building a reliable and comprehensive understanding of the
analysis tasks afterwards. In general, data preprocessing techniques can be categorized into three
aspects [18]: (1) data transformation, such as data filtering and noise modeling, (2) information
gathering such as visualization and feature extraction, and (3) generation of new information such
as time series analysis, data fusion and simulation/creation of new features. These treatments help
to solve the problems that hinders further analysis and provide us with meaningful understanding
of the measurements.

2.2 Batch-based low-rank learning
Low rank learning has been widely used to exploit the correlations in the datasets, with application
in video surveillance [17], link prediction [19], anomaly detection [20], and so on.

Two threads of works aremost relatedwith ours, namely robust matrix and tensors decomposition
with gross corruption, and low rank matrix and tensor completion with missing data. For robust
decomposition, 𝑙1 norm is usually used as an convex regularization for element-wise sparsity [14].
Cauchy distribution and the chi-squared distribution is also used to deal with the case when gross
corruption and small noises co-exists [21, 22]. If the outlier is structured, for example grouped in
columns, then 𝑙2,1 norm regularization is usually used [10, 23, 24]. Regardingmissing data imputation
in tensors, CANDECOMP/PARAFAC (CP) decomposition [25] is used in the works [26, 27], and
Tucker decomposition [15] is used in the works [10, 28].

However, the above mentioned methods are all batch-based, requiring all samples be collected
before the low rank decomposition can be performed. This does not meet our need in sensor
networks where we need the estimation to be performed continuously as new data comes in.
Moreover, the memory and computation requirement of batch methods poses challenge for large-
scale sensor networks.

2.3 Online low-rank learning
To adapt the low-rank learning to online settings, various attempts in matrix and tensor fields have
been made. For matrix decomposition, Mairal et al. [29] develops an online dictionary learning
method based on the assumption of sparse coding, i.e. the data vectors are linear combinations of a
few of the basis vectors. Inspired by [29], Feng et al. [30] proposes matrix online robust PCA via
stochastic optimization, which is provably robust to sparse corruption. Shen et al. [31] develops a
Low-Rank Representation (LRR) based online algorithm that segments data generated from a union of
subspaces with improved time complexity and memory footprint. He et al. [32] tracks the subspaces
by gradient descent on Grassmannian, the manifold of all 𝑑-dimensional subspaces. For tensor
decomposition, Sobral et al. [33] proposes an online stochastic framework for tensor decomposition
(OSTD) for video sequence background subtraction. Li et al. [34] develops an online robust low-rank
tensor modeling (ORLTM) method that can deal with streaming tensor data drawn from a mixture of

, Vol. 1, No. 1, Article . Publication date: September 2021.

Streaming data preprocessing via online tensor recovery for large environmental sensor networks 5

multiple subspaces effectively through dictionary learning. Our work is most inspired by [30], but
we extend the decomposition from matrix to tensor to exploit the multi-dimensional correlations,
and we also adapt to the scenario of structured outlier and missing data.
There are two major differences between our method and the methods mentioned above. First,

we aim to find structured outliers grouped in tensor fibers, while the approaches [30–34] only
deals with unstructured element-wise outliers. While there are online decomposition approaches
to find column outliers [35], they deal with the case when an entire sample of data vector is an
outlier. In comparison, in our case the structured outliers lies across multiple samples. For example,
in sensor networks we aim at finding out malfunctioning sensors producing wrong recordings
for a consecutive time, while approaches [35] can only find out abnormal time slots when all
sensors deviate from normal recording. We solve this problem by conducting decomposition on
minibatches instead of single samples. Second, we are able to deal with the case when outliers and
missing data co-exists, whereas the approaches [30, 31, 33, 34] only considers outliers with full
observations. Several online robust decomposition approaches handle missing data, including [32]
via gradient descent on Grassmannian, and Kasai et al. [36] based on the Candecomp/PARAFAC
(CP) decomposition, yet they both deal with element-wise outliers.

3 PRELIMINARIES
3.1 Tensor basics
We briefly introduce our notation and define tensor operators, following a standard notation [10,
13, 14], (See also [13, 14] for a detailed discussion).

A tensor is denoted by an Euler script letter (e.g., X); and a matrix by a boldface capital letter
(e.g., X); a vector by a boldface lowercase letter (e.g., x); and a scalar by a lowercase letter (e.g., 𝑥).
A tensor of order 𝑁 has 𝑁 dimensions. A fiber is a column vector formed by fixing all indices of a
tensor but one.
The unfolding function flattens the tensor into a matrix to facilitate the computation. The

unfolding of a tensor X ∈ R𝐼1×𝐼2×···×𝐼𝑁 in the 𝑛th mode is formed by rearranging the mode-𝑛 fibers
as its columns, resulting in a matrix X(𝑛) ∈ R𝐼𝑛×𝐼𝑁 \𝑛 , where 𝐼𝑁 \𝑛 =

∏𝑁
𝑖≠𝑛,𝑖=1 𝐼𝑖 = 𝐼1 × · · · × 𝐼𝑖−1 ×

𝐼𝑖+1 × · · · × 𝐼𝑁 . To convert the unfolding matrix back to original tensor, the fold function is applied:
fold𝑛 (X(𝑛)) = X.
The inner product of X,Y ∈ R𝐼1×𝐼2×···×𝐼𝑁 is the sum of their element-wise product: ⟨X,Y⟩ =∑𝐼1
𝑖1=1

∑𝐼2
𝑖2=1· · ·

∑𝐼𝑁
𝑖𝑁 =1 𝑥𝑖1𝑖2 ...𝑖𝑁𝑦𝑖1𝑖2 ...𝑖𝑁 , where 𝑥𝑖1𝑖2 ...𝑖𝑁 and 𝑦𝑖1𝑖2 ...𝑖𝑁 denote the (𝑖1, 𝑖2, · · · , 𝑖𝑁) element

of X and Y respectively.
The tensor Frobenius norm follows naturally from the matrix Frobenius norm, and is defined as:
∥X∥𝐹 =

√︁
⟨X,X⟩.

The mode-𝑛 product of a tensor X ∈ R𝐼1×𝐼2×···×𝐼𝑁 and a matrix A ∈ R𝐽 ×𝐼𝑛 is denoted by X ×𝑛 A =

Y, where Y ∈ R𝐼1×𝐼2×···×𝐼𝑛−1×𝐽 ×𝐼𝑛+1×···×𝐼𝑁 .
The Tucker decomposition [13, 14] approximates a tensor X ∈ R𝐼1×𝐼2×···×𝐼𝑁 as a core tensor
G ∈ R𝑐1×𝑐2×···×𝑐𝑁 multiplied in each mode 𝑛 by an appropriately sized matrix U(𝑛) : X ≈ G ×1
U(1) ×2 U(2) × · · · ×𝑁 U(𝑁) . The matrices U(𝑛) ∈ R𝐼𝑛×𝑐𝑛 are factor matrices, which are usually
assumed to be orthogonal.

3.2 Robust tensor decomposition
In this section, we briefly summarize the batch-based higher-order tensor decomposition with
fiber-wise corruption as posed in [10], which we adapt to online settings in Section 4.

The batch-based setup with complete observation is as follows. We are given a high dimensional
data tensor B that is corrupted in a few fibers. In other words, we have B = X + E, where X is

, Vol. 1, No. 1, Article . Publication date: September 2021.

6 Yue Hu, AoQu, Yanbing Wang, and Daniel B. Work

the low rank tensor, and E is the sparse fiber outlier tensor. B,X, E ∈ R𝐼1×𝐼2×···×𝐼𝑁 . Our goal is to
reconstruct X on the non-corrupted fibers, as well as identify the outlier location. Without loss
of generality, we assume the fiber-wise corruption occurs along the first mode. The optimization
problem goes as follows:

min
X𝑖 ,E

𝑁∑︁
𝑖=1
∥X𝑖 (𝑖) ∥∗ + 𝜆∥E(1) ∥2,1

s.t. B = X𝑖 + E, 𝑖 = 1, 2, . . . , 𝑁 ,

(2)

where X1,X2, . . . ,X𝑁 ∈ R𝐼1×𝐼2×···×𝐼𝑁 are auxiliary variables split from the same variable X to
decouple the computation in different tensor modes, andX𝑖 (𝑖) is the correspondingmode-𝑖 unfolding
for X𝑖 . E1 is the unfolding of E in the fiirst mode. The 𝑁 constraints B = X𝑖 + E ensure that
X1,X2, . . . ,X𝑁 are all equal to the original low rank tensorX. The sum of nuclear norms

∑
𝑖 ∥X𝑖 (𝑖) ∥∗

is a convex relaxation for Tucker rank of X [14], with the nuclear norm computed as ∥X∥∗ :=
∑

𝑖 𝜎𝑖 ,
where 𝜎𝑖 denotes the 𝑖-th singular value of X. The 𝑙2,1 norm of a matrix E ∈ R𝐼1×𝐼2 is used to

encourage the column-wise sparsity, defined as ∥E∥2,1 =
∑𝐼2

𝑗=1

√︃∑𝐼1
𝑖=1 (𝑒𝑖 𝑗)2.

