
Honeyquest: Rapidly Measuring the Enticingness of
Cyber Deception Techniques with Code-basedQuestionnaires

Mario Kahlhofer
mario.kahlhofer@dynatrace.com

Dynatrace Research
Linz, Austria

Johannes Kepler University
Linz, Austria

Stefan Achleitner
stefan.achleitner@dynatrace.com

Dynatrace Research
Linz, Austria

Stefan Rass
René Mayrhofer
stefan.rass@jku.at

rene.mayrhofer@jku.at
Johannes Kepler University

Linz, Austria

Abstract
Fooling adversaries with traps such as honeytokens can slow down
cyber attacks and create strong indicators of compromise. Unfortu-
nately, cyber deception techniques are often poorly specified. Also,
realistically measuring their effectiveness requires a well-exposed
software system together with a production-ready implementa-
tion of these techniques. This makes rapid prototyping challenging.
Our work translates 13 previously researched and 12 self-defined
techniques into a high-level, machine-readable specification. Our
open-source tool, Honeyquest, allows researchers to quickly evalu-
ate the enticingness of deception techniques without implementing
them. We test the enticingness of 25 cyber deception techniques
and 19 true security risks in an experiment with 47 humans. We
successfully replicate the goals of previous work with many con-
sistent findings, but without a time-consuming implementation of
these techniques on real computer systems. We provide valuable
insights for the design of enticing deception and also show that the
presence of cyber deception can significantly reduce the risk that
adversaries will find a true security risk by about 22% on average.

CCS Concepts
• Security and privacy→Web application security; Intrusion
detection systems; Systems security; Network security.

Keywords
cyber deception, effective deception, honeytokens, honeypots

ACM Reference Format:
Mario Kahlhofer, Stefan Achleitner, Stefan Rass, and René Mayrhofer. 2024.
Honeyquest: Rapidly Measuring the Enticingness of Cyber Deception Tech-
niques with Code-based Questionnaires. In The 27th International Sympo-
sium on Research in Attacks, Intrusions and Defenses (RAID 2024), Septem-
ber 30-October 02, 2024, Padua, Italy. ACM, New York, NY, USA, 20 pages.
https://doi.org/10.1145/3678890.3678897

1 Introduction
Cyber deception deceives adversaries about the true appearance
of a software system, tricking them into taking (or not taking)

This work is licensed under a Creative Commons Attribution 4.0 International License.

RAID 2024, September 30-October 02, 2024, Padua, Italy
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0959-3/24/09
https://doi.org/10.1145/3678890.3678897

actions that are not in their favor [108, 110, 102]. Imagine that an
attacker has already broken into a container somewhere in your
infrastructure, completely undetected by any security measures. At
this stage, the goal of such an adversary could be to move laterally
through your infrastructure and take over additional resources.
We can defend against that by placing honeytokens [92, 93] in the
container: Fake credentials or tokens that trigger an alarm when
used. Such incidents may then be escalated to a human operator
for further investigation. Benefits of honeytokens are: [40, 39]

(1) Adversaries are slowed down as they waste time with
unsuccessful exploit attempts.

(2) Defenders get strong indicators of compromise (IoCs)
from such alarms for incident resolution.

(3) Reduces the risk of adversaries exploiting true weak-
nesses because they are distracted by honeytokens.

Recent research has come up with great techniques to deceive
attackers (§8.1). But are they effective? Will attackers fall for such
traps, or will they see through them? After all, hackers are neither
lazy nor stupid. Bowen et al. [24] introduced various properties
that can guide us in designing effective decoys. Ben Salem and
Stolfo [22] found six of them to be very important, the first three
being detectability, conspicuousness, and enticingness.Detectability
describes the necessary requirement to detect when a trap has been
triggered. Enticingness describes how attractive a trap is for an
adversary, how well it lures them and awakens desires and hopes
to achieve their mission. Conspicuousness is similar to enticingness,
but conspicuous traps are chosen by adversaries because they are
easily found, clearly visible, or obvious, but not necessarily because
they are attractive. To measure these properties with real humans,
researchers typically use one of threemethods (depicted in Figure 1):
Capture The Flag (CTF) events, honeypots, or questionnaires.

CTF events, red team engagements, or cyber ranges [88,
41, 14, 11, 46, 40, 91, 56, 22, 101, 30, 29, 87, 21, 54, 7–9] are com-
petitions where participants attack and defend software systems.
Creating such environments for deception experiments is very
labor-intensive because engineers have to setup the infrastructure,
mimic a realistic app, and implement traps. The latter also presents
various technical challenges [87, 55, 60].

Honeypots in the wild [24, 54, 83, 82, 25, 43] are software
systems that want to be attacked. While deploying such honeypots
brings the closest contact to real adversaries, it typically requires
a well-exposed software system that is of interest to adversaries,
along with a production-ready implementation of traps. In addition,
it relies on waiting for attackers to come along and fall for the traps,
resulting in slow feedback loops.

1

ar
X

iv
:2

40
8.

10
79

6v
1

 [
cs

.C
R

]
 2

0
A

ug
 2

02
4

https://orcid.org/0000-0002-6820-4953
https://orcid.org/0000-0002-5499-6101
https://orcid.org/0000-0003-2821-2489
https://orcid.org/0000-0003-1566-4646
https://doi.org/10.1145/3678890.3678897
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3678890.3678897

RAID 2024, September 30-October 02, 2024, Padua, Italy Kahlhofer et al.

Evaluation of CDTs

CDT Design

HoneYAML
(§4.2)

Shared CDT Specification

Text-based
Questionnaires

✓ simple, easy, and
implementation-free

✘ requires humans and
often lacks connection
to technical aspects

Honeyqest
(§4.3)

✓ mimics system
properties without

implementation needs

✘ still requires hu-
mans right now

CTF
Experiments

✓ close to real-world

✘ requires humans and
often labor-intensive
implementations of
apps and services

Honeypot
Deployments

✓ real-world

✘ dependent upon
attracting real attackers
and a production-ready
implementation of traps

Deployment
in Real-World
Applications

Engage
Real Attackers

In the Reconnaissance
Phase of their Attacks

Replicated Findings
(§7.3)

Figure 1: The lifecycle of designing, evaluating, and deploying CDTs, with the ultimate goal of engaging real adversaries.

Questionnaires [39, 88, 4, 37, 41, 82, 83, 11, 17, 46, 40, 23, 87]
can rapidly test specific deception hypotheses. CTF events and hon-
eypots can hardly measure psychological properties [38], which
explains why they are often accompanied by questionnaires [87, 88,
41, 40, 46, 11, 83, 82]. However, we argue that text-based question-
naires quickly become detached from the technical “views” that
adversaries typically gain from a system.

Our work introduces Honeyquest as a method that combines
the benefits of questionnaires with the realism of CTF events and
honeypots. Questions in Honeyquest – we call them queries – imi-
tate the technical views that adversaries typically gain of a software
system, e.g., by presenting a real file listing with honeytokens in
it. We ask participants to mark what they would try to exploit
and where they spot potential traps. This allows us to measure
the enticingness of various Cyber Deception Techniques (CDTs)
in a fast and controlled manner. To bridge the gap to an actual
technical implementation of CDTs within a software system, we
introduce HoneYAML. We describe traps in our questionnaires
with HoneYAML, but also use it to directly configure deception
products. HoneYAML further allows us to clearly define traps and
conduct easily reproducible experiments with them. We contribute:

(1) A method to test the enticingness of CDTs (§3).
(2) A translation of 13 previously researched [88, 87, 54, 77, 75,

83, 82] and 12 self-defined CDTs, into HoneYAML: A high-
level, machine-readable specification of CDTs (§4.2).

(3) Honeyquest: A flexible open-source1 tool for setting up
studies that measure the enticingness of CDTs (§4.3).

(4) Results of a human subject study using Honeyquest: We
show 47 humans 80 neutral, 23 risky, and 71 deceptive
components of a web application (§6). Our results validate
many previous findings and also unveil new insights (§7).
Raw data from that study is available in our repository.

2 Problem Statement
Ultimately, we want to use cyber deception to defend against adver-
saries. But first, we highlight the problem of designing reproducible
experiments to measure the enticingness of CDTs. Then, as a case
study, we consider CDTs that can secure web applications.

1https://github.com/dynatrace-oss/honeyquest

2.1 Lack of Reproducible Experiments
Experiments on deceiving humans necessarily involve real humans,
which makes conducting and replicating such studies challenging.
Han et al. [55] point out that “it is often impossible to test deception
techniques offline” and that “[properties for achieving effective de-
ception] are difficult to formalize and measure”, which contributed
to a widespread “lack of reproducible experiments” [55, Sec. 6-7].

To alignwith and replicate prior work (§7.3), we looked for works
that provided at least three ingredients: (1) A detailed description
of the tested CDTs beyond vague terms like “honeyfiles”. (2) A
quantitative evaluation of the effectiveness of these CDTs, beyond
assumptions about attacker behavior. (3) A report on the results
obtained, beyond aggregate statistics. We found most of these items
in seven works [88, 87, 54, 77, 75, 83, 82], whose findings we could
hence validate at least partially. Further work often lacked some
details for confidentiality reasons. These items also inspired us
to define CDTs with HoneYAML, have a theoretically-grounded
approach to measure enticingness, and open-source raw results.

2.2 Defending Threats with Cyber Deception
We consider adversaries in cloud environments in the reconnais-
sance phase of an attack [66]. They may aim to establish a foothold
on a system or are already inside it, trying to move laterally to
complete their mission. Our work proposes a novel approach to
evaluate what CDTs are most effective against adversaries at this
stage of an attack, by measuring how well they entice attackers.

To demonstrate feasibility, we study four components of a web
application, where CDTs can be applied. We chose these four be-
cause they are “mostly invisible to benign users” [54] and will not
interfere [22] with legitimate activities:
• File system. Honeyfiles like “keys.txt” that appear sensitive,
allow us to detect unauthorized access attempts.
• .htaccess files configureApache servers. These should never
be publicly accessible. We deliberately expose these files with
sensitive paths in them (e.g., to a fake admin site) and detect
attackers who access these paths.
• Attackers might observe HTTP response packets by prob-
ing endpoints. If we add HTTP headers that are indicative of
known vulnerabilities, we aim to lure attackers into trying
unsuccessful exploits for them.

2

https://github.com/dynatrace-oss/honeyquest
https://github.com/dynatrace-oss/honeyquest

Honeyquest: Rapidly Measuring the Enticingness of Cyber Deception Techniques with Code-basedQuestionnaires RAID 2024, September 30-October 02, 2024, Padua, Italy

• Attackers could monitor all HTTP requests of an applica-
tion. By adding fake tokens to those requests, we aim to lure
attackers into using them for subsequent attacks.

A deception systems can be structured into decoys and cap-
tors [35]. Decoys are the entities being attacked, e.g., a honeytoken,
while captors perform the security-related functions, e.g., logging
and alerting on access attempts. Our work focuses solely on the
evaluation of decoys, which we call CDTs. Decoys and captors can
be readily implemented: [60] Creating files is trivial in most operat-
ing systems. Monitoring access attempts to them can be achieved
with architectures such as SELinux [69]. Intercepting, modifying,
and monitoring HTTP packets is often achieved with a reverse
proxy in front of applications [54, 16, 21, 44, 87, 78].

3 Measuring the Enticingness of Cyber
Deception Techniques

This section presents an approach to quantify the enticingness
of CDTs. This lays the groundwork for the design of Honeyquest
(Figure 2) in §4, and its evaluation in §5.

3.1 Queries, Labels, Marks, and Annotations
In the reconnaissance phase, attackers explore their target. While
probing our system, they might find certain properties depending
on the technique used, i.e., they gain different “views” of our system.

Assume that an attacker has already managed to break into a
container. They might perform the naive technique of “listing files”
and observe Listing 1. In Honeyquest, we call this a query. A query
is just plain text, i.e., a collection of lines.

drwxr-xr-x 25 elsa 4.0K Dec 30 08:36 .
drwxr-xr-x 4 root 4.0K Jun 21 2019 ..
-rw------- 1 elsa 57K Jan 13 14:48 .bash_history
-rw-r--r-- 1 elsa 3.5K Sep 17 2017 .bashrc
drwx------ 6 elsa 4.0K Sep 25 17:40 .config
drwxr-xr-x 6 elsa 4.0K Nov 14 09:08 .npm
drwx------ 6 elsa 4.0K Nov 14 09:12 .yarn
-rwxr-xr-x 1 elsa 3.9K Dec 5 16:02 buildcsv.py
-rw-r--r-- 1 elsa 12K Feb 6 2022 keys.json

Listing 1: A “file system” query with CDT DF3 injected in it.

We are now curious about the next move of an adversary. In a file
system, possible actions may be reading a file, visiting a directory,
or doing nothing at all. So we allow our adversary to place either
exploit marks or trap marks on each line in a query. Not

marking anything is also a valid action – and the default, since no
lines are marked initially. Placing an exploit mark means that an
adversary sees a potential security weakness on that line. When
presented with a file system, this signifies that the adversary would
like to examine the file or directory on that line or attack it somehow.
On the other hand, marking something as a trap means that an
adversary definitely wants to avoid interacting with that line. In a
file system, this would mean that these particular files must not be
opened in order to avoid triggering an alarm.

Adversaries may want to try the most promising attack vector first.
To let them express this, we number answer marks in the order in
which they are placed on a line. These numbers are also visible to
the user (Figure 6). This feature allows us to find out which parts
of a query attract an adversary’s attention first (§3.2.2).

𝑞𝑁
neutral query

𝐿𝑅, 𝑞𝑅
risky query

a𝐸𝑥
exploit
marks

a𝑇𝑟
trap
marks

Honey
QuestD(𝑞; 𝑇)

𝐿𝐷 , 𝑞𝐷
deceptive
query

techniques 𝑇

Figure 2: In Honeyquest, users are presented with neutral,
risky, and deceptive queries. A line annotation set 𝐿 indi-

cates the risky or deceptive lines in the associated query 𝑞.
An answer marks vector a holds placed marks in order. The
probabilistic algorithm D(𝑞; 𝑇) makes queries deceptive.

To summarize, we imitate views on systems, frame them as
queries, and let users mark what they want to exploit or avoid, in
order. Recalling that one defined goal of cyber deception is “tricking
[adversaries] into taking (or not taking) actions that are not in
their favor” [108, 110, 102], and that “enticement depends upon the
attacker’s intent or preference” [24], we are interested in queries,
where adversaries mark the deceptive elements to be exploited, and not
to be avoided, thus falling for a trap. This expresses the “enticement”
property from Bowen et al. [24] with exploit and trap marks.

