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Abstract. We presented ModulAr Semantic CAching fRAmework (MASCARA) that deployed Semantic Caching (SC) to
perform a fast query processing based on Field Programmable Gate Arrays (FPGAs) accelerators. In addition of the accelerators,
cache management plays an important role to address coalescing strategy and replacement policy so as to maximize the
performance of FPGA caching. Therefore, in this paper, we present a coalescing heuristic with a new replacement function
that leverages advantages of traditional strategies and overcomes their drawbacks. The proposed heuristic reduces response
time, improves data availability, and saves cache space with respect to the semantic locality of query workload.

1 INTRODUCTION
Recently, acceleration for the data management system (e.g., Spark [2]) with a specific computing hardware (e.g.,
Field Programmable Gate Array FPGA), has declined by both industry and academia, such as, [15], [11], [13],
[18], [16], [7], and [3]. Moreover, using a caching technique, for example, Semantic Caching (SC) [10], [5] which
could finely exploit data and knowledge in a query or reduce data transfer, should also be considered. Therefore,
we have proposed a Modular Semantic Caching framework (MASCARA) [8] that relies on the acceleration via
FPGA kernels (e.g., Query Trimming) [12].

State of the art. MASCARA-FPGA speeds up the execution of a query or a sequence of queries. To reach this
goal, in addition to the appropriate accelerators, dealing with cache management is important to maximize the
performance. In particular, cache management in SC consists of two main procedures: the coalescing strategy
and the replacement policy. The first one determines how the data regions are formed, merged and partitioned,
to ensure the optimal granularity of the cached elements while minimizing the overhead of using the cache
space. Meanwhile, the second one determines how semantic information is added to and removed from the
cache. The coalescing strategy could be solved by the straightforward approaches, such as: Nerver Coalescing or
Always Coalescing ([4], [9], [6], [17], or [14]). Since the above solutions are limited by the capabilities of CPU,
the contributions were not interested in studying the effects of different strategies. In general, both of them
have major side effects to FPGA caching (i.e., MASCARA-FPGA), such as, cache space utilization, the granularity
problem, or the responses times of the system. Furthermore, they can be exacerbated if we do not have an
appropriate replacement policy that should be adapted for query workloads with general semantic locality.

Contribution. Therefore, we propose a heuristic solution that leverages their advantages and minimize their
side effects. In particular, it decides whether to coalesce data regions based on the recency of usage (temporal
locality) and percentage of response contribution (spatial locality) that are presented through a new replacement
function. It is worth to note that our solution is flexible when the semantic locality of query workload changes
according to their applications. Experiments with TPC-H benchmark [1] validates that MASCARA-FPGA with
the heuristic has: a fast response time, a high cache efficiency, and a low overhead in memory usage. For example,
with two kernels, the response time of MASCARA-FPGA is faster up to 9.23 times than the MASCARA-Server
(baseline) with 1𝐺𝐵 of dataset.

2 COALESCING IN MASCARA-FPGA
We presented the SC concept and prototype of MASCARA-FPGA in [8, 12]. If we have 𝑁 data region 𝐷𝑅 and the
answer of an incoming query 𝑄 overlaps them, the result could be the formation of 2𝑁 + 1 new 𝐷𝑅, where 𝑁 + 1
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of them are the answer to the query. The following question arises: should we combine some, all, or none of the
𝑁 + 1 𝐷𝑅 into one or more larger 𝐷𝑅 [9] (as shown in Figure 1).

Fig. 1. Data Region in Always and Never Coalescing

2.1 Conventional strategies
Always Coalescing will coalesce all the 𝐷𝑅 which contributes to the answer of the most recent𝑄 , so that only one
𝐷𝑅 corresponds to the query. Without generating a large number of 𝑆 , it results to a good performance because
we can avoid the overhead of Query Trimming accelerators. The worst case occurs when the response of 𝑄 takes
a large portion of cache, resulting to a poor space utilization. In contrast, Never Coalescing does not coalesce
any data region that contributes to the most recent queries, resulting in a drastically increase of number and
complexity of 𝑆 and 𝐷𝑅. Thus, this solution could have a negative impact on responses times even if we have
multiple parallel accelerators on FPGA.

Obviously, applying individually the two solutions raises the issues of efficiency, space utilization, or end-to-end
response time of cache. Therefore, it seems reasonable to use them alternatively by checking the current situation
of data regions and/or their future contributions in query answers. In particular, the segments 𝑆 representing
corresponding 𝐷𝑅 should be measured and indexed by their "profit" 𝑆𝑉 in the cache. The function of calculating
𝑆𝑉 is based on temporal (e.g., LRU) and spatial locality (e.g., contribution to query answering). In other words, 𝑆𝑉
is now considered to use in both coalescing and replacement.