We note that the mode along which to unfold E in (2) depends on what kind of outliers we want
to detect. For example, in sensor network data as shown in Fig. 2, unfolding E along first mode
corresponds to abnormal hours when records from all sensors deviates from normal; second mode
corresponds to abnormal sensors that records wrong value for a consecutive period– which is our
goal in this paper. To simplify the notations, the rest of the paper is based on unfolding along the
first mode, but the method for other modes follows the same line.
In addition to observation data being grossly corrupted, we might have only partial observa-

tions of B, and we seek to complete the decomposition nevertheless. In this case, we force the
decomposition to match the observation data only at the available entries. This is done by intro-
ducing a compensation tensor O ∈ R𝐼1×𝐼2×···×𝐼𝑁 , which is zero for entries in the observation set
Ω ⊂ [𝐼1] × [𝐼2] × · · · × [𝐼𝑁], and can take any value outside Ω. Thus using the same auxiliary
variables technique as in (2), the problem is formulated as

min
X𝑖 ,E

𝑁∑︁
𝑖=1
∥X𝑖 (𝑖) ∥∗ + 𝜆∥E(1) ∥2,1

s.t. B = X𝑖 + E + O, 𝑖 = 1, 2, . . . , 𝑁 ,

OΩ = 0,

(3)

where OΩ denotes the entries in O that are observed. Since O compensates for whatever the value
is in the unobserved entries of B, we only need to keep track of the indices of the unobserved
entries, and can simply set the unobserved entries of B to zero.
Problem (2) and (3) are usually solved via Alternating direction method of multipliers (ADMM)

methods or Accelerated Proximal Gradient (APG) methods in an iterative manner [10, 14]. However,
in each iteration, to optimize the term ∥X𝑖 (𝑖) ∥∗ we need to compute the singular value decomposition
(SVD) of X𝑖 (𝑖) composed of all samples. This both limits the ability for stream processing of the
data, and is computationally expensive. In the next section, we develop an online algorithm to
address these limitations.

4 METHODS
In this section, we first pose the online objective function for online higher-order tensor decompo-
sition problem in the presence of fiber outliers, and then provide an efficient algorithm to solve

, Vol. 1, No. 1, Article . Publication date: September 2021.

Streaming data preprocessing via online tensor recovery for large environmental sensor networks 7

it in the streaming settings. The online algorithm under partial-observation settings follows the
same line as the full observation case. We provide the formulation and the algorithm for partial
observations in the Appendix.

4.1 Problem formulation
We now develop the objective function for online setting, starting with the batch-based objective
function (2). We note that in streaming data settings, for tensors E,B,X ∈ R𝐼1×𝐼2×···×𝐼𝑁 , the size of
the last dimension 𝐼𝑁 grows with time, but we drop the explicit dependency of time in the notation.
As we have seen, the major challenge in a batch-based method (2) is that the nuclear norm term
∥X𝑖 (𝑖) ∥∗ keeps all samples tightly coupled. In this section we show how we substitute the nuclear
norm term with an equivalent form, based on which we can derive an empirical cost function that
separates out the loss incurred by each sample, thus allowing computation sequentially in time.
First, in order to facilitate data online processing, we relax the decomposition constraint in (2)

into a Frobenious norm penalty in the objective function. Thus, (2) becomes

min
X1,...,X𝑁 ,E

1
2

𝑁∑︁
𝑖=1
∥X𝑖 + E − B∥2𝐹 + 𝜆1

𝑁∑︁
𝑖=1
∥X𝑖 (𝑖) ∥∗ + 𝜆2∥E(1) ∥2,1, (4)

where 𝜆1 and 𝜆2 are weight parameters balancing the costs of low rank and sparsity respectively.
Next, we deal with the the nuclear norm term ∥X𝑖 (𝑖) ∥∗ that couples all samples and prohibits

processing the data sequentially. Namely, for each mode 𝑖 = 1, 2, . . . , 𝑁 , we substitute ∥X𝑖 (𝑖) ∥∗ with
an equivalent form:

∥X𝑖 (𝑖) ∥∗ = inf
L𝑖 ,R𝑖

{
1
2
∥L𝑖 ∥2𝐹 +

1
2
∥R𝑖 ∥2𝐹

}
s.t. X𝑖 (𝑖) = L𝑖R𝑇𝑖 .

(5)

where we explicitly factorize X𝑖 (𝑖) into L𝑖 ∈ R𝐼𝑖×𝑟 ,R𝑖 ∈ R𝐼𝑁 \𝑖×𝑟 , and upper bound the rank of
X𝑖 (𝑖) by 𝑟 , with 𝑟 ≪ min(𝐼𝑖 , 𝐼𝑁 \𝑖). L𝑖 can be seen as a dictionary, where each column represents a
basis vector in the mode-𝑖 unfolding, and R𝑖 are the corresponding coefficients of the basis for the
samples. Such nuclear norm substitution (5) is well established in works including [37, 38]. In this
way, Problem (4) becomes:

min
X𝑖 ,E

1
2

𝑁∑︁
𝑖=1
∥X𝑖 + E − B∥2𝐹 +

𝜆1

2

𝑁∑︁
𝑖=1

(
∥L𝑖 ∥2𝐹 + ∥R𝑖 ∥2𝐹

)
+ 𝜆2∥E(1) ∥2,1

s.t. X𝑖 (𝑖) = L𝑖R𝑇𝑖 , 𝑖 = 1, 2, . . . , 𝑁 .

(6)

Substitution of X𝑖 (𝑖) with L𝑖 and R𝑖 and removing the constraint in (6), we arrive at:

min
L𝑖 ,R𝑖 ,E

1
2

𝑁∑︁
𝑖=1
∥L𝑖R𝑇𝑖 + E(𝑖) − B(𝑖) ∥2𝐹 +

𝜆1

2

𝑁∑︁
𝑖=1

(
∥L𝑖 ∥2𝐹 + ∥R𝑖 ∥2𝐹

)
+ 𝜆2∥E(1) ∥2,1. (7)

For the first term in (7), we change the Frobenius norm of a tensor in (6) into the Frobenius norm of
its mode-𝑖 unfolding, which does not change the value of the norm. Problem (7) is not jointly convex
in terms of L𝑖 and R𝑖 , but a locally minimizing solution for (7) provides a good global solution for
the original problem (2), as theoretically proven in [30] in the matrix case, and empirically shown
in tensor cases in Section 5.
In online settings, we divide the overall observation tensor into a series of minibatches along

the last dimension, B = [B1,B2, . . . ,B𝑀], B𝑡 ∈ R𝐼1×𝐼2×···×𝐼𝑁−1×𝐼 ′𝑁 ,where 𝐼 ′
𝑁
= ⌊𝐼𝑁 /𝑀⌋ is the size of

last dimension for each sample. In sensor networks, this amounts to processing the data every day
when 𝐼 ′

𝑁
= 1, or every few days when 𝐼 ′

𝑁
> 1.

, Vol. 1, No. 1, Article . Publication date: September 2021.