Each query has a label that indicates which of these three strate-
gies (§5.1) was followed in its design:
• Neutral queries may be harmless, secure, benign, well-
protected, or of neutral appearance.2
• Risky queries may be harmful, insecure, malicious, lack
security measures, or have negative intent. Here, the system
owner bears that risk, not the adversary.3
• Deceptive queries want to grab the attention of an adver-
sary, often by seeming risky. They contain CDTs.

Risky and deceptive queries have so-called line annotations,
which store the exact line numbers that are risky or deceptive.

Put together, we get Honeyquest (Figure 2). Honeyquest shows
users queries of different types and labels, where they can mark
every line with exploit marks, trap marks, or nothing at all.
Deceptive queries are created by modifying a neutral or risky query
(§4.2). For example, in a file system query, we might purposefully
add a “keys.json” entry as a trap. Later, in a deployed deception
system, we would monitor if a potential adversary accesses this
file or tries to use one of the fake passwords that we deliberately
placed inside of it for authentication.

Careful readers may find that it is often impossible to tell with-
out context (e.g., implementation details) whether certain query
elements are risky or deceptive. This is true, and is why we do not
evaluate if users accurately identify a query’s label, but what parts
of a query users perceive as exploitable or deceptive.

2We intentionally chose the term “neutral” over “benign”, because we do not want to
imply the positive connotation that “benign” typically expresses.
3We have deliberately chosen not to use the common terms “malicious” or “vulnerable”.
Maliciousness expresses a harmful intent, which can rarely arise from a textual query
alone. Vulnerabilities are commonly defined as weaknesses that might be exploitable.
So while our risky queries could be interpreted as “weaknesses”, we do not want to
imply that they are exploitable.

3

RAID 2024, September 30-October 02, 2024, Padua, Italy Kahlhofer et al.

3.1.1 Matching Answer Marks and Line Annotations. After users
have placed their marks, we want to determine if they identified
potential traps or risks. In other words, we just check if answer
marks intersect with line annotations.

Table 1 introduces some terminology to express that clearly.
The set 𝐿 reflects the “ground truth” labels, and the set 𝐴 holds
user’s answer marks. We later specialize the notation by talking
about deceptive or risky line annotations, 𝐿𝐷 and 𝐿𝑅 , respectively,
and about exploit and trap marks, 𝐴𝐸𝑥 and 𝐴𝑇𝑟 , respectively.
When we need the order in which the marks have been placed,
we will refer to the vectors a𝐸𝑥 and a𝑇𝑟 instead. Table 2 shows an
example of a query that uses this terminology.

Consider a user answering a deceptive or risky query. A sim-
ple way to express that “answer marks 𝐴 match line annotations 𝐿”
is to check whether they intersect:

✓ match : 𝐿 ∩𝐴 ≠ ∅ ✗ no match : 𝐿 ∩𝐴 = ∅ (1)

This matching criterion is sufficient for our experiment and
is also well suited for expressing results with typical confusion
matrices (Appendix A). It has the small drawback that answers that
intersect the line annotations only partially are also “matching”.
Even worse, answers that place marks on every single line will
always intersect – and therefore “match” – with every possible
set of line annotations. However, in our experiment, only 0.19%
of answers had marks on every single line. Further, only 0.82%
of answers marked risky or deceptive lines only partially. This is
not surprising, since only 6.82% of risky queries and only 4.55% of
deceptive queries in our current dataset have more than one line
annotated anyway.We therefore conclude that this simple matching
criterionwill not significantly bias our results. Appendix B discusses
alternative matching criteria for different experimental conditions.

3.2 Research Questions
We differentiate between the enticingness of deception by itself,
in the sense that humans fall for traps (Aspect A), and its ability to
be defensive, by deliberately diverting attention (Aspect B). Thus,
we ask the following research questions:

Table 1: Terminology and common specializations.

Queriesa 𝑞𝑁 ∈ 𝑄𝑁 , 𝑞𝑅 ∈ 𝑄𝑅, 𝑞𝐷 ∈ 𝑄𝐷

Techniquesb 𝑡 ∈ 𝑇
Line Annotations 𝐿 := {ℓ1, ℓ2, ...} 𝐿𝐷 , 𝐿𝑅

Answer Marksc a := (𝑎1, 𝑎2, ...) a𝐸𝑥 , a𝑇𝑟
𝐴 := {𝑎1, 𝑎2, ...} 𝐴𝐸𝑥 , 𝐴𝑇𝑟

Algorithmd 𝑞𝐷 ← D(𝑞; 𝑇) ∈ 𝑄𝐷 with 𝑞 ∈ 𝑄𝑁 ∪𝑄𝑅

Query and Annotation Types: N = Neutral. R = Risky. D = Deceptive.
Answer Types: Ex = Exploit. Tr = Trap.

a All query sets are pairwise disjoint.
b We use the terms technique and CDT interchangeably throughout the paper.
c a is a vector since users place marks in order. For equations that do not need
ordered marks, we define𝐴 as the set of unique elements from a.

d The probabilistic algorithm D makes a query 𝑞 deceptive, by selecting a suitable
but random element from 𝑇 and applying it to 𝑞. Our experiments chose the
particular technique 𝑡 manually for consistency with 𝑞.

“To what degree are humans enticed by deceptive elements,
true weaknesses and vulnerabilities, and will deceptive ele-
ments divert their attention away from true risks?”

This section formulates hypotheses on that question. We then
select CDTs and risks for testing (§5), and then report (§6) and
discuss (§7) results that answer this question.

3.2.1 Aspect A: To what degree are humans enticed by deceptive
and risky elements? Consider that we show humans neutral (𝑄𝑁),
deceptive (𝑄𝐷), and risky (𝑄𝑅) queries. We know which tech-

nique 𝑡 was used to create deceptive queries and which risk is
present in the risky ones (§5). To measure the enticingness of in-
dividual CDTs, we group answers by CDT and count how often
participants fell for traps, detected traps, or did not react to traps.
Likewise, for risks, we group by risks and count how often partic-
ipants detected risks, have mistaken risks for traps, or did not react
to risks. Appendix C lists the explicit formulation of those counts.

3.2.2 Aspect B1: Do humans exploit deceptive elements before
non-deceptive elements? Let 𝑞𝐷 ∈ 𝑄𝐷 be a deceptive query with
deceptive lines 𝐿𝐷 where more than one exploit mark was placed,
i.e., |𝐴𝐸𝑥 | > 1. As before, we assume that a human “fell for a trap”
when exploit marks intersect deceptive lines, i.e., 𝐿 ∩𝐴𝐸𝑥 ≠ ∅.
Remember that participants were instructed to place marks in
an order that indicates what they would like to exploit first. Let
𝑎′ ∈ 𝐴𝐸𝑥 ∩ 𝐿𝐷 be the first exploit mark that marked a deceptive
line and let 𝑎′′ ∈ 𝐴𝐸𝑥 \ 𝐿𝐷 be the first exploit mark that marked a
non-deceptive line. 𝑎′′ may be a risky or neutral line then. Let 𝑑′

𝐵
be

the number of times that 𝑎′ is ranked before 𝑎′′ out of 𝑑
𝐵
samples

where all of these aforementioned conditions hold.
We can phrase this null hypothesis 𝐻0: When users place exploit

marks𝐴𝐸𝑥 that intersect with deceptive lines 𝐿𝐷 , whether 𝑎′ or 𝑎′′
is ranked first is up to chance. We chose a Binomial test that tries
to reject 𝑡 = 1/2 with the one-sided alternative that 𝑡 is greater.4

𝑡 =
𝑑′
𝐵

𝑑
𝐵

∼ 𝐵(𝑑𝐵, 1/2) (2)

4We used the binomtest function from SciPy [100] and computed the test’s power
with the binom.power function from the binom package [32].

Table 2: Query with line annotations and answer marks.

Line Annot. # Query Line Ans. Marks

𝐿𝑅 = {3} a𝐸𝑥 = (4, 3)
𝐿𝐷 = {4} a𝑇𝑟 = (2)

1 HTTP/1.1 200 OK

2 Server: Apache/2.4.1 𝑎1
𝑇𝑟

= 2
ℓ1
𝑅
= 3 3 X-Powered-By: PHP/5.1.6 𝑎2

𝐸𝑥
= 3

ℓ1
𝐷
= 4 4 X-Api-Server: /hko/api 𝑎1

𝐸𝑥
= 4

Description: A deceptive “HTTP response” query𝑞𝐷 with one risky (RP3, true
vulnerability, purple) and one deceptive (DP3, injected weakness, orange) line
annotation. The resulting query contains a true vulnerability as well as a trap.
Answer Marks: A user placed three marks here. A trap mark in line 2 that
was no trap, an exploit mark in line 3 on the true vulnerability, and another

exploit mark in line 4 on the trap. The order indicates that our user would
exploit line 4 first, and therefore fall for the trap first.

4

Honeyquest: Rapidly Measuring the Enticingness of Cyber Deception Techniques with Code-basedQuestionnaires RAID 2024, September 30-October 02, 2024, Padua, Italy

A greater ratio hints at a greater preference to mark traps first.
This formulation is equivalent to the “believability” property for
“a perfect decoy [...] that is completely indistinguishable from one
that is not”, as proposed by Bowen et al. [24].

3.2.3 Aspect B2: Are deceptive elements diverting an attacker’s
interest away from risky elements? Instead of looking at what is
marked first, we test if the presence of deception is so distracting
that an attacker misses weaknesses and vulnerabilities entirely.

Consider that we have a set of risky queries 𝑄𝑅 . Let 𝑞𝑅 ∈ 𝑄𝑅

be a risky query with risky lines 𝐿𝑅 . From that query, we derive
a new deceptive query 𝑞𝐷 = D(𝑞𝑅 ; 𝑇) with deceptive lines 𝐿𝐷
and risky lines 𝐿′

𝑅
. Note that we only introduce 𝐿′

𝑅
because making

a query deceptive means that we insert new lines, which could
also change the line numbers of risky lines. We now present 𝑞𝑅
and 𝑞𝐷 to each participant (within-subject) and record the exploit
marks 𝐴𝐸𝑥 that each of the two queries receives. As in all our
experiments, we assume that a human has “interest in exploiting a
line” when exploit marks intersect risky lines.

We phrase this null hypothesis 𝐻0: When we show participants
a risky query 𝑞𝑅 and a derived deceptive query 𝑞𝐷 , there is no dif-
ference in what they mark to exploit, i.e., the presence of deceptive
lines does not distract them.

Table 3 formulates this with a 2 × 2 contingency table over two
factors: “Did the participant mark the risky lines 𝐿𝑅 to exploit in the
risky query 𝑞𝑅” (“before” condition), and “did the (same) participant
mark the risky lines 𝐿′

𝑅
to exploit in the derived deceptive (and

still risky) query 𝑞𝐷 ” (“after” condition). To draw an analogy, think
of deception as being the treatment for risky queries, where the
disease “breaks out” when patients detect the risk. We test if the
“deception treatment” effects the “disease break-out”.

Table 3: Contingency table on attention diversion.

Match in 𝑞𝐷? Match in 𝑞𝑅? (“before”)

(“after”) ✗ 𝐿′
𝑅
∩𝐴𝐸𝑥 = ∅ ✓ 𝐿′

𝑅
∩𝐴𝐸𝑥 ≠ ∅

✗ 𝐿𝑅 ∩𝐴𝐸𝑥 = ∅ 𝛼 𝛽

✓ 𝐿𝑅 ∩𝐴𝐸𝑥 ≠ ∅ 𝛾 𝛿

Legend: A ✗ cross-mark indicates that answer marks𝐴𝐸𝑥 do not intersect with
risky lines. A ✓ check mark indicates that they do intersect / match.

Our two factors and the single outcome are nominal, and our
subjects are paired because every participant sees both 𝑞𝑅 and 𝑞𝐷 .
This scenario is usually tested with aMcNemar’s test [70] and a two-
sided alternative hypothesis. The one-sided alternative hypothesis
that the presence of deception reduces the risk of marking risky
lines is a Binomial test [36] with the following test statistic:

𝑡 =
𝛾

𝛽 + 𝛾 ∼ 𝐵(𝛽 + 𝛾, 1/2) (3)

To make this more intuitive, we compute the relative risk that de-
scribes how much the risk that humans mark risky lines is reduced
(or increased), when deceptive lines are present:

RR =
Pr(Match in 𝑞𝐷)
Pr(Match in 𝑞𝑅)

=
Pr(𝐿′

𝑅
∩𝐴𝐸𝑥 ≠ ∅)

Pr(𝐿𝑅 ∩𝐴𝐸𝑥 ≠ ∅) =
𝛽 + 𝛿
𝛾 + 𝛿

4 Prototype Design
Honeyquest, which is our tool to run interactive questionnaires,
uses the three query labels neutral, risky, and deceptive and
our four query types, as shown in Table 4. We generate deceptive
queries with HoneYAML files, our description language for CDTs.

4.1 Risky Queries
There are three types of risky queries, inspired by MITRE’s three
knowledge bases (CVE for vulnerabilities [67], CWE for weak-
nesses [68], and CAPEC for attack patterns [20]):

• Vulnerability queries contain at least one indicator in the
query that points to a known vulnerability.
• Weakness queries display an insecure pattern that might
lead to a vulnerability.
• Attack queries showcase a deliberate attempt to do harm,
often by exploiting a vulnerability or weakness.

The risky query in Table 4 is an example for a vulnerability
query by indicating that the server is running Apache 1.0.3, which
is vulnerable to CVE-1999-0067. Participants are not expected to
know this, but to be suspicious of the version text.

Weaknesses on the other hand may lead to vulnerabilities. List-
ing 2 shows an example that is indicative for a potential path tra-
versal weakness (CWE-22) in a web application. In this example, it
appears that a user can potentially control the “file” parameter to
request arbitrary files from the remote server file system.

GET /view?file=../Overview.php
Host: github.io
User-Agent: curl/7.68.0
Accept: */*

Listing 2: A risky “HTTP response” query of risk type “weak-
ness” which inspired us to derive CDT DS4 from that risk.

To obtain an attack query, we can change the query parameter
in Listing 2 to something like file=../../etc/passwd and make
it look like a concrete path traversal attack (CAPEC-126).