2.2 Heuristic: from coalescing to replacement
In this section, we present how we manage the cache through a heuristic which considers both coalescing and
replacement. Given the recency of usage, we assume that the most recent coalescing/replacement value is 𝑉𝑚𝑎𝑥 ,
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which is increased by one for each new 𝑄 . Meanwhile, the coalescing/replacement value for each data region is
𝑆𝑉 . The process of finding the profit of a 𝐷𝑅 is divided into two steps: 1) computing the intermediate profit and
deciding whether to merge based on its value, and 2) computing future profit of the its remaining part (as shown
in Algorithm 1).

Algorithm 1: Cache management with heuristic
Input: Input: cache with list of 𝑆 , 𝐷𝑅 and a query 𝑄
Output: Output: cache updated with coalescing heuristic

1 Pass Query Trimming, outputs are: 𝑃𝑄 , 𝑅𝑄
2 Execute 𝑃𝑄 and 𝑅𝑄
/* Replacement with the minimal ratio */

3 while 𝑟 ≠ End Of List do
4 𝑟 := 𝑆𝑉 /𝑠𝑖𝑧𝑒_𝑜 𝑓 _𝑆𝐷
5 Finding the minimal 𝑟
6 end
7 𝑉𝑖𝑐𝑡𝑖𝑚 := 𝑆 with 𝐷𝑅 that has minimal 𝑟
8 Remove 𝑉𝑖𝑐𝑡𝑖𝑚
9 Add 𝑅𝑄 with new 𝐷𝑅

/* Heuristic of coalescing: step 1 */

10 Choosing threshold 𝑇
11 Assign 𝑄𝑉 := 𝑉𝑚𝑎𝑥

12 while 𝑆 ≠ End Of List do
13 𝑝 := 𝑅𝑄/𝑅
14 𝑆𝑉 _𝑖𝑛𝑡𝑒𝑟 := 𝑆𝑉 _𝑜𝑟𝑖 + (𝑉𝑚𝑎𝑥 − 𝑆𝑉 _𝑜𝑟𝑖 ) ∗ 𝑝
15 if 𝑆𝑉 < 𝑄𝑉 ∗𝑇 then
16 Coalescing between 𝑆𝐷 and 𝑄𝐷

17 end
18 else if 𝑆𝑉 >= 𝑄𝑉 ∗𝑇 then
19 No-coalescing between 𝑆𝐷 and 𝑄𝐷

20 end
21 end

/* Heuristic of coalescing: step 2 */

22 while 𝑆 ≠ End Of List do
23 𝑝𝑑𝑖𝑠 := 𝑆𝑉 _𝑖𝑛𝑡𝑒𝑟 − 𝑆𝑉 _𝑜𝑟𝑖
24 𝑆𝑉 := 𝑝𝑑𝑖𝑠 ∗ (1 − 𝑝) + 𝑆𝑉 _𝑜𝑟𝑖
25 end

From row 10 to 21 in Algorithm 1, we measure the percentage of the data region that contributes to the
query answer: 𝑝 = 𝑅𝑄/𝑅, where 𝑅𝑄 is the number of records that match the query answer and 𝑅 is the total
number of records in the region. Then, the new replacement/coalescing value is temporarily updated as follows:
𝑆𝑉 = 𝑆𝑉 + (𝑉𝑚𝑎𝑥 −𝑆𝑉 ) ∗𝑝 . Note that (𝑉𝑚𝑎𝑥 −𝑆𝑉 ) ensures that the new 𝑆𝑉 does not have a higher value than𝑉𝑚𝑎𝑥 .
In other words, the new data region with respect to the last query𝑄 will have the highest value 𝑆𝑉 . This function
is adaptable for all regions in SC, regardless of whether the region contributes to answering the query or not.