8 Yue Hu, AoQu, Yanbing Wang, and Daniel B. Work

Given the series of samples B𝑡 , solving problem (7) amounts to minimizing the following
empirical objective function:

𝑓𝑀 (L𝑖) ≜
1
𝑀

𝑀∑︁
𝑡=1

𝑁∑︁
𝑖=1

[
𝑙 (B𝑡 , L𝑖) +

𝜆1

2𝑀
∥L𝑖 ∥2𝐹

]
, (8)

where the loss function for each mini-batch is defined as

𝑙 (B𝑡 , L𝑖) = min
R𝑡
𝑖
,E𝑡

1
2
∥L𝑖R𝑡𝑇

𝑖 + E𝑡(𝑖) − B
𝑡
(𝑖) ∥

2
𝐹 +

𝜆1

2
∥R𝑡

𝑖 ∥2𝐹 + 𝜆2∥E𝑡(1) ∥2,1. (9)

In minimizing (8), we want to find the set of basis L𝑖 that works across all samples, and that
minimizes the accumulated loss of all samples. The loss for each sample under a fixed basis L𝑖
is calculated via (9), where we find the optimal coefficients R𝑡

𝑖 and the outlier tensor E𝑡 for each
sample to minimize the loss given the basis L𝑖 .

4.2 Online tensor RPCA algorithm
In this section, we develop OLRTR to efficiently solve Problem (8) online, taking one mini-batch at
a time. The OLRTR algorithm is summarized in Algorithm 1. In an overview, we take an alternative
optimization approach to optimize R𝑡

𝑖 , E𝑡 and L𝑖 . Namely, at the 𝑡-th time step, after accessing the
new sample B𝑡 , we first solve for the corresponding R𝑡

𝑖 and E𝑡 , using the L𝑖 obtained in last step
𝑡 − 1. Then we update L𝑖 , to minimize the accumulated loss given all {R𝜏

𝑖
}𝑡𝜏=1 and {E𝜏 }𝑡𝜏=1 obtained

so far.
Specifically, at time step 𝑡 , having accessed the minibatch B𝑡 , we first address (9) and solve for

R𝑡
𝑖 and E𝑡 with L𝑖 fixed. To this end, we alternatively update R𝑡

𝑖 and E𝑡 . When E𝑡 is fixed, we solve
R𝑡
𝑖 via:

R𝑡
𝑖 = argmin

R𝑖

𝜆1

2
∥R𝑖 ∥2𝐹 +

1
2

𝑁∑︁
𝑖=1
∥L𝑖R𝑇𝑖 + E𝑡(𝑖) − B

𝑡
(𝑖) ∥

2
𝐹 , (10)

which has a closed-form solution

R𝑡
𝑖 =

(
L𝑇𝑖 L + 𝜆1I

)−1
L𝑇

(
B(𝑖) − E(𝑖)

)
. (11)

Then, when R𝑡
𝑖 is fixed, we solve E𝑡 via

E𝑡 = argmin
E

𝜆2∥E𝑡(1) ∥2,1 +
1
2

𝑁∑︁
𝑖=1
∥E(𝑖) + L𝑖R𝑡𝑇

𝑖 − B𝑡
(𝑖) ∥

2
𝐹

= argmin
E

𝜆2∥E(1) ∥2,1 +
1
2

𝑁∑︁
𝑖=1
∥E + fold𝑖 (L𝑖R𝑡𝑇

𝑖) − B𝑡 ∥2𝐹

(12)

Following the same approach as [10, 14], problem (12) shares the same solution as

E𝑡 = argmin
E

𝜆2∥E(1) ∥2,1 +
𝑁

2

E − 1
𝑁

𝑁∑︁
𝑖=1

(
B𝑡 − fold𝑖 (L𝑖R𝑡𝑇

𝑖)
)2

𝐹

. (13)

Denoting the term
(
B𝑡 − fold𝑖 (L𝑖R𝑡𝑇

𝑖)
)
as C, then following the approach in [10], the closed form

solution for (12) is:

E𝑡(1) 𝑗 = C(1) 𝑗 max
{
0, 1 − 𝜆2

𝜇𝑁 ∥C(1) 𝑗 ∥2

}
, for 𝑗 = 1, 2, . . . , 𝑝, (14)

where E(1) 𝑗 is the 𝑗𝑡ℎ column of E(1) , C(1) 𝑗 is the 𝑗𝑡ℎ column of C(1) , and 𝑝 = 𝐼2 × 𝐼3 × · · · × 𝐼 ′𝑁 is
the total number of columns in C(1) .

, Vol. 1, No. 1, Article . Publication date: September 2021.

Streaming data preprocessing via online tensor recovery for large environmental sensor networks 9

The sample update for R𝑖 and E is summarized in Algorithm 2. The algorithm convergence
criterion is met when the change between iterations is small enough, as measured by the Frobenious
norm of the difference in R𝑖 and E between iterations i.e.,

max

(
∥R(𝑘−1)

𝑖
− R(𝑘)

𝑖
∥𝐹

∥B𝑡 ∥𝐹
,
∥E (𝑘−1) − E (𝑘) ∥𝐹

∥B𝑡 ∥𝐹

)
≤ 𝜖, (15)

where (𝑘) denotes the iteration number, and 𝜖 is the tolerance.
Next, given the estimated coefficient R𝑡

𝑖 and outlier tensor E𝑡 , we update the dictionary L𝑡𝑖 . We
define the objective function for updating L𝑡𝑖 as

𝑔𝑡 (L𝑖) ≜
1
𝑡

𝑡∑︁
𝑡=1

(L𝑖R𝑡𝑇
𝑖 + E𝑡(𝑖) − B

𝑡
(𝑖)

2
𝐹
+ 𝜆1

2
∥R𝑡

𝑖 ∥2𝐹 + 𝜆2∥E𝑡(1) ∥2,1
)
+ 𝜆1

2𝑡
∥L𝑖 ∥2𝐹 , (16)

and we aim to solve
L𝑡𝑖 = argmin

L𝑖
𝑔𝑡 (L𝑖). (17)

𝑔𝑡 (L𝑖) is a surrogate function for 𝑓𝑁 (L𝑖) in (8), and provides an upper bound for 𝑓𝑁 (L𝑖). Using the
relationship between the Frobenius norm and the matrix trace, ∥Y∥2

𝐹
= Tr(Y𝑇Y), and the properties

of matrix trace computation, Problem (17) can be transformed into

L𝑡𝑖 = argmin
L𝑖

1
2
Tr

(
L𝑇𝑖

(
A𝑡
𝑖 + 𝜆1I

)
L𝑖

)
− Tr

(
L𝑇𝑖 D

𝑡
𝑖

)
, (18)

where the two sets of accumulation matrices A𝑡
𝑖 ∈ R𝑟×𝑟 and D𝑡

𝑖 ∈ R𝐼𝑖×𝑟 are defined as

A𝑡
𝑖 =

𝑡∑︁
𝑡=1

R𝑡𝑇
𝑖 R𝑡

𝑖 ,

D𝑡
𝑖 =

𝑡∑︁
𝑡=1

(
B𝑡
(𝑖) − E

𝑡
(𝑖)

)
R𝑡
𝑖 .

To solve Problem (18), we adopt a block-coordinate decent approach similar to [29, 30], updating
one column of L𝑖 at a time with the rest columns fixed. At each step 𝑡 , we use the solution for the
previous step, L𝑡−1𝑖 as warm restart. The algorithm is provided in Algorithm 3. In online computation,
we store the value of A𝑡

𝑖 and D
𝑡
𝑖 to accumulate the information in all samples, whose sizes does not

change with the number of samples, thus enabling the scalabilty of the online algorithm.
We initialize each entry of the dictionary L𝑖 ∈ R𝐼𝑖×𝑟 from an i.i.d. uniform distributionU(0, 1),

and initialize the accumulation matrices A𝑡
𝑖 ∈ R𝑟×𝑟 ,D𝑡

𝑖 ∈ R𝐼𝑖×𝑟 to zero.