4.2 Deceptive Queries and HoneYAML
While dry-running deception experiments is valuable, ultimately,
wewant to deploy them into real systems. To build a bridge to future
work we designed a specification for CDTs that we use to make
queries deceptive and which also serves as a configuration for tools
that can deploy them [73, 60].We envisionHoneYAML to become an
enumeration of CDTs some day, much like we have an enumeration
of Common Vulnerabilities and Exposures (CVEs) [67].

Listing 3 shows how to define a CDT that adds a deceptive HTTP
header. Within Honeyquest, the implementation of the “decoy-
apiserver” CDT (DP3) that we show here is simply inserting a new
line in the query payload. The resulting query will be labeled as de-
ceptive, regardless of its original type. Our open-source repository
contains all HoneYAML specifications that we created. Real-world
systems that add deceptive elements to the HTTP protocol often use
reverse proxies to do so [54, 16, 21, 44, 87, 78]. The same HoneYAML
specification can be used to first evaluate CDTs with Honeyquest
and later configure proxies.

5

https://nvd.nist.gov/vuln/detail/CVE-1999-0067
https://cwe.mitre.org/data/definitions/22.html
https://capec.mitre.org/data/definitions/126.html
https://github.com/dynatrace-oss/honeyquest

RAID 2024, September 30-October 02, 2024, Padua, Italy Kahlhofer et al.

Table 4: One representative example for each of the four query types in Honeyquest.

Risky HTTP response P query (with vulnerability RP2) Deceptive file system F query (with technique DF3 injected)
HTTP/1.1 200 OK
Date: Tue, 02 May 2018 04:32:14 GMT
Server: Apache/1.0.3 (Debian)
Vary: Accept-Encoding
Content-Type: text/html

drwxr-xr-x 25 elsa 4.0K Dec 30 08:36 .
drwxr-xr-x 4 root 4.0K Jun 21 2019 ..
-rw------- 1 elsa 57K Jan 13 14:48 .bash_history
drwx------ 6 elsa 4.0K Sep 25 17:40 .config
-rw-r--r-- 1 elsa 12K Feb 6 2022 keys.json

Deceptive .htaccess fileH query (with CDT DH1 injected) Neutral HTTP requests S query
<IfModule mod_rewrite.c>

RewriteEngine on
Redirect 301 "/admin" \

"/plugins/kul/panel?role=view"
</IfModule>

0.120 POST https://shop.com/rest/user/export 200 OK (0.4 kB)
0.215 GET https://shop.com/rest/image-captcha/ 200 OK (4.1 kB)
0.381 GET https://shop.com/rest/user/whoami 200 OK (0.1 kB)
2.031 GET https://shop.com/rest/history 200 OK (30 bytes)
2.876 GET https://shop.com/api/Quantitys/ 200 OK (0.6 kB)

Legend: Purple shades indicate risky lines and orange shades indicate deceptive lines.
P HTTP response queries show HTTP response headers, but always without any payload.
F File system queries show the output of the UNIX command ls -lah, which lists all files in the current working directory and their metadata.
H .htaccess filequeries show the configuration directives in an .htaccess file, which is used to configure Apache web servers.
S HTTP request queries show requests made by a web application: Seconds since load, method, URL, response status code, and response size, unless empty.

kind: httpheader
name: decoy-apiserver
description: Header that points to an API endpoint
operations:

- op: add
key: X-Kube-ApiServer
value: /hko/api

Listing 3: A HoneYAML specification for CDT DP3.

Because it is smart to imitate risks in deceptive queries, we might
generate deceptive queries that look similar to risky ones. This is
fine, as labels only say something about design strategies anyway.

4.3 Honeyquest
Honeyquest is a web-based application. Queries are read from a
pre-computed query store that we have prepared from different
sources (§5.1). New users experience the following:

(1) We ask for consent to collect anonymized data.
(2) We show them eight tutorial queries to teach them about

queries, labels, and marks (Appendix E.7).
(3) We collect profile information (§5.2 and Appendix E.4).
(4) We sample one random query after another until we run

out of queries. Queries are never shown twice to the same
user. We also made sure that the first 100 queries included
an equal number of neutral queries, deceptive queries with
all possible CDTs, and risky queries with all possible risks.

5 Experiment Design
This section summarizes the queries that we tested, the CDTs and
risks we injected, and how we recruited participants.

We pre-tested the tutorial queries (Appendix E.7) with two col-
leagues who did not participate in the actual experiment. All of our
19 risks and 13 of our 25 CDTs were indirectly pre-tested because
they had been used successfully in previous work. Nevertheless,
we consulted domain experts who did not participate in the actual
experiment to pre-test all the risks and CDTs that we developed.

5.1 Query Design
Our dataset consists of a total of 174 queries (Figure 3). We first
collected 80 neutral queries. We then browsed through well-known
vulnerabilities and weaknesses in web applications and manually
derived 23 risky queries. Many risky queries were built by taking a
neutral one and adding indicators of risks. A total of 71 deceptive
queries were generated with the method explained in §4.2.

File System .htaccess Files HTTP Responses HTTP Requests
0

10

20

30

40

C
ou

nt

12 10

27
31

18

5

23 25

6 8 9

Neutral
Deceptive

Risky

Figure 3: Distribution of neutral, deceptive, and risky labels.

Since we wanted to test many interesting risks and CDTs, we
did not aim for a perfectly balanced dataset. However, this is not a
problem because we do not evaluate metrics such as accuracy that
would be sensitive to imbalanced datasets.

5.1.1 Design of Neutral Queries. Every single query in our open-
source dataset carries a reference to its original source. Most were
collected from the following real-world environments:
• 12 file system payloads capture the output of the ls -lah
command in the home directories of a few servers, containers,
and personal computers in our lab. Sensitive content was
manually anonymized or removed.
• 10 .htaccess files were randomly picked by searching for
“.htaccess” in open-source projects with Sourcegraph.5
• 27 HTTP responses were randomly sampled from the
“500K HTTP Headers” dataset [53] that crawled the HTTP

5https://sourcegraph.com/search

6

https://github.com/dynatrace-oss/honeyquest
https://github.com/dynatrace-oss/honeyquest
https://sourcegraph.com/search

Honeyquest: Rapidly Measuring the Enticingness of Cyber Deception Techniques with Code-basedQuestionnaires RAID 2024, September 30-October 02, 2024, Padua, Italy

responses from the 500,000 most-visited websites in 2014, as
ranked by the now discontinued company Alexa Internet.
• 31 sets of HTTP requests were gathered by manually
using the websites of popular web services and recording all
HTTP requests that happened. We recorded traces for the
websites of Amazon, Dropbox, Dynatrace, GitHub, Gmail,
Google, Jira, the OWASP Juice Shop [94], TikTok, Wikipedia,
and YouTube. Sensitive fields, names, and identifiers were
manually anonymized or removed.

5.1.2 Design of Deceptive Queries. We manually picked and de-
signed 25 CDTs: 12 were self-defined and 13 have been mentioned
or evaluated in previous work. Table 9 lists all of them.

5.1.3 Design of RiskyQueries. Most of our 19 risks are designed to
resemble the categories of the OWASP Top 10 [96] and OWASP API
Security Top 10 [95]. Some were inspired by OWASP ZAP security
scanner rules [97]. Table 6 explains each risk with an example.

5.2 User Study Details and Ethics
We carefully reviewed our experiment to conform to ethical stan-
dards, protect the privacy of all participants, and follow best prac-
tices in user research [89]. Our institution has no IRB, so we instead
conducted an ethics self-assessment [34] and obtained approval
from our legal and privacy counsel. More details of the user study
and ethical considerations are described in Appendix E.

Participants were recruited by posting messages to Slack chan-
nels of security professionals and to a Mattermost server of a local
CTF team. 77 volunteers responded to that message and started the
experiment. We had to discard all answers from 30 of them because
they answered fewer than 8 warm-up queries (consisting of two
pre-selected queries for each of the four query types; same for each
participant), which left us with 47 participants: 12 CTF players,
where most of them are graduate students, and 35 security profes-
sionals, where most of them build enterprise security products. The
skills of this target audience are very similar to those of real attack-
ers. Unlike typical user studies on cyber security [55, 11], our study
only had 11% students. Demographics, consent collection, timeline,
and the preceding tutorial queries are described in Appendix E.

During the experiment, we collected self-reported profile infor-
mation, and recorded how long it took users to answer queries. No
personally-identifying information was collected. Participants were
informed about the purpose of the experiment, about the presence
of neutral, deceptive, and risky queries, and about their option to
stop answering queries at any time, without negative consequences
and without giving reasons. Participants were allowed to continue
where they left off by visiting our web application again. In a second
run of the experiment with 22 security professionals, participants
could win a 50€ Amazon gift card in a lottery, if they answered at
least 50% of the queries. All others received no incentives to partic-
ipate. Security professionals were allowed to do this during their
work time, CTF players participated in their free time without any
compensation. Participants did not receive a performance report
and where never informed if their answer marks were “correct”.

Participants could comment on any query during the experiment
and those that were freely disclosing their identity in the comments
were invited to discuss them with us (§7.4).

6 Results
Our 47 participants answered 3,669 queries in total (Figure 4). All of
them answered at least 8 queries. Themedian answer time per query
was 19 seconds. Participants needed 45 - 60 minutes on average to
answer all 174 queries.

0 20 40 60 80 100 120 140 160 180

Figure 4: Boxplot on the number of answered queries per
participant. Total Queries = 174. Mean = 76. Median = 59.

The subscript on the following percentage numbers is the 95% CI
of the mean, calculated using Wilson’s method [105].
• Aspect A. (Table 5, 9, 6) Participants fell for traps in
37±2.4% of their answers. They recognized traps in 15±1.8%
of their answers. In 9±1.4% of answers to neutral queries,
they mistakenly classified something as a trap. Participants
correctly identified risks in 44±4.5% of their answers and
mistakenly classified something as a risk in 44±2.5% of their
answers to neutral queries.
• Aspect B1. (Table 9) Deceptive lines were marked first in
only 36% of answers. We cannot reject the null from §3.2.2,
i.e., participants did not prefer CDTs over other elements.
• Aspect B2. (Table 8) The presence of deception reduced
the risk of marking a weakness or vulnerability by 22%
on average. We tested this on a small set of 5 CDTs: The
null hypothesis from §3.2.3 can be rejected (𝛼 = 0.05) for all
techniques combined (𝑝 = 0.0013), and for techniques DP3
and DP1 alone. We cannot reject the null for the other CDTs.

Table 5: Results on the enticingness of neutral queries.

𝑘 𝑛 Mark Distribution

All Neutral Queries 80 1647 44%41%

File System 12 302 28%53%

.htaccess Files 10 195 63%31%

HTTP Responses 27 559 42%43%

HTTP Requests 31 591 47%37%

Description: Bars show the % of answers 𝑛 to neutral queries with 𝑛𝐸𝑥/𝑛
exploit marks, 𝑛𝑇𝑟/𝑛 trap marks, 𝑛∧/𝑛 exploit and trap

marks, 𝑛∅/𝑛 no marks at all. 𝑘 are the number of neutral queries. 𝑛 are the
number of answers (not marks) to them. Bars without percentage numbers account
for less than 15%. The tiny bars denote the 95% CI of that mean.

7 Discussion
This section discusses new insights about enticing and defensive
deception, compares our results to previous work, and points out
possible improvements for future experiments.

7.1 Aspect A: Enticing Deception
To discuss enticingness, we will begin to blur the distinction be-
tween traps and risks in this section. Ultimately, we do not want
attackers to be able to distinguish between them, but rather want
to learn how they react to certain query elements.

7

RAID 2024, September 30-October 02, 2024, Padua, Italy Kahlhofer et al.

Table 6: Results on the enticingness of risks.

Risk 𝑟 Mark Distribution

All Risky Queries 461 25%23%44%

File System 166 31%51%

RF1 private-key.pem 27 26%67%

RF2 backup.tar.gz 57 23%61%

RF3 salphard.ovpn 27 48%41%

RF4 k8s-manifests (directory) 28 43%39%

RF5 ddns-update-key 27 44%15%33%

HTTP Responses 155 24%15%54%

RP1 Proxy-Auth.: Basic ... 26 19%69%

RP2 Server: Apache/1.0.3 50 18%20%62%

RP3 X-Powered-By: PHP/5.1.6 39 21%59%

RP4 HTTP Request Smugglinga 13 23%15%54%

RP5 Referer: https://... 27 45%33%15%

HTTP Requests 140 49%20%26%

RS1 Brk. Fun.-Lvl. Auth.: Unauthenti-
cated user requests privileged data

12 83%

RS2 Password Hash Parameter, e.g.,
?user=maltier&hash=...

12 75%

RS3 Mass Assignment (as in DS10) 11 46%45%

RS4 Brk. Obj.-Lvl. Auth.: User can re-
quest sensitive data from other user

12 58%17%25%

RS5 /log?msg=... Endpoint 27 51%26%19%

RS6 /api.dev Endpoint 12 16%50%17%17%

RS7 Huge Payload Sizes 12 92%

RS8 Mixing HTTP with HTTPS 30 57%33%

RS9 NoSQL Injection 12 83%17%

Aspect A: Bars show the % of answers 𝑟 that 𝑟𝐸𝑥/𝑟 match exploit
marks (= “risk detected”), 𝑟𝑇𝑟/𝑟 match trap marks (= “risk mistaken for
trap”), 𝑟△/𝑟 placed marks elsewhere, 𝑟∅/𝑟 had no marks at all. 𝑟 are the
number of answers (not marks) to queries with this risk. Bars without percentage
numbers account for less than 15%. The tiny bars denote the 95% CI of that mean.
Risk Presence: In our dataset, every risk was present in exactly one query, with
the exception of RF2 (2x), RP3 (2x), and RP2 (3x). This explains the relatively higher
number of answers 𝑟 on those three risks.

a HTTP request smuggling exploits how web servers handle HTTP requests, such
that they initiate illegitimate requests.

Enticing deception should be neither too obvious nor too
camouflaged. Our participants were most tempted to exploit au-
thentication (passwords, tokens, hashes, cookies) and configuration
elements. But, obvious elements like a “passwords.txt” file (DF5) or
parameters with clear-text passwords (DS2), while still being com-
parably enticing, were often recognized as traps (all ≥ 36%). On the
other end, harder-to-find traps or risks like a logging endpoint or
mass assignment weaknesses (DS11, DS10) were rarely discovered,
neither as something to exploit (all ≤ 14%) nor as a trap (all ≤ 3%).
Sahin et al. also observed that more complex risks were tried less
often in their CTF experiment [88].