Based on the updated 𝑆𝑉 for all regions contributing to the query answer, we propose a threshold 𝑇 as a part
of "coalescing filter" 𝑆𝑉 < 𝑄𝑉 ∗𝑇 that decides whether to merge all, some or none of them. In general, 𝑇 can be
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scaled from 0 (Never Coalescing) to 1 (Always Coalescing). Meanwhile,𝑄𝑉 = 𝑉𝑚𝑎𝑥 is the value of the new 𝐷𝑅 with
respect to the new query appears. If 𝑆𝑉 < 𝑄𝑉 ∗𝑇 , the overlapping part between existed 𝐷𝑅 and new 𝐷𝑅 of𝑄 will
be merged (coalesced) into the old one. Thus, the number of generated or cached segments are stored, resulting
in an efficient response time of MASCARA-FPGA. Otherwise, if 𝑆𝑉 >= 𝑄𝑉 ∗𝑇 , the new 𝐷𝑅 of 𝑄 will be cached
which has the same value 𝑆𝑉 as its predecessor 𝐷𝑅. By this way, this decision increases the data granularity of the
cache, resulting in higher efficiency. Although we have not yet explored the cost model related to the "coalescing
filter" as well as the optimization problem (e.g., Knapsack or Dynamic Programming), we can adjust the threshold
𝑇 in practical to find a "reasonable coalescing filter" based on cache performance, cache efficiency, and cache
space usage.
As the second step (from row 22 to 25 in Algorithm 1), after merging some of the 𝐷𝑅, the remaining ones

might shrink into the new parts. Therefore, their future profit that could be evaluated for the next queries should
be recalculated as follows: 𝑆𝑉 = 𝑝𝑑𝑖𝑠 ∗ (1− 𝑝) + 𝑆𝑉 _𝑜𝑟𝑖 where 𝑆𝑉 _𝑜𝑟𝑖 is the original profit of the 𝐷𝑅 before starting
the procedure. 𝑝𝑑𝑖𝑠 = 𝑆𝑉 _𝑖𝑛𝑡𝑒𝑟 − 𝑆𝑉 _𝑜𝑟𝑖 , consists of the profit distance, is the gap between the intermediate profit
𝑆𝑉 _𝑖𝑛𝑡𝑒𝑟 and the original profit 𝑆𝑉 _𝑜𝑟𝑖 .

Example 2.1. As shown in Figure 2, we assume that the contribution of 𝐷𝑅𝑖 and 𝐷𝑅𝑗 to the query answer is
𝑝𝑖 = 0.75 and 𝑝 𝑗 = 0.71, respectively. The last value 𝑉𝑚𝑎𝑥 = 35 for the appearance of query 𝑄 . Although 𝑝𝑖 , 𝑝 𝑗 are
nearly equal, their contributions to the answer are different in size (i.e., 𝐷𝑅𝑖 > 𝐷𝑅𝑗 ). From (a) to (b), the 𝑆𝑉 of 𝑆𝑖
has increased significantly from 10.3 to 18.4. If we choose𝑇 = 0.5, then𝑇 ∗𝑄𝑉 = 0.5 ∗ 35 = 17.5 does not pass the
condition of "coalescing filter" (17.5 < 18.4). Thus, cache will keep the overlapping part between 𝐷𝑅𝑖 and 𝐷𝑅𝑄 as
a totally new one. In contrast, with the same procedure, 𝐷𝑅𝑗 does not pass the "filter". It means that cache will
merge the overlapping part of 𝐷𝑅𝑗 into 𝐷𝑅 of 𝑄 . At the end of the procedure, in (c), we reevaluate the future
profit of 𝐷𝑅𝑖 , 𝐷𝑅 𝑗 to prepare for the next 𝑄 . For example, using the formula consists of 𝑝𝑑𝑖𝑠 , the future profit of
the remaining 𝐷𝑅𝑖 is: 𝑆𝑉 = (18.4 − 10.3) ∗ (1 − 0.75) + 10.3 = 12.325.

Fig. 2. The coalescing heuristic in cache management
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Since 𝑆𝑉 is used for both coalescing and replacement, our heuristic overcomes the limitation of LRU in the
context of SC. Indeed, considering that 𝐷𝑅 can vary in size, removing it from the cache should depend not only
on its contribution to the last query response, but also on its actual size. In other words, we calculate the ratio 𝑟
between the actual coalescing/replacement 𝑆𝑉 and its size 𝑠 in the cache: 𝑟 = 𝑆𝑉 /𝑠𝑖𝑧𝑒_𝑜 𝑓 _𝑆𝐷 (from row 3 to 9 in
Algorithm 1). Thanks to the real representation of 𝑟 (e.g., 𝑆𝑉 = 12.325 in the above example) if the cache needs
space for a new data region 𝐷𝑅, the selection of a victim would be more accurate than LRU. It should be noted
that 𝐷𝑅 which overlaps the query response are excluded from this procedure. In summary, by approximating
both temporal and spatial locality, the impact of query workload (i.e., semantic locality) could be alleviated in
general applications.