4.3 Complexity and memory cost
The overall complexity for Algorithm 1 depends on the minibatch size. Namely, denoting the
overall size for a minibatch B𝑡 ∈ R𝐼1×𝐼2×···×𝐼𝑁−1×𝐼 ′𝑁 as 𝑠 =

∏𝑁
𝑖=1 𝐼𝑖 = 𝐼1 × 𝐼2 × · · · × 𝐼𝑁−1 × 𝐼 ′𝑁 , then

the computational complexity is 𝑂 (𝑟𝑠). To see this, we note that the complexity for line 4 in
Algorithm 1 is𝑂 (𝑟 2𝐼𝑖 + 𝑟 3 + 𝑟𝑠) using Algorithm 2, where the𝑂 (𝑟 3) comes from the matrix inverse,
and𝑂 (𝑟 2𝐼𝑖 +𝑟𝑠)) comes from matrix multiplications. The complexity for line 6 is𝑂 (𝑟 2𝐼𝑁 \𝑖 +𝑟𝑠). The
complexity for line 7 is 𝑂 (𝑟 2𝐼𝑖) with Algorithm 3, since to update each column of 𝐿𝑖 takes 𝑂 (𝑟𝐼𝑖),
and there are 𝑟 columns in total. Since 𝑟 ≪ 𝐼𝑖 < 𝑠 , the overall complexity is thus 𝑂 (𝑟𝑠), which is
linear with the minibatch size, and is relatively small with a reasonable minibatch size.

The memory cost for Algorithm 1 in each iteration is 𝑂 (𝑠), dominated by loading the minibatch
data B𝑡 and estimating X𝑡 and E𝑡 . The historical information has been stored in A𝑡 and D𝑡 , at

, Vol. 1, No. 1, Article . Publication date: September 2021.

10 Yue Hu, AoQu, Yanbing Wang, and Daniel B. Work

Algorithm 1 OLRTR algorithm

1: Given 𝑁 -way minibatch tensors [B1,B2, . . . ,B𝑀] with B𝑡 ∈ R𝐼1×𝐼2×···×𝐼𝑁−1×𝐼 ′𝑁 , weighting
parameters 𝜆1, 𝜆2, target rank 𝑟 . Initialize dictionary L𝑖 ∈ R𝐼𝑖×𝑟 and accumulation matrices
A𝑡
𝑖 ∈ R𝑟×𝑟 ,D𝑡

𝑖 ∈ R𝐼𝑖×𝑟 .
2: for 𝑡 = 0, 1, . . . , 𝑀 do
3: Access the 𝑡-th sample B𝑡

4: Solve R𝑡
𝑖 and E𝑡 for the new sample using Algorithm 2.

{R𝑡
𝑖 , E𝑡 } = argmin

R𝑡
𝑖
,E𝑡

1
2

𝑁∑︁
𝑖=1
∥L𝑖R𝑡𝑇

𝑖 + E𝑡(𝑖) − B
𝑡
(𝑖) ∥

2
𝐹+

𝜆1

2

𝑁∑︁
𝑖=1
∥R𝑡

𝑖 ∥2𝐹 + 𝜆2∥E𝑡(1) ∥2,1.

5: X𝑡 = 1
𝑁
fold𝑖

(
L𝑖R𝑡

𝑖

)
6: 𝐴𝑡

𝑖 = 𝐴𝑡−1
𝑖 + R𝑡𝑇

𝑖 R𝑡
𝑖 ; D

𝑡
𝑖 = D𝑡−1

𝑖 +
(
B𝑡
(𝑖) − E

𝑡
(𝑖)

)
R𝑡
𝑖

7: Solve L𝑡𝑖 with Algorithm 3, warm started with L𝑡−1𝑖

L𝑡𝑖 = argmin
L𝑖

1
2
Tr

(
L𝑇𝑖

(
A𝑡
𝑖 + 𝜆1I

)
L𝑖

)
− Tr

(
L𝑇𝑖 D

𝑡
𝑖

)
8: end for
9: return low rank tensors [X1,X2, . . . ,X𝑀] and outlier tensors [E1, E2, . . . , E𝑀]

Algorithm 2 Sample update for R𝑖 and E
1: Given observation B ∈ R𝐼1×𝐼2×···×𝐼𝑁−1×𝐼 ′𝑁 , basis L𝑖 ∈ R𝐼𝑖×𝑟 and parameters 𝜆1, 𝜆2. Initialize

coefficient matrix R𝑖 ∈ R𝐼
′
𝑁 \𝑖×𝑟 and outlier tensor E ∈ R𝐼1×𝐼2×···×𝐼𝑁−1×𝐼 ′𝑁 to zero

2: while not converged do
3: C ←

(
B − fold𝑖 (L𝑖R𝑇𝑖)

)
⊲ Update E .

4: for 𝑗 = 1, 2, . . . , 𝑝 do
5: E(1) 𝑗 ← C(1) 𝑗max

{
0, 1 − 𝜆

𝜇𝑁 ∥C(1) 𝑗 ∥2

}
6: end for
7: for 𝑖 = 1, 2, . . . , 𝑁 do ⊲ Update R𝑖
8: R𝑖 ←

(
L𝑇𝑖 L + 𝜆1I

)−1 L𝑇 (
B(𝑖) − E(𝑖)

)
.

9: end for
10: end while
11: return R𝑖 and E

a memory cost of 𝑂 (𝑟𝐼𝑖). Thus, the memory cost does not increase with the number of samples,
meeting the need for large-scale long term monitoring systems.

5 EXPERIMENTS
In this section, we conduct experiments on both simulation data and real world sensor network
data. We first examine the performance of tensor recovery and anomaly detection on synthetically
generated low-rank tensors with known fiber-wise corruptions and random missing entries. Then
we apply the algorithm on two large sensor network datasets. The first experiment is a complete

, Vol. 1, No. 1, Article . Publication date: September 2021.

Streaming data preprocessing via online tensor recovery for large environmental sensor networks 11

Algorithm 3 Basis L𝑖 update

1: Given L𝑖 = [l𝑖_1, . . . , l𝑖_𝑟] ∈ R𝐼𝑁 \𝑖×𝑟 ,A𝑖 = [a𝑖_1, . . . , a𝑖_𝑟] ∈ R𝑟×𝑟 ,D𝑖 = [d𝑖_1, . . . , d𝑖_𝑟] ∈ R𝐼𝑖×𝑟 .
Let Ã𝑖 = A𝑖 + 𝜆1I.

2: for 𝑗 = 0, 1, . . . 𝑟 do
3: l𝑖_𝑗 ← 1

Ã𝑖_𝑗,𝑗

(
d𝑖_𝑗 − L𝑖a𝑖_𝑗

)
+ l𝑖_𝑗

4: end for
5: return L𝑖

NOAA [11] temperature dataset that we synthetically degrade, so that the recovery relative error
can be computed. In the second sensor network experiment, we apply the method to Array of
Things temperature data which contains missing data and outliers. We assess the quality of the
recovery by comparing the correlation of AoT data with NOAA sensors when they are in close
proximity.
We compare our method with online tensor approaches including ORLTM [34], OSTD [33],

online matrix approaches OLRSC [31], STOC-RPCA [30], GRASTA [32], as well as batch tensor
approaches TRPCA [39], and RTR [10].

The performance of the algorithms are measured by the relative error of the low rank tensor, as
well as the F1 score of the outlier fibers. The relative error (RE) of low rank tensor is calculated as:

RE =
∥X0all − X̂all∥𝐹
∥X0all∥𝐹

, (19)

where ∥ · ∥𝐹 is the tensor Frobenius norm, and X̂all ∈ R𝐼1×𝐼2×𝑛𝐼3 is the estimated low rank tensor,
which has the value 0 in the fibers that are estimated to be corrupted. For online methods, X̂all is
constructed by concatenating the estimated low rank tensors for all samples along the last dimension.
Since most online algorithms are cold started, leading to large losses when first initialized, we
discard the first 10 minibatch samples and only compare the performance on the remaining samples.
For our proposed model OLRTR, we set 𝜖 = 10−4, and we use an empirical value 𝜆1 = 0.01,

𝜆2 =
𝛼√

log(𝐼𝑚𝐼𝑚)
where 𝐼𝑚 = max(𝐼1, . . . , 𝐼𝑁), and 𝛼 is a parameter to tune. For other methods, we

use the default values as indicated in the original papers, or tuned for best results if the default
values doesn’t work. The code and data for experiments can be found in https://github.com/yuehu9/
Online_Robust_Tensor_Recovery.

5.1 Numerical experiments
In this section, we conduct a series of numerical experiments to examine the performance of our
method on synthetically generated datasets.