In our file system queries, we saw that filenames containing the
terms “backup”, “config”, “ovpn”, or “k8s-manifests” received less

trap marks than more obvious terms like “key” or “password”.
This makes us believe that CDTs should be neither too obvious nor
too camouflaged. Han et al. also speculated that the placement of
CDTs should be neither too sparse nor too aggressive [54].

Imitating true risks is a promising method for designing
deceptive elements. Our participants placed significantly more
exploit marks on true risks than on traps (44±4.5% vs. 37±2.4%;

𝜒2-test, 𝑝 = 0.0076, 𝑛 = 2022). This is reasonable, since true risks
should be more enticing than traps, but, it shows that the best traps
may need to only imitate true risks. This strengthens the idea pro-
posed by Araujo et al. [16] on “honeypatching” true vulnerabilities
such that they are technically fixed but still respond as if they were
vulnerable when attacked.

Specifically, in our HTTP response and HTTP request queries,
true risks like outdated Apache or PHP versions (RP2, RP3) and
password hashes in a parameter (RS2) were more often exploited
(all ≥ 59%) than deceptive tokens or cookies (DP1, DP2) in header
fields (all ≥ 40%). Please note that findings for RP3 and RP2 might
include a bias since we showcased similar risks in the tutorial, but
without disclosing whether they are risky or deceptive. Also, the
path traversal trap (DS4) was part of the tutorial but was surpris-
ingly rarely identified as a trap (14±6.1%) in the actual experiment.

Letting participants placemarks on individual lines proves
valuable for inventing new CDTs. Instead of only imitating
known risks that received many exploit marks, we can also
devise new traps by looking at what marks individual lines received
(Table 10, 11). For example, filenames “.ssh”, “.bash_history”, and
“data.csv” received 260, 151, and 32 exploit marks, respectively. All
of them had ≤ 7 trap marks, the “.bash_history” even had zero.
HTTP headers where version strings leaked Apache modules, e.g.
“mod_ssl/2.2.17”, received 32 exploit marks and only 6 trap marks.

Gaining such insights from otherwise neutral queries is possible
because Honeyquest lets participants place marks on individual
lines. We believe that this allows for more fine-grained analysis
without increasing participants’ cognitive load. Previous work of-
ten presented participants with pairs of questions (one knowingly
genuine, one knowingly deceptive), and asked them to find the
deceptive one [86, 78, 23, 83, 82]. Sahin et al. [86] let participants
choose between placing genuine and deceptive marks on HTTP
parameter names. It should be noted that Honeyquest’s trap
marks are most similar to their deceptive marks, but Honeyquest
distinguishes adversaries’ intentions further by letting participants
place either exploit marks or no marks at all. In Honeyquest, not
placing any mark could be interpreted as placing a genuine mark.

Multiple iterations of Honeyquest can inform the design
of more enticing CDTs. Our experiment is just the beginning of a
feedback cycle that can inform the design of future, more enticing
CDTs. Table 7 shows a possible ranking that would reward “enticing
traps” and punish “ineffective traps”. We see this as an early attempt
to rank enticement, useful for continuous experiments with humans
or for training autonomous agents.

Table 7: Reward matrix to maximize CDT enticement.

Qry. No Marks Trap Marks Exploit Marks

Legend: Arrow direction and strength indicate our subjective judgment on how
to rank enticement. ◀ = Less enticing. ▶ = More enticing.

8

Honeyquest: Rapidly Measuring the Enticingness of Cyber Deception Techniques with Code-basedQuestionnaires RAID 2024, September 30-October 02, 2024, Padua, Italy

7.2 Aspect B: Defensive Deception
Cyber deception is seen as an active form of cyber defense [56, 77,
111, 86]. Our results support and enrich this claim.

Some CDTs significantly reduce the risk of true weak-
nesses being exploited. Fascinatingly, we see that our partici-
pants were in fact distracted by the presence of deception (Table 8).
Adding “X-ApiServer” and “X-DevToken” headers (DP3, DP1) re-
duced the risk that participants marked the true vulnerability by
32% and 27%, respectively. The true vulnerabilities that were missed
due to the presence of the deceptive headers were vulnerable ver-
sions of Apache and PHP (RP2, RP3). In all cases where we have
obtained enough statistical power, we can measure a significant re-
duction in risk. Our findings demonstrate that cyber deception can
be an active form of cyber defense, reducing the risk of exploitation
of true system weaknesses. We see more tests on hypothesis like
this one as a promising direction for future work.

When participants fell for traps, the trap was not the first
thing they marked — at least not in Honeyquest. Surprisingly,
traps were clearly not what participants marked first for exploita-
tion (Binomial test, 𝑝 ≪ 0.001, 𝑛 = 313). We suspect that compara-
bly enticing neutral query elements or the exact location of a CDT
in the query (e.g., participants possibly read queries from top to
bottom) might explain this finding. Thus, we do not recommend
drawing conclusions from our participants’ order of actions. In-
stead, we believe that CTF experiments are more appropriate for
studying this aspect. However, to our knowledge, no CTF experi-
ment has investigated this question yet. Also, little can be said if
participants showed a preference to mark risks first, whenever they
placed their exploit marks. Risks were marked first in 49% of
cases (𝑛 = 136), which is not significantly different from random. In-
vestigating which factors influence participants’ mark preferences
may be an interesting direction for future work.

7.3 Replication of Prior Findings
Compared to existing work, namely [83, 82, 75, 87], our results seem
consistent. In all cases, we can enrich previous results. Appendix D
details how we aligned our results to previous work.

What rarely receivedmarks inHoneyquest, was also rarely
exploited in a real-world CTF game. In most CTF games [54, 87,
88], all exploitable elements had to be discovered by CTF players,
while ours were clearly presented to participants, which makes a
comparison unfair. Han et al. [54] primarily evaluated placement
strategies rather than specific techniques, thus, we refrain from
making a direct comparison to their results.

However, we can still partially align our results with previous
work. The SunDEW experiment [87] compared the elements that
participants considered deceptive in a questionnaire with the el-
ements with which the CTF players interacted (“considered de-
ceptive” ratio in parentheses): “username” (53%) and “role” (61%)
cookies, and deceptive GET parameters (7%). The ranking remained
the same in our experiment. 15±10.0% thought our cookie was decep-
tive (DP2) and 0±12.1% thought the IDOR trap was deceptive (DS1).
In a different CTF game by Sahin et al. [88] developers rarely tried
to modify the “Content-Type” header field (between 5% and 13% of
players). This is consistent with our results, where these headers
were only marked 3 times (0.05% of all marks).

Table 8: Resulting contingency table on defensive deception.

exploited before ✗ ✗ ✓ ✓

exploited after ✗ ✓ ✗ ✓

CDT 𝛼 𝛽 𝛾 𝛿 ▼ 𝑝-val. ▲ pwr. ▼ RR

All Techniques 120 9 28 59 0.0013 0.9090 -22%
DP3 API Server 19 1 9 16 0.0107 0.8415 -32%
DP1 Dev. Token 18 1 8 18 0.0195 0.7999 -27%
DP4 Proxy Referer 17 3 7 20 0.1719 0.3497 -15%
DS4 Path Traversal 43 2 3 4 0.5000 0.1038 -14%
DS3 SESSID Param. 23 2 1 1 0.8750 0.0598 +50%

Legend: Striked out tests violate the rule of thumb that all of the expected values
are greater than 5, making the test less informative [107].

Our most enticing filenames were also most enticing in
a real-world honeypot. Nikiforakis et al. [75] placed six files
on public file hosting services and recorded how often attack-
ers attempted to downloaded them. We showed three of them
to our participants (reported download attempts in parentheses):
“card3rz_reg_details.html” (22%), “customer_list_2010.html” (9%),
and “SPAM_list.pdf” (5%). The ranking remained the same in our
experiment, with 51±14.3% (DF4), 43±12.9% (DF6), and 17±9.6% (DF8)
of answers exploiting these names, respectively.

Our participants were also good at recognizing obvious
traps. Rowe et al. [83, 82] showed participants a genuine and a
deceptive file listing. Participants had to chose the one that “most
likely came from a real system”. 53.6% chose the real one. In our
experiment, 26±12.1% of answers marked traps in the deceptive
query (DF9) and 11±9.2% marked traps in the neutral one. This
reinforces the hypothesis that humans show a tendency to detect
traps for these specific queries.

Petrunić [77] proposed adding an “Admin=false” GET parame-
ter to network requests (DS5), but did not report measures on at-
tacker enticement. Our results showed that many answers wanted
to exploit that (37±13.0%). But, this trap might be too obvious with
22±11.4% of answers also seeing a trap in it.

Our participants were also subjectively aggressive when
placing marks. The work from Ferguson-Walter et al. provided ex-
perimental evidence that adversaries who know about the presence
of deception tend to act more aggressively than unaware adver-
saries [40]. In the past, the opposite was believed to be true, i.e.,
that deception is only effective when it is well hidden and attackers
are unaware of it [43, 83]. Results by Sahin et al. [87] also suggest
that informing attackers about deceptive measures deters them,
which ultimately benefits defenders. Our experiment did not intend
to provide evidence for or against this conjecture. What can be said
is that our participants placed an average of 1.8 marks per answer.
But, only 3.86% of all query lines were risky and only 3.62% were
deceptive. Some participants told us afterwards that they “thought
[that] every single query has a lot of traps in it” and that they
“better mark too much than too little”. This fits in with a challenge
mentioned later in §7.4, which is that some participants also felt the
urge to answer queries correctly. In a similar survey [86], partici-
pants mislabeled at least 10% of genuine parameters as deceptive.
This seems consistent with our results, where 9±1.4% of answers to
neutral queries saw traps in them.

9

RAID 2024, September 30-October 02, 2024, Padua, Italy Kahlhofer et al.

Table 9: Results on the enticingness of Cyber Deception Techniques (CDTs).

Aspect A (§3.2.1) B1 (§3.2.2)

CDT Representative Description 𝑘 𝑑 Mark Distribution 𝑑
𝐵

𝑑 ′
𝐵/𝑑𝐵

All Deceptive Queries 71 1561 25%23%15%37% 313 36%

File System CDTs add files with deceptive names to the file system 18 443 16%21%21%42% 139 39%
DF1 private-key.pem 2 32 22%66% 17 35%
DF2 backup.tar.gz 2 38 24%61% 19 42%
DF3 keys.json 3 86 26%52% 37 51%
DF4 card3rz_reg_details.html [75] 2 43 19%19%51% 15 47%
DF5 passwords.txt 2 41 49%46% 12 25%
DF6 customer_list_2010.html [75] 2 53 25%23%43% 17 29%
DF7 config.ini 2 45 20%40%38% 15 33%
DF8 SPAM_list.pdf [75] 2 58 17%45%21%17% 7 14%
DF9 Rowe et al. [83, 82] e.g., examples, gif_files, idlold, wizard, ... 1 47 57%19%15% 0 −

.htaccess Files CDTs add directives that seem to leak sensitive paths 5 128 21%54% 14 36%
DH1 Admin Redirect Redirect 301 "/admin" line leaks sensitive path 5 128 21%54% 14 36%

HTTP Responses CDTs add headers with deceptive tokens, cookies, paths 23 456 22%30%36% 103 24%
DP1 Developer Token X-DevToken header has JWT token with a secret key 7 137 15%20%55% 46 33%
DP2 Cookie [54, 87, 88] Set-Cookie header with admin=false in Base64 2 48 16%29%15%40% 13 38%
DP3 API Server X-ApiServer: /hko/api header leaks API path 7 134 30%30%30% 21 5%
DP4 Proxy Referer X-Proxy-Referer header exposes a fake server’s path 7 137 24%47%22% 23 17%

HTTP Requests CDTs add parameters or requests that imitate true risks 25 534 37%22%30% 57 53%
DS1 IDOR Secrets [87] Extra requests to a few /secrets/123 pathsa 1 12 42%58% 2 −
DS2 Clear-Text Pass. [88] Add ?user=john&pass=carrot13 to /login request 1 28 36%54% 12 67%
DS3 SESSID Param. [54] Add ?SESSID=odq... query parameter 2 58 18%26%16%40% 10 70%
DS4 Path Traversal [88] Add ?file=../dist/Aq.svg query parameter 5 122 27%20%39% 10 40%
DS5 Admin Param. [54, 77] Add ?admin=false query parameter 2 49 27%22%37% 6 50%
DS6 Unescaped JS [88] Add GET parameter with raw JS 2 21 57%33% 0 −
DS7 System Param. [54, 88] Add ?system=prod query parameter 1 28 42%25%29% 4 −
DS8 Developer Endpoint Add /api.dev requests 4 80 42%26%24% 6 33%
DS9 Unespaced JSON [88] Add GET parameter with raw JSON 2 22 40%32%23% 3 −
DS10 Mass Assignment Extra requests that set fields with GET parametersb 2 44 54%30% 2 −
DS11 Log Endpoint Add /log?msg=abc requests 3 70 59%31% 2 −

Aspect A: (§3.2.1) The best CDTs are the ones that participants often fall for (higher 𝑑𝐸𝑥/𝑑 ratio is better) and rarely avoid (lower 𝑑𝑇𝑟/𝑑 ratio is better). Bars show the
% of answers 𝑑 that 𝑑𝐸𝑥/𝑑 match exploit marks (= “fallen for trap”), 𝑑𝑇𝑟/𝑑 match trap marks (= “trap detected”), 𝑑△/𝑑 placed marks elsewhere, 𝑑∅/𝑑 had no
marks at all. 𝑘 are the number of queries in the dataset that had the associated CTD injected. 𝑑 are the number of answers (not marks) that these queries received. Bars without
percentage numbers account for less than 15%. The tiny bars denote the 95% CI of that mean.
Aspect B1: (§3.2.2) In the 𝑑𝐵 answers where participants placed multiple exploit marks, 𝑑 ′

𝐵
is the number of times that a deceptive line was marked before a non-deceptive

one. If there are at least 𝑑
𝐵
≥ 5 such cases, we perform a Binomial test on the null hypothesis that this ratio is random, i.e., 𝑑′𝐵/𝑑𝐵 = 1/2, with the one-sided alternative that

deceptive lines were marked first more often than random. No test was significant (all 𝑝 ≥ 0.1719) with 𝛼 = 0.05.
Aspect B2: (§3.2.3) The lightning bolt symbol indicates that this CDT was also evaluated on Aspect B2, but in Table 8.

a Insecure direct object references (IDOR) are vulnerabilities where potentially sensitive content can be retrieved by guessing (predictable) identifiers (IDs).
b Applications may automatically bind HTTP parameter names to fields in the underlying object, potentially enabling attackers to manipulate restricted fields.