3 EXPERIMENTS
Configuration. A server is equipped with an Intel® Xeon® Gold 5118 CPU running at 2.30 GHz and 64 GB
RAM. The FPGA platform is an Alveo U200 board with three 16GB DDR4.
Query workload. Experiments are performed with only one relation (i.e., lineitem) of TPC-H [1]. Based on

the query Q6 of TPC-H, we generate the range query with the select-project format.
Influencing parameters The parameters that could affect the performance of MASCARA-FPGA are presented

in [12]. Moreover, we consider also Skew (a fixed fraction of the queries that has semantic centerpoint within a
Hot Region).

Evaluated prototypes.We evaluate our contribution by comparing several prototypes: (A) MASCARA-Server
with Always Coalescing LRU, (B) MASCARA-FPGA with Never Coalescing LRU, (C) MASCARA-FPGA with Always
Coalescing LRU, and (D) MASCARA-FPGA with heuristic.

3.1 Segments - Query Trimming throughput

(a) Throughput of kernel
.

(b) Generated segment by strategies
.

Fig. 3. Impact of coalescing strategies

This experiment is performed by measuring the processing time of Query Trimming over 1000 segments 𝑆 .
Obviously, as shown in Figure 3a, the Query Trimming accelerator has a higher 𝑆𝑃𝑆𝑒𝑐 than similar procedure
on Server. When 𝑁𝑏_𝑃𝑟𝑒𝑑_𝑆𝑒𝑔 increases, 𝑆𝑃𝑆𝑒𝑐 decreases significantly. In particular, 𝑆𝑃𝑆𝑒𝑐 of server drops to
102 𝑆𝑃𝑆𝑒𝑐 , meanwhile, 𝑆𝑃𝑆𝑒𝑐 of kernel is 661 when 𝑁𝑏_𝑃𝑟𝑒𝑑_𝑆𝑒𝑔 = 4. If we deploy two kernels in parallel,
𝑆𝑃𝑆𝑒𝑐 increases from 661 𝑆𝑃𝑆𝑒𝑐 to 1196 𝑆𝑃𝑆𝑒𝑐 . To resume, it can be seen that the Query Trimming on FPGA
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outperforms the server based on CPU only when the query complexity (e.g., 𝑁𝑏_𝑃𝑟𝑒𝑑_𝑆𝑒𝑔) increases. Moreover,
with high 𝑆𝑃𝑆𝑒𝑐 of accelerators, the main issue of Never Coalescing now is alleviated while keeping its benefits in
MASCARA-FPGA.
A large number of 𝑁𝑏_𝑆𝑒𝑔 could also cause a bottleneck in Query Trimming [12]. As shown in Figure 3b,

when the query size increases, 𝑁𝑏_𝑆𝑒𝑔 grows rapidly, especially with Never Coalescing (e.g., 191 𝑆 for query size
= 10%). With 𝑇 = 0.5, 𝑁𝐵_𝑆𝑒𝑔 of our heuristic is slightly higher than the best one Always Coalescing (e.g., 133 𝑆
for query size = 10%). In summary, we consider that MASCARA-Server could also apply the heuristic but the
performance might not be significant as Always Coalescing due to the limited throughput of Query Trimming on
server. Therefore, it is more preferable to MASCARA-FPGA in which we have high throughput Query Trimming
kernels.

3.2 Cache performance
As it can be seen in Figure 4a, the FPGA prototypes (B, C, and D) have lower response time than (A) on server.
Obviously, (C) is the fastest because using Always Coalescing reduces the number of generated segments, which
leads to fast execution of Query Trimming. Meanwhile, our heuristic (D) finds a good balance between (B) and
(C), and shows a remarkable speed-up (i.e., 4.84 with 𝑆𝐹 = 1𝐺𝐵). We also found that the speed up of the FPGA
prototypes decrease when 𝑆𝐹 increases. For example, at 𝑆𝐹 = 10𝐺𝐵, (B) is 2.07, (C) is 3.26, and (D) is 2.81 times
faster than (A). As shown in [8, 12], in this case we need to execute the 𝑅𝑄 if they appear over a large and full
(i.e., 10𝐺𝐵) dataset on the server. Fortunately, with reasonable hardware consumption (presented in Section 3.5),
we can use multiple accelerators (i.e., two kernels) to mitigate this problem.

(a) Skew=0.8
.

(b) Skew=0.9
.

Fig. 4. Response Time when changing semantic locality. 50 queries workload. Cache has 1000 𝑆 . Hot Region = 20%.