5.1.1 Simulation setup. We synthetically generate a series ofminibatch observation data (B1,B2, · · · ,B𝑀),
where B𝑡 is the 𝑡-th minibatch sample, and is generated as B𝑡 = X𝑡

0 + E𝑡0 ∈ R𝐼1×𝐼2×𝐼3 . The ground
truth data X𝑡

0 is generated with a core tensor G𝑡 ∈ R𝑐1×𝑐2×𝑐3 multiplied in each mode by orthogonal
matrices of corresponding dimensions,U(𝑖) ∈ R𝐼𝑖×𝑐𝑖 , i.e.,X𝑡

0 = G𝑡 ×1U(1) ×2U(2) ×3U(3) . The entries
of G𝑡 are independently sampled from standard Gaussian distribution. The orthogonal matricesU(𝑖)
are generated via a Gram-Schmidt orthogonalization on 𝑐𝑖 vectors of size R𝐼𝑖 drawn from standard
Gaussian distribution. U(𝑖) are kept the same across𝑀 minibatch samples, i.e., do not change with 𝑡 ,
so that all minibatches share the same low rank basis. The fiber sparse tensor E𝑡0 is formed by first
generating a tensor E ′𝑡0 ∈ R𝐼1×𝐼2×𝐼3 , whose entries are i.i.d uniform distributionU(-2,2). Then we
randomly keep a fraction 𝛾 of the fibers of E ′𝑡0 to form E𝑡0. Finally, the corresponding fibers of X𝑡

0

, Vol. 1, No. 1, Article . Publication date: September 2021.

https://github.com/yuehu9/Online_Robust_Tensor_Recovery
https://github.com/yuehu9/Online_Robust_Tensor_Recovery

12 Yue Hu, AoQu, Yanbing Wang, and Daniel B. Work

with respect to non-zero fibers in E𝑡0 are set to zero. For batch methods, we concatenate all samples
B1,B2, · · · ,B𝑀 along the last dimension to form the observation Ball ∈ R𝐼1×𝐼2×𝑀𝐼3 with low rank
and sparse components X0all, E0all ∈ R𝐼1×𝐼2×𝑀𝐼3 . For matrix-based online methods, we unfold Ball in
first mode and feed the matrix into the algorithms. In regards of hyper-parameters, we set 𝛼 = 3
for OLRTR, and set the rank upper bound 𝑐 as the true rank for all methods.

5.1.2 Experiment results. First, we vary the tensor size, and compare the performance in terms of
residual error, F1 score and time. For each experiment, we run 100 minibatches, varying the tensor
size of each minibatch R𝐼×𝐼×𝐼 . The rank is set at 0.1𝐼 and the gross corruption ratio 𝛾 is set at 0.1,
and the observation ratio is set at 0.9. ime The result is shown in Fig. 3. We can see that only batch
approach RTR [10] can exactly recover the low rank tensor and find all outliers, yet its computation
time increases sharply as input size increases, showing that RTR is not scalable for large online
systems. Our algorithm OLRTR works the second best considering RE and F1 score, comparable
with the batch method TRPCA [39]. GRASTA [32] performs well in terms of computation time and
RE, but has low F1 score, meaning it is lacking in detecting outliers. STOC-RPCA [30] is the matrix
counterpart to our method for online settings with element-wise outliers, and our proposed method
has about a 0.1 improvement in RE over the STOC-RPCA method. This shows the advantage of our
tensor approach in taking full advantage of the correlations in every dimension, to get the best
estimate for the low rank tensor.

Next, we vary the fiber corruption ratio and magnitude, and investigate the residual error and F1
score. We run 100 minibatches at each corruption ratio. The low-rank tensor size for each minibatch
is fixed at R50×50×50 with a tucker rank of (3, 3, 3), and the observation ratio is set at 1. The result is
shown in Fig. 4. We can see that as corruption ratio increases from 0 to 0.5, RE increases for all
methods. But the relative error for OLRTR is always under 0.2, second only to the batch methods
RTR and TRPCA. The performance of all other online methods drop sharply, with RE above 0.5
for a corruption ratio 𝛾 of 0.5. We also vary the corruption magnitude with a fixed corruption
ratio 𝛾 = 0.05. From the second row of Fig. 4, we see that the relative error is not sensitive to
the corruption magnitude. However, the F1 score shows that no method detects outliers if the
corruption magnitude is sufficiently small.

Finally, we vary the observation rate. We run 100 minibatches. The low-rank tensor size for each
minibatch is fixed at R50×50×50 with a tucker rank of (3, 3, 3), and the corruption ratio is set at 0.05.
For methods that cannot handle missing data, we linearly interpolate the missing entries, and also
note that filling the missing entries with zero results in similar performance. The result is shown
in Fig. 5. We can see that the RE of all methods except RTR drop as observation ratio decreases.
GRASTA deals with missing data, and we can see that its performance keeps steady for observation
ratios greater than 0.75, but drops sharply as the observation ratio further decreases. Only OLRTR
and RTR maintain F1 score of 1.
As for the convergence of OLRTR, we conduct a series of experiments with minibatch size

R50×50×𝐼3 for 𝐼3 = 1, 10, 50. We fix the corruption ratio at 0.05 and the observation ratio at 0.9. The
result is shown in Fig. 6. We can see that OLRTR converges faster with larger batch size. For
𝐼3 = 10, 50, OLRTR converges after 10 iterations, while for 𝐼3 = 1, OLRTR converges after about 30
iterations.

5.2 Synthetically degraded NOAA data.
In this section, we apply tensor factorization on a complete NOAA dataset [11]. We use temperature
data from January to December, 2019 recorded from stationary, high-end climate sensors located at
37 USCRN monitoring sites [40] in the US Midwest. The accessed 37 NOAA sensors record data
hourly for 24 hours a day, for 364 days, which is arranged as X ∈ R37×24×364.

, Vol. 1, No. 1, Article . Publication date: September 2021.

Streaming data preprocessing via online tensor recovery for large environmental sensor networks 13

20 40 60 80 100 120
size

0

0.2

0.4

0.6

0.8

1

R
E

RE v.s. size

OLRTR
RTR
OSTD
OLSRC

ORLTM
STOC-RPCA
GRASTA
TRPCA

Method

(a)

20 40 60 80 100 120
size

0

0.2

0.4

0.6

0.8

1

F
1

sc
or

e

F1 score v.s. size

OLRTR
RTR
OSTD
OLSRC
ORLTM
STOC-RPCA
GRASTA
TRPCA

Method

(b)

20 40 60 80 100 120
size

0

2

4

6

8

10

T
im

e
(s

)

104 time v.s. size

OLRTR
RTR
OSTD
OLSRC
ORLTM
STOC-RPCA
GRASTA
TRPCA

Method

(c)

0 0.1 0.2 0.3 0.4 0.5
RE

102

103

104

105
T

im
e

(lo
g

sc
al

e)
time vs RE

OLRTR
RTR
OSTD
OLSRC
ORLTM
STOC-RPCA
GRASTA
TRPCA

Method

(d)

Fig. 3. Results of algorithms as a function of tensor size 𝐼 . For each experiment, we run 100 minibatches,
varying the tensor size of each minibatch R𝐼×𝐼×𝐼 . The rank is set at 0.1𝐼 , the gross corruption ratio 𝛾 is set at
0.1, and the observation ratio is set at 0.9. The result is an average over 5 trials.

To test the online factorization method, we generate a synthetically degraded dataset B from
the true temperature Xtrue that has missing data and erroneous values. We degrade the data by
randomly masking 10% of the data, and randomly modify 5% of the tensor fibers to create outlier
readings.
Given B, we set the OLRTR hyper parameter 𝛼 = 70. To capture the daily temperature pattern,

we feed in each 24-hour data X𝑡 ∈ R37×24×1 as a minibatch. For all methods, the target rank is
set as 𝑐 = 20 determined by grid search. The results are summarized in Table 1. We can see that
among all methods, RTR has the best overall performance in RE and F1 score, whereas among all
online methods, OLRTR performs the best overall. In particular, with full observation, OLRTR has
comparable RE and F1 score with the batch methods, and has an F1 score at least 0.2 higher than
all other online methods. Under partial observations, the RE and F1 score drop for all methods.
GRASTA has slightly lower RE than OLRTR, but has a low F1 score of 0.01. OLRTR is the only
method among the online methods to have F1 score above 0.9. This experiment on NOAA data
shows the validity of our methods on real world sensor networks for data recovery and anomalous
sensor detection.