Honeyquest is a useful tool for repeating cyber decep-
tion experiments in a sample-efficient and cost-effective way,
while still yielding qualitatively similar results to CTF experi-
ments. Compared to real-world deployments of CDTs, Honeyquest
is more cost-effective since it does not require the time and effort to
set up and maintain CTF experiments or honeypots. Experiments
are also more sample-efficient than others because participants can
answer a query within seconds instead of spending time on cod-
ing actual attacks. The decision-making processes of attackers and
humans in general also include fast – but, not necessarily correct –
heuristics [51, 61], which probably explains why participants can
respond quickly to most queries.

7.4 Challenges and Limitations
While our results are insightful and seem consistent with prior
research, we also faced several design challenges that we would
like to share with future researchers.

Designing cyber deception experiments that imitate real-
world scenarios presents many challenges. Some participants
questioned whether our results from Honeyquest generalize to the
real world since “participants will always behave differently in
surveys”. We argue that the tutorial (Appendix E.7), the four query
types that accurately represent the real-world “views” of an attacker,
and the participants’ ability to place both exploit and trap
marks are a reasonable approximation of a real-world scenario.

10

Honeyquest: Rapidly Measuring the Enticingness of Cyber Deception Techniques with Code-basedQuestionnaires RAID 2024, September 30-October 02, 2024, Padua, Italy

Table 10: Top 40 individual query lines, ranked by the total number of exploit marks that the line received.

exploit trap
ID Type Query Line 𝑛𝐸𝑥 𝑛𝑇𝑟

DP1 P X-DevToken: eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ0b2tlbiI6IjMwZDk4NGI4Iiwicm9sZSI6ImNsdXN0ZXIifQ.
J2c1XH2RsXDjaWJhCHSWR4bBNxEm7l2Q7WxrlG2vph4

76 27

F drwx------ 2 lpc lpc 4.0K Nov 2 09:21 .ssh 58 1
RP2 P Server: Apache/1.0.3 (Debian) 55 1

F drwx------ 4 leonard leonard 4.0K Jan 14 2022 .gnupg 48 1
F drwx------. 2 root root 4.0K Sep 27 19:30 .ssh 46 2

RP3 P X-Powered-By: PHP/5.1.6 41 9
P Set-Cookie: PHPSESSID=hLAGcA9qClz36kOr71sSgw; path=/ 41 10
F drwx------ 2 furi0zuc furi0zuc 4.0K Jun 21 2019 .ssh 40 1
F -rw------- 1 lpc lpc 40K Dec 29 15:58 .bash_history 39 0

DP3 P X-Kube-ApiServer: /hko/api 36 13
P X-AspNet-Version: 4.0.30319 34 4
P Server: Microsoft-IIS/7.5 33 0
P Server: Apache/2.2.17 (Unix) mod_ssl/2.2.17 OpenSSL/0.9.8e-fips-rhel5 mod_auth_passthrough/2.1

mod_bwlimited/1.4 FrontPage/5.0.2.2635
31 6

F -rw-------. 1 root root 21K Oct 25 19:26 .bash_history 30 0
S 6.588 GET https://juice-shop.herokuapp.com/rest/admin/application-configuration 200 OK (7.2 kB) 29 7
P Transfer-Encoding: chunked 28 0

DF3 F -rw-r--r-- 1 elsa elsa 12K Feb 6 2022 keys.json 28 13
P Server: nginx/1.2.4 27 0

DH1 H Redirect 301 "/admin" "/plugins/kul/pages/admin/index.php?role=view" 26 11
P Server: Microsoft-IIS/6.0 25 0
F drwx------ 2 cathy cathy 4.0K Dec 7 14:04 .ssh 25 0
F -rw------- 1 IconThor IconThor 231K Dec 30 08:36 .zsh_history 25 1
F -rwxr--r-- 1 lpc lpc 919 Dec 28 14:31 query.sh 25 1
P X-Powered-By: PHP/5.3.18 25 2
P X-Powered-By: PHP/5.2.16 23 5
F drwx------ 2 donald donald 4.0K May 16 2022 .ssh 22 0
P Set-Cookie: ASP.NET_SessionId=fyi3sylqfunbwtdy03s4fdqv; path=/; HttpOnly 22 2
P X-Powered-By: PHP/5.4.5 22 2
F -rw-r--r-- 1 lpc lpc 8.1K Nov 24 10:18 data.csv 22 3
S 9.912 GET https://juice-shop.herokuapp.com/rest/admin/application-configuration 200 OK (7.2 kB) 22 3
H RewriteCond %{THE_REQUEST} ˆ[A-Z]{3,}\s([ˆ.]+)\.php [NC] 22 3
F -rw------- 1 elsa elsa 231K Dec 30 08:36 .zsh_history 21 0
P Server: nginx/1.6.0 21 0
S 2.460 POST https://api.site.com/_private/browser/stats 21 3
F -rw-r--r-- 1 IconThor IconThor 88 Jul 11 2021 test.gpg 21 8
F -rw------- 1 furi0zuc furi0zuc 8.9K Jul 5 21:47 .bash_history 20 0
F -rw-r--r-- 1 leonard leonard 64 Jun 16 2019 .gitconfig 20 1
P Set-Cookie: bbsessionhash=f3cdd7987b326584c6ee6696f3033087; path=/; HttpOnly 20 5
S 3.127 POST https://api.site.com/_private/browser/stats 19 2
S 9.022 GET https://juice-shop.herokuapp.com/rest/products/search?q= 200 OK (3.5 kB) 19 3

Legend: If the line was annotated as deceptive or risky, we reference the associated CDT or risk identifier, respectively. The query type from which the line originated is
abbreviated with F = File system, H = .htaccess file, P = HTTP response, and S = HTTP request. Full results can be found at https://github.com/dynatrace-oss/honeyquest.

Table 11: Top 15 individual query lines, ranked by the total number of trap marks that the line received.

exploit trap
ID Type Query Line 𝑛𝐸𝑥 𝑛𝑇𝑟

P X-Geek: What’s black and white and red all over? Please don’t kill our penguin-powered server. 6 27
DP1 P X-DevToken: eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJ0b2tlbiI6IjMwZDk4NGI4Iiwicm9sZSI6ImNsdXN0ZXIifQ.

J2c1XH2RsXDjaWJhCHSWR4bBNxEm7l2Q7WxrlG2vph4
76 27

P X-Bacon: I wonder what penguin bacon tastes like. 7 25
F -rw-r--r-- 1 lpc lpc 0 Oct 20 14:15 .sudo_as_admin_successful 14 22

DF5 F -rw-r--r-- 1 leonard leonard 9.7K Jun 6 2022 passwords.txt 10 17
P X: 23 14 14

DF3 F -rw-r--r-- 1 elsa elsa 12K Feb 6 2022 keys.json 28 13
DP3 P X-Kube-ApiServer: /hko/api 36 13
DH1 H Redirect 301 "/admin" "/plugins/kul/pages/admin/index.php?role=view" 26 11
DS5 S 7.640 GET https://juice-shop.herokuapp.com/rest/user/whoami?admin=false 200 OK (0.1 kB) 14 10
DS2 S 11.162 POST https://juice-shop.herokuapp.com/rest/user/login?user=johnson&password=carrot13 200 OK (0.8 kB) 15 10

P Set-Cookie: PHPSESSID=hLAGcA9qClz36kOr71sSgw; path=/ 41 10
DF8 F -rw-r--r-- 1 leonard leonard 43K Nov 20 2022 SPAM_list.pdf 5 9
DF6 F -rw-r--r-- 1 leonard leonard 83K Nov 20 2022 customer_list_2010.html 12 9
RP3 P X-Powered-By: PHP/5.1.6 41 9

Legend: If the line was annotated as deceptive or risky, we reference the associated CDT or risk identifier, respectively. The query type from which the line originated is
abbreviated with F = File system, H = .htaccess file, P = HTTP response, and S = HTTP request. Full results can be found at https://github.com/dynatrace-oss/honeyquest.

11

https://github.com/dynatrace-oss/honeyquest
https://github.com/dynatrace-oss/honeyquest

RAID 2024, September 30-October 02, 2024, Padua, Italy Kahlhofer et al.

Also, priming participants to imagine that they would encounter
queries during reconnaissance activities provided sufficient context
for most participants. Ultimately, it is impossible to tell whether
attackers would behave in the same way in the real world. Although
providing evidence on this point is beyond the scope of our work,
§7.3 suggests that our results align with previous studies that have
examined similar, real-world situations.

Future research on how best to represent context in cyber decep-
tion experiments would be valuable. One participant in our study
wanted to know where in a software infrastructure (which server,
container, etc.) they should imagine encountering certain file sys-
tem entries. However, the same participant noted that specific files
such as “.bash_history”, “.ssh” or “config” are “always interesting”
and hard to resist, regardless of the context. This begs the question
of which CDTs have a similar (context-free) appeal?

The ultimate quality of a CDT is still influenced by at-
tacker’s and defender’s ability to learn from each other. Re-
gardless of whether defensive deception is modeled as a static or
a dynamic game [81, 76], players can adapt their strategies over
time and learn to improve. Honeyquest only provides snapshots of
the enticingness of CDTs for one round of such a game. Repeated
experiments, variations of CDTs, identification of contextual factors
and skill levels are necessary to account for these dynamics.

The trade-off between template-like queries for control-
lable experiments and the need for diverse, neutral queries.
Three participants noted that queries often looked similar, encour-
aging them to remember the differences between them, which is
not what we want to measure. Ideally, template-like queries are
preferred, providing control over specific elements to isolate the
effect of a CDT. Nevertheless, a greater variety of pre-tested neu-
tral queries are essential for future experiments. Our open-source
dataset can serve as a starting point to build such a collection.

Participants enjoyed that Honeyquest felt like a game,
but also felt an urge to answer queries correctly. Although
participants knew that we did not score accuracy, four of them
reported that they still felt the urge to “get it right” and “avoid
making mistakes”, which led them to spend a lot of time on each
query. This phenomenon was reported by participants of all skill
levels. A time limit within which a query must be answered might
be beneficial in future experiments to prevent this behavior.

Overall, participants enjoyed the “different” and “game-like” ex-
perience of Honeyquest. We believe that gamification aspects, as
also explored in studies on cyber security education [65, 64], are a
promising avenue to explore further in studies on cyber deception.

The tutorial and our risky elements proved beneficial as
an integrated skill check. Results of surveys like ours can easily
be distorted by responses from incompetent participants; hence, we
chose two populations with proven expertise to address this. How-
ever, this is more difficult to control in anonymous populations [11].
Honeyquest can mitigate such problems by removing answers from
participants who barely recognized risks or who failed the tutorial.

Some CDTs and true risks can be difficult to distinguish
from each other. The tutorial (Listing 11) taught participants
that a final distinction may only be possible by knowing their
actual implementation. We wonder what properties of CDTs can be
represented by questionnaires, and what can only be represented
by CTF experiments or honeypots.

8 Related Work
8.1 Honeypots and Honeytokens
Spitzner was among the first to introduce honeypots as a measure
against insider threats [92, 93]. He describes honeypots as “an
information system resource whose value lies in unauthorized or
illicit use of that resource” [92]. Most of the honeypot software
that has been researched in the last decades [73, 42] focuses on
emulating protocols, processes, machines, or entire networks [79].
But, the term “information system resource” is broad enough to
also cover honeytokens, which are no computers but rather digital
entities. Their most common forms are: Honeytokens [93] and
Canarytokens6, honeyfiles, -pages, and -urls [109, 101, 22, 62, 77],
honeypatches [16, 17, 15] (silently-patched vulnerabilities that still
seem exploitable at the surface), honeywords [59] (can be decrypted
with wrong keys and still yield plausible yet incorrect data), and
honeypots, and -ports [79], e.g., classic SSH honeypots.

8.2 Taxonomies and Classifications
Numerous taxonomies and classifications of deception techniques
have been introduced, adapted, and surveyed in the past decades [55,
111, 43]. Whaley [104] proposed one of the first military-focused
theories on (non-cyber) deception back in 1982, which still influ-
enced cyber deception taxonomies in 2004, as introduced by Rowe
and Rothstein [84, 85]. Yuill et al. [108] described processes, princi-
ples, and techniques to hide things from adversaries. Later work by
Mokube and Adams [72] in 2007 and Almeshekah and Spafford [12]
in 2014 focused more closely on the technical aspects and human
biases of cyber deception. Recent work like the one by Zhang and
Thing [111] in 2021 aligned taxonomies closer to the cyber kill
chain model and illustrated proposals on deception lifecycles.

Many surveys on cyber deception have been conducted [55, 43,
35, 63, 26, 71, 80, 58], specifically, ones with a focus on honeypot
software [73], on securing web applications [33], on application
layer deception [60], on IoT honeypots [42], or, on approaches using
game theory and machine learning [112, 76].

Closely related, Han et al. [55] examined how the efficiency and
effectiveness of a wide range of CDTs have been evaluated in the
past (§8.3). Zhu et al. [112] summarized how approaches that use
game theory and machine learning have been evaluated.

The OWASP AppSensor project [103], despite only partially
addressing deception, serves as a hallmark for how to describe
and taxonomize runtime application defense techniques and also
inspired us to propose HoneYAML.

8.3 Evaluating Cyber Deception
Han et al. proposed four aspects for evaluating CDTs: [55]

(1) Deception placement strategies have been evaluated by
simulation [48, 10], or by studies with students [101, 22].

(2) Plausibility and realismof deception, i.e., measuring how
well deceptive assets are discernible from genuine assets.
Zhu et al. [112] structured these evaluation testbeds into real
testbeds, and ones based on probability models, simulation
models [47, 99, 90, 106, 74], and emulation models [1–3].

6https://canarytokens.org

12

https://github.com/dynatrace-oss/honeyquest
https://github.com/dynatrace-oss/honeyquest
https://canarytokens.org

Honeyquest: Rapidly Measuring the Enticingness of Cyber Deception Techniques with Code-basedQuestionnaires RAID 2024, September 30-October 02, 2024, Padua, Italy

(3) Effectiveness of deception, i.e., measuring if it achieves its
desired functionality. While “desired functionality” is open
to interpretation, such experiments are generally conducted
in either confined or natural environments.