In Figure 4b, we change the semantic locality through Skew, to show that our heuristic is preferable for general
applications. Indeed, the speed up of FPGA prototypes increases since most of the (probe) queries are executed on
FPGA, which is faster than the server thanks to its accelerator Probe Query Executing. For example, at 𝑆𝐹 = 1𝐺𝐵,
we observe that (B), (C), and (D) are faster than (A) 4.78, 7.22 and 5.73 times, respectively.

3.3 Cache space utilization
We run the experiment through 50 queries with𝑁𝑏_𝑃𝑟𝑒𝑑_𝑄𝑢𝑒𝑟𝑦 = 4, which has the same response size (as show in
Figure 5a). Meanwhile, the cache should be initialized with almost 1000 segments 𝑆 that have 𝑁𝑏_𝑃𝑟𝑒𝑑_𝑆𝑒𝑔 >= 4
thanks to the warm-up queries.
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(a) Cache space utilization
.

(b) Cache efficiency
.

Fig. 5. Space overhead and data availability of cache. Hot Region = 20% and Skew = 0.8.

Obviously, with 𝑁 +1 new𝐷𝑅 that are not merged, Never Coalescing will store the duplicated key attributes that
leads to significant overhead of cache memory. For example, with a workload of 1% queries, we need more space
in prototype (B) than usual (23.38%) to store the fragmented 𝐷𝑅. Meanwhile, in (C), the cache space requirement
has only 4.83%. (D) is slightly higher than (C) (7.37%) because we merge only the 𝐷𝑅 that satisfies our heuristic
condition. Moreover, when the query size increases, the space overheads of all strategies decrease and converge
at a certain query size (i.e., query size workload = 10%).

The other influencing factor of our heuristic is the threshold𝑇 . It is obvious that when𝑇 increases, for example
𝑇 = 0.7, the possibility of merging in (D) is high, which allows saving more space in the cache memory. In contrast,
reducing 𝑇 means that the cache prefers to keep the data region independent to increase the data granularity.
Depending on the status of the cache, 𝑇 should be changed dynamically to maintain system performance.

3.4 Cache efficiency
We measure the cache efficiency of our heuristic by varying the size on average between 10 and 200 times of
queries in workload (as shown in Figure 5b). Our solution allows to have a highest cache efficiency compared to
the conventional approaches. For example, when cache size is small (e.g., ten times the query size), prototype (D)
with 𝑇 = 0.3 could answer almost 68% of the queries (i.e., data regions of 𝑃𝑄s are 68%). In detail, our heuristic
evaluates the contribution-to-size ratio that considers both temporal and spatial locality. However, when cache size
increases (i.e., is more than 50 times the query size), the results of the prototypes tend to saturate. For example,
when the cache size is 100 times of the query size, the cache efficiencies are 74%, 66%, and 88% with respect to (B),
(C), and (D), with 𝑇 = 0.3.

Besides cache space utilization, 𝑇 also changes cache efficiency of (D). For example, if 𝑇 changes from 0.3
to 0.5, the cache efficiency decreases from 68% to 53%, where the cache size being times larger than the query
size. This efficiency could decrease even further if we increase 𝑇 from 0.5 to 0.7. Obviously, the ability to answer
queries does not differ too much between the prototype when cache size is large enough.
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3.5 Hardware resources
The hardware resource consumption of MASCARA-FPGA is shown in Table 1. Cache Manager: Heuristic has a
small footprint in our prototype thanks to the arbitrary precision fixed-point data type of computing 𝑆𝑉 and 𝑟 .
Another positive point is that we only need one Cache Manager: Heuristic in MASCARA-FPGA.

Component Look-Up Tables (LUTs) Flip Flops (FFs) 36Kb BRAM
Attribute Matching 4476 2914 11
Predicate Matching 17668 16621 84
Semantic Extracting 6838 3682 17

Probe Query execution 7739 5436 31
Query Process Controller 5394 4379 10
Cache Manager: Heuristic 6627 5461 44

Total resources 48712 38493 197
Alveo-U200 usage (%) 5.46 2.1 11.15

Table 1. Hardware resources of MASCARA-FPGA

4 CONCLUSION
In this paper, we propose a coalescing heuristic with new replacement function that takes advantage of the two
straightforward approaches: Always and Never Coalescing. In particular, this heuristic takes into account the
temporal and spatial locality of the data regions with respect to the query response by computing their profit in
the cache. To summarize, we improved the performance of FPGA caching in three ways: end-to-end response
time, cache efficiency, and cache space utilization. As future works, we are interested in: i) Investigating a cost
model for automatically selecting the optimal coalescing threshold 𝑇 based on the cache state in real-time. ii)
Extending MASCARA-FPGA towards join queries with fragmented data regions.
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