, Vol. 1, No. 1, Article . Publication date: September 2021.

14 Yue Hu, AoQu, Yanbing Wang, and Daniel B. Work

0 0.1 0.2 0.3 0.4 0.5
corruption ratio

0

0.2

0.4

0.6

0.8

1

R
E

RE v.s. corruption ratio

OLRTR
RTR
OSTD
OLSRC

ORLTM
STOC-RPCA
GRASTA
TRPCA

Method

(a)

0 0.1 0.2 0.3 0.4 0.5
corruption ratio

0

0.2

0.4

0.6

0.8

1

F
1

sc
or

e

F1 score v.s. corruption ratio

OLRTR
RTR
OSTD
OLSRC

ORLTM
STOC-RPCA
GRASTA
TRPCA

Method

(b)

0 0.5 1 1.5 2
corruption magnitude

0

0.2

0.4

0.6

0.8

1

R
E

RE v.s. corruption magnitude

OLRTR
RTR
OSTD
OLSRC

ORLTM
STOC-RPCA
GRASTA
TRPCA

Method

(c)

0 0.5 1 1.5 2
corruption magnitude

0

0.2

0.4

0.6

0.8

1
F

1
sc

or
e

F1 score v.s. corruption magnitude

OLRTR
RTR
OSTD
OLSRC
ORLTM
STOC-RPCA
GRASTA
TRPCA

Method

(d)

Fig. 4. Results of algorithms with varying corruption ratio (upper row) and magnitude(lower row). We run
100 minibatches. The low-rank tensor size for each minibatch is fixed at R50×50×50 with a tucker rank of
(3, 3, 3), and the observation ratio is set at 1. The result is an average over 5 trials.

0.5 0.6 0.7 0.8 0.9 1
observation ratio

0

0.2

0.4

0.6

0.8

1

R
E

RE v.s. observation ratio

OLRTR
RTR
OSTD
OLSRC

ORLTM
STOC-RPCA
GRASTA
TRPCA

Method

(a)

0.5 0.6 0.7 0.8 0.9 1
observation ratio

0

0.2

0.4

0.6

0.8

1

F
1

sc
or

e

F1 score v.s. observation ratio

OLRTR
RTR
OSTD
OLSRC

ORLTM
STOC-RPCA
GRASTA
TRPCA

Method

(b)

Fig. 5. Results of algorithms with varying observation ratio. The low-rank tensor size for each minibatch
is fixed at R50×50×50 with a tucker rank of (3, 3, 3), and the corruption ratio is set at 0.05. The result is an
average over 5 trials.

, Vol. 1, No. 1, Article . Publication date: September 2021.

Streaming data preprocessing via online tensor recovery for large environmental sensor networks 15

0 20 40 60 80 100
number of iterations

0

0.2

0.4

0.6

0.8

1

R
E

I3 = 1

I3 = 10

I3 = 50

Method

Fig. 6. Convergence speed of OLRTR under different minibatch size R50×50×𝐼3 for 𝐼3 = 1, 10, 50.

Table 1. The performance of the algorithms on NOAA data. A horizontal line separates the online methods
and the batch methods (i.e., RTR & TRPCA).

observation rate 1 0.9

metrics RE F1 score RE F1 score
ORLTM [34] 0.157 0.834 0.192 0.309
STOC-RPCA [30] 0.644 0.867 0.644 0.820
OSTD [33] 0.327 0.294 0.394 0.179
OLSRC [31] 0.158 0.800 0.352 0.199
GRASTA [32] 0.085 0.100 0.096 0.099
OLRTR 0.053 0.974 0.120 0.953
RTR [10] 0.029 0.984 0.030 0.984
TRPCA [39] 0.012 0.877 0.078 0.188

5.3 Array of Things data
The method is finally applied to Array of Things (AoT), a dense urban sensor network in Chicago [2]
that collects real-time open data on the urban environment, infrastructure, and activity. We con-
struct an AoT temperature tensor as X ∈ R52×24×183, representing 52 temperature sensor stations
aggregated hourly, for 24 hours a day and for 365 days from March 1 2018 to March 1 2019. Ap-
proximately 16% of the AoT data is missing in this period. We set 𝛼 = 370 in OLRTR, and the target
rank at 𝑐 = 3. For all online algorithms, we pass the data three epochs to refine the estimation. Due
to the lack of a ground truth dataset, the recovered AOT data is quantitatively compared to the
closest NOAA sensor. We use the Pearson correlation coefficient to quantify the agreement since
the temperature field is spatially varying.

Table 2 shows the results1. We see that the batch method RTR has the highest correlation of 0.98,
with the same range as original input, [−30, 43] Celsius. OLRTR has an comparable correlation of
around 0.97, with an reasonable temperature range of [−28, 43] Celsius. STOC-RPCA also has high
correlation of 0.978, rightly capturing the trends, but the recovery falls in an unrealistic range of
[−1, 2]. We note that the actual record temperature of Chicago in the studied period is [−23, 36],
yet AOT has a larger range. This is likely due to the local conditions at the site of the sensor (e.g.,
1The GRASTA code generates warnings that the resulting matrix is singular, close to singular or badly scaled, produces
NAN results, and is thus not listed.

, Vol. 1, No. 1, Article . Publication date: September 2021.

16 Yue Hu, AoQu, Yanbing Wang, and Daniel B. Work

Table 2. The performance of the algorithms on AOT data, measured by the correlation coefficient between
AoT and a nearby NOAA sensor, and the range of recovered temperature (◦C). We include the raw data
measurements, and separate the results of batch methods (RTR, TRPCA) with the online methods into two
groups.

Raw STOC-RPCA OSTD OLSRC ORLTM OLRTR RTR TRPCA
𝑟 0.836 0.978 0.909 0.854 0.862 0.968 0.980 0.841

Range [-30, 43] [-1, 2] [-22, 72] [-10, 20] [-37, 90] [-28, 43] [-30, 43] [-29, 42]

2018-09
 2018-10
 2018-11
 2018-12
 2019-01
 2019-02

Fig. 7. Voronoi heat maps (◦C) at 3PM for half a year from Sept. 2018 to Feb. 2018 produced by raw (top;
missing data in black) and recovered (bottom) air temperature data. Each dot marks an active AoT unit.

lighting conditions). Fig. 7 shows temperature variation in Chicago in half a year from Sept. 2018
to Feb. 2019 in the raw and recovered dataset. The method recovers a fine-grind temperature map
from the raw input with outliers and missing values.

6 CONCLUSION
This work introduced an online tensor robust recovery method, and showed its successful applica-
tion to preprossess data from large urban sensor networks. OLRTR can detect anomalous sensors
and impute missing data simultaneously, taking advantage of the multi-dimensional correlations in
the dataset. Moreover, by storing and updating a small-sized dictionary that captures the underlying
patterns, OLRTR can handle the data sequentially in minibatches, ensuring computational and
memory efficiency in streaming systems. Extensive experiments on synthesised and real-world
sensor network datasets show significant advantages of OLRTR over other established online
methods, and has comparable performance with batch-based methods without the computational
overhead.
While we have demonstrated the applications on temperature data, for next step we are also

interested to extend the approach to accommodate other environmental sensors co-located on the
AoT platform. Ultimately the cleaned data will assist its use by city planners and urban scientists
interested in neighborhood-specific heat mitigation strategies to reduce adverse impacts.

ACKNOWLEDGMENTS
This work was supported by the National Science Foundation under Grants OAC-1532133 &
CMMI-1727785, and the USDOT Eisenhower Fellowship program (No. 693JJ32045011).

, Vol. 1, No. 1, Article . Publication date: September 2021.

Streaming data preprocessing via online tensor recovery for large environmental sensor networks 17

REFERENCES
[1] United Nations. “The sustainable development goals report”. New York, NY., 2016.
[2] C. E. Catlett, P. H. Beckman, R. Sankaran, and K. Galvin. Array of things: A scientific research instrument in the

public way: Platform design and early lessons learned. In Proc. of the International Workshop on Science of Smart City
Operations and Platforms Engineering, pages 26–33, 2017.