(4) Accuracy and false-positive rate (FPR) of deception.
While there are a few studies [22, 54] that tried to evaluate
this, it is often impossible in most contexts because the base-
rate of attacks [18] cannot be measured reliably.

Fraunholz et al. [43] summarized 14 studies that evaluated CDTs
in natural environments with field studies. The rest of this section
covers studies in confined environments. References in parentheses
name the CDT that we replicated in our query design (Table 9).

The work from Sahin et al. [86] is closest to ours. They also
evaluate the enticingness of CDTs (§7.1), but not their ability to
be defensive (§7.2). They automatically generate realistic HTTP
parameters for web application layer deception, and evaluated it
with a survey where developers were given the link to an actual
Swagger UI of a web application. The Swagger UI showed the avail-
able API endpoints, but without the possibility to interact with the
application. Their “automatically generated parameters names were
as realistic as manually selected ones”. Similar work from the same
authors provides an extensive list of CDTs for web applications,
which they evaluated with a CTF challenge and questionnaires [87].

The HackIT tool [5, 6, 4] by Aggarwal et al. is conceptually
similar to Honeyquest. It enables researchers to map real-world
cyberattack scenarios into game-like environments. Unlike our
queries, their scenarios require manual design. However, this makes
experiments more flexible. Chadha et al. proposed the related Cyber-
VAN tool [27, 7–9] which allows for a speedy and flexible setup of
network-based deception experiments. Game-like environments are
also used for cyber security education, e.g., with PenQuest [65, 64].

Rowe et al. [83, 82] (DF9) conducted an experiment where 14
humans were shown pairs of “real” and “fake” file listings.

Ferguson-Walter et al. [41] carried out a large study on network
deception with 130 professional red teamers in a two-day exercise
and Shade et al. [91] focused on host-based deception with 59
computer specialists. Unlike our work, they focused on honeypots.
They are also one of the few authors who divided participants
into four cohorts, based on knowledge about deception (informed,
uninformed) and presence of deception (present, not present) [40].

Nikiforakis et al. [75] (DF4, DF6, DF8) demonstrated that attack-
ers are actively searching for sensitive files on public file hosting
services. They placed honeyfiles on them and recorded downloads
from 80 unique IP addresses within one month.

Petrunić [77] (DS5) suggested adding a seemingly deceptive
“Admin=false” GET parameter to URLs, which would presumably
only ever be changed by an attacker.

Han et al. [54] (DP2, DS3, DS5, DS7) held a CTF game with 258
participants on a CMS system, where a transparent reverse proxy
injected deceptive elements. They primarily evaluated placement
strategies rather than specific techniques.

Sahin et al. [87] (DP2, DS1) used questionnaires and a CTF game
(98 players) to evaluate their deception framework SunDEW. Other
work by Sahin et al. [88] (DP2, DS2, DS4, DS6, DS7, DS9) used ques-
tionnaires (21 participants), and a CTF game (82 players) to evaluate
developers’ familiarity with web attack and defense mechanisms.

8.4 Effective Cyber Deception
In 1999, Tirenin and Faatz [98] were one of the first authors to
suggest that deception must be dynamic in order to be effective,
i.e., “it must present a continually-changing situational picture to
the enemy” [98]. Cohen [28] motivated the need for a link between
social sciences and technological development. In 2010, Bowen
et al. [25] proposed a “Decoy Turing Test” that tasks humans to
discern real from decoy network traffic.

Bercovitch et al. [23] developed HoneyGen in 2011 to gener-
ate honeytokens by mining characteristics from real data. Recent
research has shifted towards creating dynamic and personalized
CDTs [49], e.g., by profiling attacker behavior [74].

Many works that followed examined psychological aspects and
decision-making processes of attackers [39, 41, 40, 37, 38, 57, 31, 30,
29, 52, 50, 46, 49, 22]. Ferguson-Walter [39, 40] showed that cyber
deception affects an attacker’s cognitive and emotional state, and
that CDTs are effective even if attackers are aware of their use or
merely believe it may be in use. Gonzalez et al. [49] found that
attackers exhibit irrational behavior that leads to cognitive biases.
Similarly, Gabrys et al. [46] observed a strong correlation between
the emotional state of an attacker (confusion, self-doubt, confidence,
frustration, and surprise) and the frequency of their reconnaissance
activity.

9 Future Work
Future work may include enriching Honeyquest with more CTDs
and a way to evaluate deception placement strategies [101, 22],
teaching ML models to design CDTs [14, 19], mining our open-
source dataset for interesting patterns [88, 74, 11], incorporating
cognitive models into the experiment design [50], embedding ed-
ucational aspects into Honeyquest [65, 64], implementing more
query types, e.g., “robots.txt” files [45, 44, 54], evaluating CDTs
that secure non-web applications, adapting Honeyquest to deceive
vulnerability scanners [13], and, of course, replicating our results
in more experiments and real-world deployments.

10 Conclusion
This work proposes a method to measure the enticingness of CDTs.
We demonstrate its feasibility for four aspects of a web application,
where we designed 25 CDTs and 19 risks, for an experiment with a
high-quality sample of 47 humans (12 CTF players, 35 professionals).
Our results provide a detailed overview of the enticingness of CDTs
(Table 9) and show that deception can reduce the risk of finding
a true risk by about 22% on average. Knowing such statistics, e.g.,
that humans fall for traps about 37% of the time, enables researchers
to back up their theoretical models with our empirical numbers.
Notably, we were able to replicate the goals of previous work with
many consistent findings (§7.3), but without a time-consuming
implementation on real computer systems. This strengthens the
generalizability of our method to the real world.

Acknowledgments
We thank Markus, Olivier, Patrick, Simon, Carlo, Alex, and Chris
for pre-testing our prototype, Alex for proofreading the paper, the
many anonymous reviewers for their very constructive and valuable
feedback, and all the volunteers who participated in our experiment.

13

https://github.com/dynatrace-oss/honeyquest
https://github.com/dynatrace-oss/honeyquest

RAID 2024, September 30-October 02, 2024, Padua, Italy Kahlhofer et al.

References
[1] Stefan Achleitner, Thomas F. La Porta, Patrick McDaniel, Shridatt Sugrim,

Srikanth V. Krishnamurthy, and Ritu Chadha. 2016. Cyber Deception: Vir-
tual Networks to Defend Insider Reconnaissance. In Proceedings of the 8th
ACM CCS International Workshop on Managing Insider Security Threats (MIST
’16). Association for Computing Machinery, Vienna, Austria, 57–68. https:
//doi.org/10.1145/2995959.2995962

[2] Stefan Achleitner, Thomas F. La Porta, Patrick McDaniel, Shridatt Sugrim,
Srikanth V. Krishnamurthy, and Ritu Chadha. 2017. Deceiving Network Recon-
naissance Using SDN-Based Virtual Topologies. IEEE Transactions on Network
and Service Management 14, 4 (Dec. 2017), 1098–1112. https://doi.org/10.1109/
tnsm.2017.2724239

[3] Jaime C. Acosta, Anjon Basak, Christopher Kiekintveld, Nandi Leslie, and
Charles Kamhoua. 2020. Cybersecurity Deception Experimentation System.
In 2020 IEEE Secure Development (SecDev ’20). IEEE, Atlanta, GA, USA, 34–40.
https://doi.org/10.1109/secdev45635.2020.00022

[4] Palvi Aggarwal, Yinuo Du, Kuldeep Singh, and Cleotilde Gonzalez. 2021. Decoys
in Cybersecurity: An Exploratory Study to Test the Effectiveness of 2-Sided
Deception. In Proceedings of the 1st International Workshop on Adaptive Cyber
Defense (IJCAI-ACD ’21, arXiv:2108.11037). arXiv, Montreal, Canada, 1–11. https:
//doi.org/10.48550/arxiv.2108.11037 arXiv:2108.11037 [cs]

[5] Palvi Aggarwal, Aksh Gautam, Vaibhav Agarwal, Cleotilde Gonzalez, and Varun
Dutt. 2019. HackIT: A Human-in-the-Loop Simulation Tool for Realistic Cyber
Deception Experiments. In Advances in Human Factors in Cybersecurity (AHFE
’19). Springer International Publishing, Cham, 109–121. https://doi.org/10.1007/
978-3-030-20488-4_11

[6] Palvi Aggarwal, Cleotilde Gonzalez, and Varun Dutt. 2020. HackIT: A Real-Time
Simulation Tool for Studying Real-World Cyberattacks in the Laboratory. In
Handbook of Computer Networks and Cyber Security: Principles and Paradigms.
Springer International Publishing, Cham, 949–959. https://doi.org/10.1007/978-
3-030-22277-2_39

[7] Palvi Aggarwal, Shahin Jabbari, Omkar Thakoor, Edward A. Cranford, Phebe
Vayanos, Christian Lebiere, Milind Tambe, and Cleotilde Gonzalez. 2022. Human-
Subject Experiments on Risk-Based Cyber Camouflage Games. In Cyber Decep-
tion: Techniques, Strategies, and Human Aspects. Springer International Publish-
ing, Cham, 25–40. https://doi.org/10.1007/978-3-031-16613-6_2

[8] Palvi Aggarwal, Omkar Thakoor, Shahin Jabbari, Edward A. Cranford, Christian
Lebiere, Milind Tambe, and Cleotilde Gonzalez. 2022. Designing Effective
Masking Strategies for Cyberdefense Through Human Experimentation and
Cognitive Models. Computers & Security 117 (June 2022), 102671. https://doi.
org/10.1016/j.cose.2022.102671

[9] Palvi Aggarwal, Omkar Thakoor, Aditya Mate, Milind Tambe, Edward A. Cran-
ford, Christian Lebiere, and Cleotilde Gonzalez. 2020. An Exploratory Study
of a Masking Strategy of Cyberdeception Using CyberVAN. Proceedings of the
Human Factors and Ergonomics Society Annual Meeting 64, 1 (Dec. 2020), 446–450.
https://doi.org/10.1177/1071181320641100

[10] Ron Alford and Andy Applebaum. 2021. Towards Causal Models for Adversary
Distractions. In Proceedings of the 2021 SIAM AI/ML for Cybersecurity Workshop
(AI4CS-SDM ’21, arXiv:2104.10575). arXiv, Online, 1–6. https://doi.org/10.48550/
arxiv.2104.10575 arXiv:2104.10575 [cs]

[11] Asmaa Aljohani and James Jones. 2022. The Pitfalls of Evaluating Cyber Defense
Techniques by an Anonymous Population. In HCI for Cybersecurity, Privacy
and Trust (HCII ’22). Springer International Publishing, Virtual Event, 307–325.
https://doi.org/10.1007/978-3-031-05563-8_20

[12] Mohammed H. Almeshekah and Eugene H. Spafford. 2014. Planning and In-
tegrating Deception into Computer Security Defenses. In Proceedings of the
2014 New Security Paradigms Workshop (NSPW ’14). Association for Computing
Machinery, Victoria, British Columbia, Canada, 127–138. https://doi.org/10.
1145/2683467.2683482

[13] Tillmann Angeli, Daniel Reti, Daniel Schneider, and Hans D. Schotten. 2024.
False Flavor Honeypot: Deceiving Vulnerability Scanning Tools. In 2024 IEEE
European Symposium on Security and Privacy Workshops (EuroS&PW ’24). IEEE,
Vienna, Austria, 399–406. https://doi.org/10.1109/EuroSPW61312.2024.00051

[14] Frederico Araujo, Gbadebo Ayoade, Khaled Al-Naami, Yang Gao, Kevin W.
Hamlen, and Latifur Khan. 2019. Improving Intrusion Detectors by Crook-
sourcing. In Proceedings of the 35th Annual Computer Security Applications
Conference (ACSAC ’19). Association for ComputingMachinery, San Juan, Puerto
Rico, USA, 245–256. https://doi.org/10.1145/3359789.3359822

[15] Frederico Araujo and KevinW.Hamlen. 2016. EmbeddedHoneypotting. InCyber
Deception: Building the Scientific Foundation. Springer International Publishing,
Cham, 201–231. https://doi.org/10.1007/978-3-319-32699-3_9

[16] Frederico Araujo, Kevin W. Hamlen, Sebastian Biedermann, and Stefan Katzen-
beisser. 2014. From Patches to Honey-Patches: Lightweight Attacker Mis-
direction, Deception, and Disinformation. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’14). Asso-
ciation for Computing Machinery, Scottsdale, Arizona, USA, 942–953. https:
//doi.org/10.1145/2660267.2660329

[17] Frederico Araujo, Mohammad Shapouri, Sonakshi Pandey, and Kevin Hamlen.
2015. Experiences with Honey-Patching in Active Cyber Security Education.
In Proceedings of the 8th USENIX Conference on Cyber Security Experimentation
and Test (CSET ’15). USENIX Association, Washington, DC, USA, 1–7. https:
//www.usenix.org/conference/cset15/workshop-program/presentation/araujo

[18] Stefan Axelsson. 2000. The Base-Rate Fallacy and the Difficulty of Intrusion
Detection. ACM Transactions on Information and System Security 3, 3 (Aug.
2000), 186–205. https://doi.org/10.1145/357830.357849

[19] Gbadebo Ayoade, Frederico Araujo, Khaled Al-Naami, Ahmad M. Mustafa, Yang
Gao, Kevin W. Hamlen, and Latifur Khan. 2020. Automating Cyberdeception
Evaluation with Deep Learning. In Proceedings of the 53rd Hawaii International
Conference on System Sciences (HICSS ’20). ScholarSpace, Maui, Hawaii, 1–10.
https://doi.org/10.24251/hicss.2020.236

[20] Sean Barnum and Amit Sethi. 2007. Attack Patterns as a Knowledge Resource for
Building Secure Software. Technical Report. Cigital, Inc., Washington DC, USA.
1–31 pages. https://api.semanticscholar.org/CorpusID:18455387

[21] Timothy Barron, Johnny So, and Nick Nikiforakis. 2021. Click This, Not That:
Extending Web Authentication with Deception. In Proceedings of the 2021 ACM
Asia Conference on Computer and Communications Security (ASIA CCS ’21).
Association for Computing Machinery, Virtual Event, Hong Kong, 462–474.
https://doi.org/10.1145/3433210.3453088

[22] Malek Ben Salem and Salvatore J. Stolfo. 2011. Decoy Document Deployment for
Effective Masquerade Attack Detection. In Proceedings of the 8th International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA ’11). Springer, Amsterdam, The Netherlands, 35–54. https://doi.org/10.
1007/978-3-642-22424-9_3

[23] Maya Bercovitch, Meir Renford, Lior Hasson, Asaf Shabtai, Lior Rokach, and
Yuval Elovici. 2011. HoneyGen: An Automated Honeytokens Generator. In
Proceedings of 2011 IEEE International Conference on Intelligence and Security
Informatics (ISI ’11). IEEE, Beijing, China, 131–136. https://doi.org/10.1109/isi.
2011.5984063

[24] Brian M. Bowen, Shlomo Hershkop, Angelos D. Keromytis, and Salvatore J.
Stolfo. 2009. Baiting Inside Attackers Using Decoy Documents. In Security and
Privacy in Communication Networks 2009 (SecureComm ’09). Springer, Berlin,
Heidelberg, 51–70. https://doi.org/10.1007/978-3-642-05284-2_4

[25] Brian M. Bowen, Vasileios P. Kemerlis, Pratap Prabhu, Angelos D. Keromytis,
and Salvatore J. Stolfo. 2010. Automating the Injection of Believable Decoys
to Detect Snooping. In Proceedings of the Third ACM Conference on Wireless
Network Security (WiSec ’10). Association for Computing Machinery, Hoboken,
New Jersey, USA, 81–86. https://doi.org/10.1145/1741866.1741880

[26] Matthew L. Bringer, Christopher A. Chelmecki, and Hiroshi Fujinoki. 2012. A
Survey: Recent Advances and Future Trends in Honeypot Research. International
Journal of Computer Network and Information Security 4, 10 (Sept. 2012), 63–75.
https://doi.org/10.5815/ijcnis.2012.10.07

[27] Ritu Chadha, Thomas Bowen, Cho-Yu J. Chiang, Yitzchak M. Gottlieb, Alex
Poylisher, Angello Sapello, Constantin Serban, Shridatt Sugrim, Gary Walther,
Lisa M. Marvel, E. Allison Newcomb, and Jonathan Santos. 2016. CyberVAN: A
Cyber Security Virtual Assured Network Testbed. In 2016 IEEE Military Com-
munications Conference (MILCOM ’16). IEEE, Baltimore, MD, USA, 1125–1130.
https://doi.org/10.1109/milcom.2016.7795481

[28] Fred Cohen. 2006. The Use of Deception Techniques: Honeypots and Decoys.
Handbook of Information Security 3, 1 (2006), 646–655. http://all.net/journal/
deception/Deception_Techniques_.pdf

[29] Edward A. Cranford, Cleotilde Gonzalez, Palvi Aggarwal, Sarah Cooney, Milind
Tambe, and Christian Lebiere. 2020. Adaptive Cyber Deception: Cognitively
Informed Signaling for Cyber Defense. In Proceedings of the 53rd Hawaii Inter-
national Conference on System Sciences (HICSS ’20). ScholarSpace, Maui, Hawaii,
1–10. https://doi.org/10.24251/hicss.2020.232

[30] Edward A. Cranford, Cleotilde Gonzalez, Palvi Aggarwal, Milind Tambe, Sarah
Cooney, and Christian Lebiere. 2021. Towards a Cognitive Theory of Cyber
Deception. Cognitive Science 45, 7 (2021), e13013. https://doi.org/10.1111/cogs.
13013

[31] Edward A. Cranford, Christian Lebiere, Cleotilde Gonzalez, Sarah Cooney, Phebe
Vayanos, and Milind Tambe. 2018-07-25/2018-07-28. Learning About Cyber
Deception Through Simulations: Predictions of Human Decision Making With
Deceptive Signals in Stackelberg Security Games. In Proceedings of the 40th
Annual Meeting of the Cognitive Science Society (CogSci ’18). Curran Associates,
Inc., Madison, WI, USA, 256–261. https://mindmodeling.org/cogsci2018/papers/
0067/index.html

[32] Sundar Dorai-Raj. 2022. Binomial Confidence Intervals for Several Parameteri-
zations. https://cran.r-project.org/web/packages/binom/binom.pdf

[33] A. I. Mohd Efendi, Z. Ibrahim, M. N. Ahmad Zawawi, F. Abdul Rahim, N. A. Mo-
hamad Pahri, and Anuar Ismail. 2019. A Survey on Deception Techniques for
Securing Web Application. In 2019 IEEE 5th International Conference on Big Data
Security on Cloud, High Performance and Smart Computing and Intelligent Data
and Security (BigDataSecurity & HPSC & IDS ’19). IEEE, Washington, DC, USA,
328–331. https://doi.org/10.1109/bigdatasecurity-hpsc-ids.2019.00066

14

https://doi.org/10.1145/2995959.2995962
https://doi.org/10.1145/2995959.2995962
https://doi.org/10.1109/tnsm.2017.2724239
https://doi.org/10.1109/tnsm.2017.2724239
https://doi.org/10.1109/secdev45635.2020.00022
https://doi.org/10.48550/arxiv.2108.11037
https://doi.org/10.48550/arxiv.2108.11037
https://arxiv.org/abs/2108.11037
https://doi.org/10.1007/978-3-030-20488-4_11
https://doi.org/10.1007/978-3-030-20488-4_11
https://doi.org/10.1007/978-3-030-22277-2_39
https://doi.org/10.1007/978-3-030-22277-2_39
https://doi.org/10.1007/978-3-031-16613-6_2
https://doi.org/10.1016/j.cose.2022.102671
https://doi.org/10.1016/j.cose.2022.102671
https://doi.org/10.1177/1071181320641100
https://doi.org/10.48550/arxiv.2104.10575
https://doi.org/10.48550/arxiv.2104.10575
https://arxiv.org/abs/2104.10575
https://doi.org/10.1007/978-3-031-05563-8_20
https://doi.org/10.1145/2683467.2683482
https://doi.org/10.1145/2683467.2683482
https://doi.org/10.1109/EuroSPW61312.2024.00051
https://doi.org/10.1145/3359789.3359822
https://doi.org/10.1007/978-3-319-32699-3_9
https://doi.org/10.1145/2660267.2660329
https://doi.org/10.1145/2660267.2660329
https://www.usenix.org/conference/cset15/workshop-program/presentation/araujo
https://www.usenix.org/conference/cset15/workshop-program/presentation/araujo
https://doi.org/10.1145/357830.357849
https://doi.org/10.24251/hicss.2020.236
https://api.semanticscholar.org/CorpusID:18455387
https://doi.org/10.1145/3433210.3453088
https://doi.org/10.1007/978-3-642-22424-9_3
https://doi.org/10.1007/978-3-642-22424-9_3
https://doi.org/10.1109/isi.2011.5984063
https://doi.org/10.1109/isi.2011.5984063
https://doi.org/10.1007/978-3-642-05284-2_4
https://doi.org/10.1145/1741866.1741880
https://doi.org/10.5815/ijcnis.2012.10.07
https://doi.org/10.1109/milcom.2016.7795481
http://all.net/journal/deception/Deception_Techniques_.pdf
http://all.net/journal/deception/Deception_Techniques_.pdf
https://doi.org/10.24251/hicss.2020.232
https://doi.org/10.1111/cogs.13013
https://doi.org/10.1111/cogs.13013
https://mindmodeling.org/cogsci2018/papers/0067/index.html
https://mindmodeling.org/cogsci2018/papers/0067/index.html
https://cran.r-project.org/web/packages/binom/binom.pdf
https://doi.org/10.1109/bigdatasecurity-hpsc-ids.2019.00066

Honeyquest: Rapidly Measuring the Enticingness of Cyber Deception Techniques with Code-basedQuestionnaires RAID 2024, September 30-October 02, 2024, Padua, Italy

[34] European Commission. 2021. EU Grants: How To Complete Your Ethics
Self-Assessment. https://ec.europa.eu/info/funding-tenders/opportunities/
docs/2021-2027/common/guidance/how-to-complete-your-ethics-self-
assessment_en.pdf

[35] Wenjun Fan, Zhihui Du, David Fernández, and Víctor A. Villagrá. 2018. Enabling
an Anatomic View to Investigate Honeypot Systems: A Survey. IEEE Systems
Journal 12, 4 (Dec. 2018), 3906–3919. https://doi.org/10.1109/jsyst.2017.2762161

[36] Michael P. Fay. 2014. Exact McNemar’s Test and Matching Confidence Intervals.
Technical Report. MRAN. https://mran.microsoft.com/snapshot/2015-02-24/
web/packages/exact2x2/vignettes/exactMcNemar.pdf

[37] Kimberly J. Ferguson-Walter. 2020. An Empirical Assessment of the Effectiveness
of Deception for Cyber Defense. Ph. D. Dissertation. University of Massachusetts
Amherst, Amherst, Massachusetts. https://doi.org/10.7275/z0rb-ek46

[38] Kimberly J. Ferguson-Walter, Maxine Major, Dirk Van Bruggen, Sunny Fugate,
and Robert Gutzwiller. 2019. The World (of CTF) Is Not Enough Data: Lessons
Learned from a Cyber Deception Experiment. In 2019 IEEE 5th International
Conference on Collaboration and Internet Computing (CIC ’19). IEEE, Los Angeles,
CA, USA, 346–353. https://doi.org/10.1109/cic48465.2019.00048

[39] Kimberly J. Ferguson-Walter, Maxine M. Major, Chelsea K. Johnson, Craig J.
Johnson, Dakota D. Scott, Robert S. Gutzwiller, and Temmie Shade. 2023. Cyber
Expert Feedback: Experiences, Expectations, and Opinions about Cyber Decep-
tion. Computers & Security 130 (July 2023), 103268. https://doi.org/10.1016/j.
cose.2023.103268

[40] Kimberly J. Ferguson-Walter, Maxine M. Major, Chelsea K. Johnson, and
Daniel H. Muhleman. 2021. Examining the Efficacy of Decoy-based and Psy-
chological Cyber Deception. In Proceedings of the 30th USENIX Security Sym-
posium (USENIX Security ’21). USENIX Association, Online, 1127–1144. https:
//www.usenix.org/conference/usenixsecurity21/presentation/ferguson-walter

[41] Kimberly J. Ferguson-Walter, Temmie Shade, Andrew Rogers, Elizabeth Nied-
bala, Michael Trumbo, Kevin Nauer, Kristin Divis, Aaron Jones, Angela Combs,
and Robert Abbott. 2019. The Tularosa Study: An Experimental Design and
Implementation to Quantify the Effectiveness of Cyber Deception. In Proceed-
ings of the 52nd Hawaii International Conference on System Sciences (HICSS ’19).
ScholarSpace, Maui, Hawaii, 1–10. https://doi.org/10.24251/hicss.2019.874

[42] Javier Franco, Ahmet Aris, Berk Canberk, and A. Selcuk Uluagac. 2021. A Survey
of Honeypots andHoneynets for Internet of Things, Industrial Internet of Things,
and Cyber-Physical Systems. IEEE Communications Surveys & Tutorials 23, 4
(2021), 2351–2383. https://doi.org/10.1109/comst.2021.3106669

[43] Daniel Fraunholz, Simon Duque Anton, Christoph Lipps, Daniel Reti, Daniel
Krohmer, Frederic Pohl, Matthias Tammen, and Hans Dieter Schotten. 2018.
Demystifying Deception Technology: A Survey. https://doi.org/10.48550/arXiv.
1804.06196 arXiv:1804.06196 [cs]

[44] Daniel Fraunholz, Daniel Reti, Simon Duque Anton, and Hans Dieter Schotten.
2018. Cloxy: A Context-aware Deception-as-a-Service Reverse Proxy for Web
Services. In Proceedings of the 5th ACM Workshop on Moving Target Defense
(MTD ’18). Association for Computing Machinery, Toronto, Canada, 40–47.
https://doi.org/10.1145/3268966.3268973

[45] Daniel Fraunholz and Hans D. Schotten. 2018. Defending Web Servers with
Feints, Distraction and Obfuscation. In 2018 International Conference on Com-
puting, Networking and Communications (ICNC ’18). IEEE, Maui, HI, USA, 21–25.
https://doi.org/10.1109/iccnc.2018.8390365

[46] Ryan Gabrys, Anu Venkatesh, Daniel Silva, Mark Bilinski, Maxine Major, Justin
Mauger, Daniel Muhleman, and Kimberly J. Ferguson-Walter. 2023. Emotional
State Classification and Related Behaviors Among Cyber Attackers. In Proceed-
ings of the 56th Hawaii International Conference on System Sciences (HICSS ’23).
ScholarSpace, Maui, Hawaii, 1–10. https://doi.org/10.24251/hicss.2023.106

[47] Nandan Garg and Daniel Grosu. 2007. Deception in Honeynets: A Game-
Theoretic Analysis. In 2007 IEEE SMC Information Assurance and Security Work-
shop (IAW ’07). IEEE, West Point, NY, USA, 107–113. https://doi.org/10.1109/
iaw.2007.381921

[48] Dimitris Gavrilis, Ioannis Chatzis, and Evangelos Dermatas. 2007. Flash Crowd
Detection Using Decoy Hyperlinks. In 2007 IEEE International Conference on
Networking, Sensing and Control (ICNSC ’07). IEEE, London, UK, 466–470. https:
//doi.org/10.1109/icnsc.2007.372823

[49] Cleotilde Gonzalez, Palvi Aggarwal, Christian Lebiere, and Edward A. Cranford.
2020. Design of Dynamic and Personalized Deception: A Research Framework
and New Insights. In Proceedings of the 53rd Hawaii International Conference on
System Sciences (HICSS ’20). ScholarSpace, Maui, Hawaii, 1–10. https://doi.org/
10.24251/hicss.2020.226

[50] Robert Gutzwiller, Kimberly J. Ferguson-Walter, Sunny Fugate, and Andrew
Rogers. 2018. “Oh, Look, A Butterfly!” A Framework For Distracting Attackers
To Improve Cyber Defense. Proceedings of the Human Factors and Ergonomics
Society Annual Meeting 62, 1 (Sept. 2018), 272–276. https://doi.org/10.1177/
1541931218621063

[51] Robert S. Gutzwiller, Kimberly J. Ferguson-Walter, and Sunny J. Fugate. 2019.
Are Cyber Attackers Thinking Fast and Slow? Exploratory Analysis Reveals
Evidence of Decision-Making Biases in Red Teamers. Proceedings of the Human
Factors and Ergonomics Society Annual Meeting 63, 1 (Nov. 2019), 427–431. https:

//doi.org/10.1177/1071181319631096
[52] Robert S. Gutzwiller, Hansol Rheem, Kimberly J. Ferguson-Walter, Christina M.