[3] R. N. Murty, G. Mainland, I. Rose, A. R. Chowdhury, A. Gosain, J. Bers, and M. Welsh. Citysense: An urban-scale
wireless sensor network and testbed. In 2008 IEEE Conf. on Technologies for Homeland Security, pages 583–588, May
2008.

[4] A. Lewis, W. R. Peltier, and E. von Schneidemesser. Low-cost sensors for the measurement of atmospheric composition:
overview of topic and future applications. 2018.

[5] F. Karagulian, M. Barbiere, A. Kotsev, L. Spinelle, M. Gerboles, F. Lagler, N. Redon, S. Crunaire, and A. Borowiak.
Review of the performance of low-cost sensors for air quality monitoring. Atmosphere, 10(9):506, 2019.

[6] M. Daszykowski, K. Kaczmarek, Y. Vander Heyden, and B. Walczak. Robust statistics in data analysis — a review: Basic
concepts. Chemometrics and Intelligent Laboratory Systems, 85(2):203 – 219, 2007.

[7] D. J. Hill and B. S. Minsker. Anomaly detection in streaming environmental sensor data: A data-driven modeling
approach. Environmental Modelling & Software, 25(9):1014 – 1022, 2010.

[8] M. Yu. Smirnov and G. D. Egbert. Robust principal component analysis of electromagnetic arrays with missing data.
Geophysical Journal International, 190(3):1423–1438, 09 2012.

[9] X. Y. Chen, Z. C. He, Y. X. Chen, Y. H. Lu, and J. W. Wang. Missing traffic data imputation and pattern discovery with
a bayesian augmented tensor factorization model. Transportation Research Part C: Emerging Technologies, 104:66 – 77,
2019.

[10] Y. Hu and D. B. Work. Robust tensor recovery with fiber outliers for traffic events. ACM Trans. on Knowledge Discovery
from Data (TKDD), 15(1):1–27, 2020.

[11] National Centers for Environmental Information. Global summary of the year (GSOY), version 1. https://www.ncei.
noaa.gov/access/search/data-search/global-summary-of-the-year.

[12] University of Chicago. Array of Things file browser. https://afb.plenar.io/data-sets/chicago-complete, 2019.
[13] T. G. Kolda and B. W. Bader. Tensor decompositions and applications. SIAM Review, 51(3):455–500, 2009.
[14] D. Goldfarb and Z. Qin. Robust low-rank tensor recovery: Models and algorithms. SIAM Journal on Matrix Analysis

and Applications, 35(1):225–253, 2014.
[15] L. R Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika, 31(3):279–311, 1966.
[16] J. F. Cai, E. J. Candès, and Z. Shen. A singular value thresholding algorithm for matrix completion. SIAM Journal on

Optimization, 20(4):1956–1982, 2010.
[17] E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? Journal of the ACM (JACM), 58(3):11,

2011.
[18] A. Famili, W. M. Shen, R. Weber, and E. Simoudis. Data preprocessing and intelligent data analysis. Intelligent data

analysis, 1(1):3–23, 1997.
[19] D. M. Dunlavy, T. G. Kolda, and E. Acar. Temporal link prediction using matrix and tensor factorizations. ACM Trans.

on Knowledge Discovery from Data (TKDD), 5(2):10, 2011.
[20] S. Li, M. Shao, and Y. Fu. Multi-view low-rank analysis with applications to outlier detection. ACM Trans. on Knowledge

Discovery from Data (TKDD), 12(3):32, 2018.
[21] Y. K. Wu, H. C. Tan, Y. Li, F. Li, and H. W. He. Robust tensor decomposition based on cauchy distribution and its

applications. Neurocomputing, 223:107–117, 2017.
[22] Y. N. Yang, Y. L. Feng, and J. AK. Suykens. Robust low-rank tensor recovery with regularized redescending m-estimator.

IEEE Trans. on neural networks and learning systems, 27(9):1933–1946, 2015.
[23] H. Xu, C. Caramanis, and S. Sanghavi. Robust pca via outlier pursuit. In Advances in Neural Information Processing

Systems, pages 2496–2504, 2010.
[24] P. Zhou and J. Feng. Outlier-robust tensor PCA. In Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition,

pages 2263–2271, 2017.
[25] F. L. Hitchcock. The expression of a tensor or a polyadic as a sum of products. Journal of Mathematics and Physics,

6(1-4):164–189, 1927.
[26] Q. B. Zhao, L. Q. Zhang, and A. Cichocki. Bayesian cp factorization of incomplete tensors with automatic rank

determination. IEEE Trans. on pattern analysis and machine intelligence, 37(9):1751–1763, 2015.
[27] Y. K. Wu, H. C. Tan, Y. Li, J. Zhang, and X. X. Chen. A fused cp factorization method for incomplete tensors. IEEE

Trans. on neural networks and learning systems, 30(3):751–764, 2018.
[28] Y. L. Chen, C. T. Hsu, and H. Y. M. Liao. Simultaneous tensor decomposition and completion using factor priors. IEEE

Trans. on pattern analysis and machine intelligence, 36(3):577–591, 2013.

, Vol. 1, No. 1, Article . Publication date: September 2021.

https://www.ncei.noaa.gov/access/search/data-search/global-summary-of-the-year
https://www.ncei.noaa.gov/access/search/data-search/global-summary-of-the-year
https://afb.plenar.io/data-sets/chicago-complete

18 Yue Hu, AoQu, Yanbing Wang, and Daniel B. Work

[29] J. Mairal, F. Bach, J. Ponce, and G. Sapiro. Online learning for matrix factorization and sparse coding. Journal of
Machine Learning Research, 11(1), 2010.

[30] Jiashi Feng, Huan Xu, and Shuicheng Yan. Online robust pca via stochastic optimization. In Advances in neural
information processing systems, pages 404–412, 2013.

[31] J. Shen, P. Li, and H. Xu. Online low-rank subspace clustering by basis dictionary pursuit. In International Conf. on
Machine Learning, pages 622–631, 2016.

[32] J. He, L. Balzano, and J. Lui. Online robust subspace tracking from partial information. arXiv preprint arXiv:1109.3827,
2011.

[33] A. Sobral, S. Javed, S. Ki Jung, T. Bouwmans, and E. H. Zahzah. Online stochastic tensor decomposition for background
subtraction in multispectral video sequences. In Proc. of the IEEE International Conf. on Computer Vision Workshops,
pages 106–113, 2015.

[34] P. Li, J. S. Feng, X. J. Jin, L. M. Zhang, X. H. Xu, and S. C. Yan. Online robust low-rank tensor modeling for streaming
data analysis. IEEE Trans. on neural networks and learning systems, 30(4):1061–1075, 2019.

[35] G. Mateos and G. B. Giannakis. Robust pca as bilinear decomposition with outlier-sparsity regularization. IEEE Trans.
on Signal Processing, 60(10):5176–5190, 2012.

[36] H. Kasai, W. Kellerer, and M. Kleinsteuber. Network volume anomaly detection and identification in large-scale
networks based on online time-structured traffic tensor tracking. IEEE Trans. on Network and Service Management,
13(3):636–650, 2016.

[37] B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm
minimization. SIAM review, 52(3):471–501, 2010.

[38] J. DM. Rennie and N. Srebro. Fast maximum margin matrix factorization for collaborative prediction. In Proc. of the
22nd international Conf. on Machine learning, pages 713–719, 2005.

[39] C. Y. Lu, J. S. Feng, Y. D. Chen, W. Liu, Z. C. Lin, and S. C. Yan. Tensor robust principal component analysis with a new
tensor nuclear norm. IEEE Trans. on pattern analysis and machine intelligence, 42(4):925–938, 2019.

[40] What’s a USCRN station? https://www.ncei.noaa.gov/news/what-is-a-uscrn-station. Accessed: 2019-08-29.

, Vol. 1, No. 1, Article . Publication date: September 2021.

https://www.ncei.noaa.gov/news/what-is-a-uscrn-station

Streaming data preprocessing via online tensor recovery for large environmental sensor networks 19

APPENDIX
6.1 Online algorithm for partial observations
The online algorithm (Algorithm 4) for partial observations is derived similarly to the complete
observation setting. Starting with the batch problem (3) and relaxing the constraint as an objective
function penalty, we get

min
X𝑖 ,E

1
2

𝑁∑︁
𝑖=1
∥X𝑖 + E + O − B∥2𝐹 + 𝜆1

𝑁∑︁
𝑖=1
∥X𝑖 (𝑖) ∥∗ + 𝜆2∥E(1) ∥2,1

s.t. OΩ = 0,
(20)

Next, using the substitution for ∥X𝑖 (𝑖) ∥∗ as in (5), we obtain:

min
L𝑖 ,R𝑖 ,E

1
2

𝑁∑︁
𝑖=1
∥L𝑖R𝑇𝑖 + E(𝑖) + O(𝑖) − B(𝑖) ∥2𝐹 +

𝜆1

2

𝑁∑︁
𝑖=1

(
∥L𝑖 ∥2𝐹 + ∥R𝑖 ∥2𝐹

)
+ 𝜆2∥E(1) ∥2,1,

s.t. OΩ = 0.
(21)

Then, we divide the batch data into series ofminibatches along the last dimension,B = [B1,B2, . . . ,B𝑀],
where B𝑡 ∈ R𝐼1×𝐼2×···×𝐼𝑁−1×𝐼 ′𝑁 , and 𝐼 ′

𝑁
= ⌊𝐼𝑁 /𝑀⌋. Solving (21) amounts to minimizing the empirical

objective function:

𝑓𝑀 (L𝑖) ≜
1
𝑀

𝑇∑︁
𝑡=1

𝑁∑︁
𝑖=1

[
𝑙 (B𝑡 , L𝑖) +

𝜆1

2𝑀
∥L𝑖 ∥2𝐹

]
, (22)

where the loss function for each mini-batch 𝑙 (B𝑡 , L𝑖) is:

𝑙 (B𝑡 , L𝑖) = min
R𝑡
𝑖
,E𝑡 ,O𝑡

1
2

L𝑖R𝑡𝑇
𝑖 + E𝑡(𝑖) + O

𝑡
(𝑖) − B

𝑡
(𝑖)

2
𝐹
+ 𝜆1

2
∥R𝑡

𝑖 ∥2𝐹 + 𝜆2∥E𝑡(1) ∥2,1

s.t. O𝑡
Ω = 0.

(23)

We take an alternative optimization approach to optimize R𝑡
𝑖 , E𝑡 , O𝑡 and L𝑖 . Namely, at the 𝑡-th

time step, after accessing the new sample B𝑡 , we first solve for the corresponding R𝑡
𝑖 and E𝑡 , O𝑡 ,

using the L𝑖 obtained in last step 𝑡 − 1. Then we update L𝑖 , to minimize the accumulated loss given
all {R𝜏

𝑖
}𝑡𝜏=1 and {E𝜏 }𝑡𝜏=1 obtained so far.

The update for R𝑡
𝑖 and E𝑡 follows a similar approach as in (11), (13). To update O𝑡 , we fix R𝑡

𝑖 and
E𝑡 and solve:

O𝑡 = argmin
O

𝑁∑︁
𝑖=1

L𝑖R𝑡𝑇
𝑖 + E𝑡(𝑖) + O(𝑖) − B

𝑡
(𝑖)

2
𝐹

= argmin
O

𝑁∑︁
𝑖=1

(B𝑡 − fold𝑖 (L𝑖R𝑡𝑇
𝑖) − E𝑡

)
− O

2
𝐹

= argmin
O

𝑁

 1
𝑁

𝑁∑︁
𝑖=1

(
B𝑡 − fold𝑖 (L𝑖R𝑡𝑇

𝑖) − E𝑡
)
− O

2
𝐹

s.t. OΩ = 0,

(24)

where in the second row we replace the matrix norm with its tensor norm, which are the same.
For (24), we simply set O = 1

𝑁

∑𝑁
𝑖=1

(
B𝑡 − fold𝑖 (L𝑖R𝑡𝑇

𝑖) − E𝑡
)
for entries (𝐼1, 𝐼2, . . . , 𝐼𝑁) ∈ Ω𝐶 , and

zero otherwise. The sample update for R𝑖 , O and E is summarized in Algorithm 5. The stopping
criterion is the same as (15). The update for L𝑖 follows a similar approach as in the full observation
case (18).

, Vol. 1, No. 1, Article . Publication date: September 2021.

20 Yue Hu, AoQu, Yanbing Wang, and Daniel B. Work

Algorithm 4 OLRTR algorithm for partial observation

1: Given 𝑁 -way minibatch tensors [B1,B2, . . . ,B𝑀] with B𝑡 ∈ R𝐼1×𝐼2×···×𝐼𝑁−1×𝐼 ′𝑁 , weighting
parameters 𝜆1, 𝜆2, target rank 𝑟 . Initialize dictionary L𝑖 ∈ R𝐼𝑖×𝑟 and accumulation matrices
A𝑡
𝑖 ∈ R𝑟×𝑟 ,D𝑡

𝑖 ∈ R𝐼𝑖×𝑟 .
2: for 𝑡 = 0, 1, . . . , 𝑀 do
3: Access the 𝑡-th sample B𝑡

4: Solve Problem (21) for R𝑡
𝑖 , E𝑡 and O𝑡 for the new sample using Algorithm 5.

5: X𝑡 = 1
𝑁
fold(𝑖)

(
L𝑖R𝑡

𝑖

)
6: 𝐴𝑡

𝑖 = 𝐴𝑡−1
𝑖 + R𝑡𝑇

𝑖 R𝑡
𝑖 ; D

𝑡
𝑖 = D𝑡−1

𝑖 +
(
B𝑡
(𝑖) − E

𝑡
(𝑖)

)
R𝑡
𝑖

7: Solve L𝑡𝑖 with Algorithm 3, using L𝑡−1𝑖 as warm restart.

L𝑡𝑖 = argmin
L𝑖

1
2
Tr

(
L𝑇𝑖

(
A𝑡
𝑖 + 𝜆1I

)
L𝑖

)
− Tr

(
L𝑇𝑖 D

𝑡
𝑖

)
8: end for
9: return low rank tensors [X1,X2, . . . ,X𝑀] and outlier tensors [E1, E2, . . . , E𝑀]

Algorithm 5 Sample update for R𝑖 , E and O
1: Given observation B ∈ R𝐼1×···×𝐼𝑁−1×𝐼 ′𝑁 , dictionary L𝑖 ∈ R𝐼𝑖×𝑟 and parameters 𝜆1, 𝜆2. Initialize

coefficient matrix R𝑖 ∈ R𝐼
′
𝑁 \𝑖×𝑟 , outlier tensor E ∈ R𝐼1×···×𝐼𝑁−1×𝐼 ′𝑁 and compensation tensor

O ∈ R𝐼1×···×𝐼𝑁−1×𝐼 ′𝑁 to zero.
2: while not converged do
3: C ←

(
B − O − fold𝑖 (L𝑖R𝑇𝑖)

)
⊲ Update E .

4: for 𝑗 = 1, 2, . . . , 𝑝 do
5: E(1) 𝑗 ← C(1) 𝑗max

{
0, 1 − 𝜆

𝜇𝑁 ∥C(1) 𝑗 ∥2

}
6: end for
7: for 𝑖 = 1, 2, . . . , 𝑁 do ⊲ Update R𝑖
8: R𝑖 ←

(
L𝑇𝑖 L𝑖 + 𝜆1I

)−1 L𝑇𝑖 (
B(𝑖) − E(𝑖) − O

)
.

9: end for
10: O ← ∑𝑁

𝑖=1
(
B − E − fold𝑖 (L𝑖R𝑇𝑖)

)
⊲ Update O .

11: set OΩ = 0
12: end while
13: return R𝑖 , E and O

, Vol. 1, No. 1, Article . Publication date: September 2021.

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contribution
	1.3 Overview of the proposed method

	2 Related work
	2.1 Other data preprocessing efforts
	2.2 Batch-based low-rank learning
	2.3 Online low-rank learning

	3 Preliminaries
	3.1 Tensor basics
	3.2 Robust tensor decomposition

	4 Methods
	4.1 Problem formulation
	4.2 Online tensor RPCA algorithm
	4.3 Complexity and memory cost

	5 Experiments
	5.1 Numerical experiments
	5.2 Synthetically degraded NOAA data.
	5.3 Array of Things data

	6 Conclusion
	Acknowledgments
	References
	6.1 Online algorithm for partial observations