Lewis, Chelsea K. Johnson, and Maxine Major. 2024. Exploratory Analysis of
Decision-Making Biases of Professional Red Teamers in a Cyber-Attack Dataset.
Journal of Cognitive Engineering and Decision Making 18, 1 (March 2024), 37–51.
https://doi.org/10.1177/15553434231217787

[53] Hacker Target Pty Ltd. 2014. 500K HTTP Headers. https://hackertarget.com/
500k-http-headers/

[54] Xiao Han, Nizar Kheir, and Davide Balzarotti. 2017. Evaluation of Deception-
Based Web Attacks Detection. In Proceedings of the 2017 Workshop on Moving
Target Defense (MTD ’17). Association for Computing Machinery, Dallas, Texas,
USA, 65–73. https://doi.org/10.1145/3140549.3140555

[55] Xiao Han, Nizar Kheir, and Davide Balzarotti. 2018. Deception Techniques in
Computer Security: A Research Perspective. Comput. Surveys 51, 4 (July 2018),
80:1–80:36. https://doi.org/10.1145/3214305

[56] Kristin E. Heckman, Michael J. Walsh, Frank J. Stech, Todd A. O’Boyle, Stephen R.
DiCato, and Audra F. Herber. 2013. Active Cyber Defense with Denial and
Deception: A Cyber-Wargame Experiment. Computers & Security 37 (Sept.
2013), 72–77. https://doi.org/10.1016/j.cose.2013.03.015

[57] Linan Huang, Shumeng Jia, Emily Balcetis, and Quanyan Zhu. 2022. ADVERT:
An Adaptive and Data-Driven Attention Enhancement Mechanism for Phishing
Prevention. IEEE Transactions on Information Forensics and Security 17 (2022),
2585–2597. https://doi.org/10.1109/tifs.2022.3189530

[58] Amir Javadpour, Forough Ja’fari, Tarik Taleb, Mohammad Shojafar, and Chafika
Benzaïd. 2024. A Comprehensive Survey on Cyber Deception Techniques to
Improve Honeypot Performance. Computers & Security 140 (March 2024), 103792.
https://doi.org/10.1016/j.cose.2024.103792

[59] Ari Juels and Ronald L. Rivest. 2013. Honeywords: Making Password-Cracking
Detectable. In Proceedings of the 2013 ACM SIGSAC Conference on Computer
& Communications Security (CCS ’13). Association for Computing Machinery,
Berlin, Germany, 145–160. https://doi.org/10.1145/2508859.2516671

[60] Mario Kahlhofer and Stefan Rass. 2024. Application Layer Cyber Deception
without Developer Interaction. In 2024 IEEE European Symposium on Security
and Privacy Workshops (EuroS&PW ’24). IEEE, Vienna, Austria, 416–429. https:
//doi.org/10.1109/EuroSPW61312.2024.00053

[61] Daniel Kahneman. 2011. Thinking, Fast and Slow. Farrar, Straus and Giroux,
New York.

[62] Martin Lazarov, Jeremiah Onaolapo, and Gianluca Stringhini. 2016. Honey
Sheets: What Happens to Leaked Google Spreadsheets?. In 9th USENIX Work-
shop on Cyber Security Experimentation and Test (CSET ’16). University College
London, Austin, TX, United States, 1–8. https://www.usenix.org/conference/
cset16/workshop-program/presentation/lazarov

[63] Zhuo Lu, Cliff Wang, and Shangqing Zhao. 2020. Cyber Deception for Computer
and Network Security: Survey and Challenges. https://doi.org/10.48550/arXiv.
2007.14497 arXiv:2007.14497 [cs]

[64] Robert Luh, Sebastian Eresheim, Stefanie Größbacher, Thomas Petelin, Florian
Mayr, Paul Tavolato, and Sebastian Schrittwieser. 2022. PenQuest Reloaded:
A Digital Cyber Defense Game for Technical Education. In 2022 IEEE Global
Engineering Education Conference (EDUCON ’22). IEEE, Tunis, Tunisia, 906–914.
https://doi.org/10.1109/educon52537.2022.9766700

[65] Robert Luh, Marlies Temper, Simon Tjoa, Sebastian Schrittwieser, and Helge
Janicke. 2020. PenQuest: A Gamified Attacker/Defender Meta Model for Cyber
Security Assessment and Education. Journal of Computer Virology and Hacking
Techniques 16, 1 (March 2020), 19–61. https://doi.org/10.1007/s11416-019-00342-
x

[66] Mandiant. 2013. APT1: Exposing One of China’s Cyber Espionage Units. Technical
Report. Mandiant, Inc. https://www.fireeye.com/content/dam/fireeye-www/
services/pdfs/mandiant-apt1-report.pdf

[67] David E. Mann and Steven M. Christey. 1999. Towards a Common Enumeration
of Vulnerabilities. In Final Report of the 2nd Workshop on Research with Security
Vulnerability Databases (WVDB ’99). CERIAS, Purdue University, West Lafayette
Indiana, 1–13. https://api.semanticscholar.org/CorpusID:250641205

[68] Robert A. Martin, Steven M. Christey, and J. Jarzombek. 2006. The Case for
Common Flaw Enumeration. In Proceedings of Workshop on Software Security
Assurance Tools, Techniques, and Metrics (SSATTM ’05). National Institute of
Standards and Technology, Gaithersburg, MD, United States, 1–7. https://api.
semanticscholar.org/CorpusID:110186969

[69] Bill McCarty. 2004. SELinux: NSA’s Open Source Security Enhanced Linux.
O’Reilly Media, Inc., Sebastopol, CA. https://www.oreilly.com/library/view/
selinux/0596007167/

[70] Quinn McNemar. 1947. Note on the Sampling Error of the Difference Between
Correlated Proportions or Percentages. Psychometrika 12, 2 (June 1947), 153–157.
https://doi.org/10.1007/bf02295996

[71] Pilla Vaishno Mohan, Shriniket Dixit, Amogh Gyaneshwar, Utkarsh Chadha,
Kathiravan Srinivasan, and Jung Taek Seo. 2022. Leveraging Computational
Intelligence Techniques for Defensive Deception: A Review, Recent Advances,
Open Problems and Future Directions. Sensors 22, 6 (Jan. 2022), 2194. https:
//doi.org/10.3390/s22062194

15

https://ec.europa.eu/info/funding-tenders/opportunities/docs/2021-2027/common/guidance/how-to-complete-your-ethics-self-assessment_en.pdf
https://ec.europa.eu/info/funding-tenders/opportunities/docs/2021-2027/common/guidance/how-to-complete-your-ethics-self-assessment_en.pdf
https://ec.europa.eu/info/funding-tenders/opportunities/docs/2021-2027/common/guidance/how-to-complete-your-ethics-self-assessment_en.pdf
https://doi.org/10.1109/jsyst.2017.2762161
https://mran.microsoft.com/snapshot/2015-02-24/web/packages/exact2x2/vignettes/exactMcNemar.pdf
https://mran.microsoft.com/snapshot/2015-02-24/web/packages/exact2x2/vignettes/exactMcNemar.pdf
https://doi.org/10.7275/z0rb-ek46
https://doi.org/10.1109/cic48465.2019.00048
https://doi.org/10.1016/j.cose.2023.103268
https://doi.org/10.1016/j.cose.2023.103268
https://www.usenix.org/conference/usenixsecurity21/presentation/ferguson-walter
https://www.usenix.org/conference/usenixsecurity21/presentation/ferguson-walter
https://doi.org/10.24251/hicss.2019.874
https://doi.org/10.1109/comst.2021.3106669
https://doi.org/10.48550/arXiv.1804.06196
https://doi.org/10.48550/arXiv.1804.06196
https://arxiv.org/abs/1804.06196
https://doi.org/10.1145/3268966.3268973
https://doi.org/10.1109/iccnc.2018.8390365
https://doi.org/10.24251/hicss.2023.106
https://doi.org/10.1109/iaw.2007.381921
https://doi.org/10.1109/iaw.2007.381921
https://doi.org/10.1109/icnsc.2007.372823
https://doi.org/10.1109/icnsc.2007.372823
https://doi.org/10.24251/hicss.2020.226
https://doi.org/10.24251/hicss.2020.226
https://doi.org/10.1177/1541931218621063
https://doi.org/10.1177/1541931218621063
https://doi.org/10.1177/1071181319631096
https://doi.org/10.1177/1071181319631096
https://doi.org/10.1177/15553434231217787
https://hackertarget.com/500k-http-headers/
https://hackertarget.com/500k-http-headers/
https://doi.org/10.1145/3140549.3140555
https://doi.org/10.1145/3214305
https://doi.org/10.1016/j.cose.2013.03.015
https://doi.org/10.1109/tifs.2022.3189530
https://doi.org/10.1016/j.cose.2024.103792
https://doi.org/10.1145/2508859.2516671
https://doi.org/10.1109/EuroSPW61312.2024.00053
https://doi.org/10.1109/EuroSPW61312.2024.00053
https://www.usenix.org/conference/cset16/workshop-program/presentation/lazarov
https://www.usenix.org/conference/cset16/workshop-program/presentation/lazarov
https://doi.org/10.48550/arXiv.2007.14497
https://doi.org/10.48550/arXiv.2007.14497
https://arxiv.org/abs/2007.14497
https://doi.org/10.1109/educon52537.2022.9766700
https://doi.org/10.1007/s11416-019-00342-x
https://doi.org/10.1007/s11416-019-00342-x
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://api.semanticscholar.org/CorpusID:250641205
https://api.semanticscholar.org/CorpusID:110186969
https://api.semanticscholar.org/CorpusID:110186969
https://www.oreilly.com/library/view/selinux/0596007167/
https://www.oreilly.com/library/view/selinux/0596007167/
https://doi.org/10.1007/bf02295996
https://doi.org/10.3390/s22062194
https://doi.org/10.3390/s22062194

RAID 2024, September 30-October 02, 2024, Padua, Italy Kahlhofer et al.

[72] Iyatiti Mokube and Michele Adams. 2007. Honeypots: Concepts, Approaches,
and Challenges. In Proceedings of the 45th Annual Southeast Regional Conference
(ACM-SE ’07). Association for Computing Machinery, Winston-Salem, North
Carolina, 321–326. https://doi.org/10.1145/1233341.1233399

[73] Marcin Nawrocki, Matthias Wählisch, Thomas C. Schmidt, Christian Keil, and
Jochen Schönfelder. 2016. A Survey on Honeypot Software and Data Analysis.
https://doi.org/10.48550/arXiv.1608.06249 arXiv:1608.06249 [cs]

[74] Amirreza Niakanlahiji, Jafar Haadi Jafarian, Bei-Tseng Chu, and Ehab Al-Shaer.
2020. HoneyBug: Personalized Cyber Deception for Web Applications. In Pro-
ceedings of the 53rd Hawaii International Conference on System Sciences (HICSS
’20). ScholarSpace, Maui, Hawaii, 1–10. https://doi.org/10.24251/hicss.2020.233

[75] Nick Nikiforakis, Marco Balduzzi, Steven Van Acker, Wouter Joosen, and
Davide Balzarotti. 2011. Exposing the Lack of Privacy in File Hosting Ser-
vices. In Proceedings of the 4th USENIX Conference on Large-scale Exploits and
Emergent Threats (LEET ’11). USENIX Association, Boston, MA, United States,
1–8. https://www.usenix.org/conference/leet11/exposing-lack-privacy-file-
hosting-services

[76] Jeffrey Pawlick, Edward Colbert, and Quanyan Zhu. 2019. A Game-theoretic
Taxonomy and Survey of Defensive Deception for Cybersecurity and Privacy.
Comput. Surveys 52, 4 (Aug. 2019), 82:1–82:28. https://doi.org/10.1145/3337772

[77] A.B. Robert Petrunić. 2015. Honeytokens as Active Defense. In 2015 38th In-
ternational Convention on Information and Communication Technology, Elec-
tronics and Microelectronics (MIPRO ’15). IEEE, Opatija, Croatia, 1313–1317.
https://doi.org/10.1109/mipro.2015.7160478

[78] Christoph Pohl, Alf Zugenmaier, Michael Meier, and Hans-Joachim Hof. 2015.
B.Hive: A Zero Configuration Forms Honeypot for ProductiveWeb Applications.
In ICT Systems Security and Privacy Protection (IFIP SEC ’15). Springer Interna-
tional Publishing, Hamburg, Germany, 267–280. https://doi.org/10.1007/978-3-
319-18467-8_18

[79] Niels Provos. 2004. A Virtual Honeypot Framework. In Proceedings of the 13th
USENIX Security Symposium (USENIX Security ’04). USENIX Association, San
Diego, CA, USA, 1–14. https://www.usenix.org/legacy/publications/library/
proceedings/sec04/tech/provos.html

[80] Xingsheng Qin, Frank Jiang, Mingcan Cen, and Robin Doss. 2023. Hybrid Cyber
Defense Strategies Using Honey-X: A Survey. Computer Networks 230 (July
2023), 109776. https://doi.org/10.1016/j.comnet.2023.109776

[81] Stefan Rass and Stefan Schauer. 2018. Game Theory for Security and Risk Man-
agement: From Theory to Practice. Springer International Publishing, Cham.
https://doi.org/10.1007/978-3-319-75268-6

[82] Neil C. Rowe, E. John Custy, and Binh T. Duong. 2007. Defending Cyberspace
with Fake Honeypots. Journal of Computers 2, 2 (April 2007), 25–36. https:
//doi.org/10.4304/jcp.2.2.25-36

[83] Neil C. Rowe, Binh T. Duong, and E. John Custy. 2006. Fake Honeypots: A
Defensive Tactic for Cyberspace. In Proceedings of the Annual 2006 IEEE SMC
Information Assurance Workshop (IAW ’06). IEEE, West Point, NY, USA, 223–230.
https://doi.org/10.1109/iaw.2006.1652099

[84] Neil C. Rowe and Hy S. Rothstein. 2004. Two Taxonomies of Deception for
Attacks on Information Systems. Journal of Information Warfare 3, 2 (2004),
27–39. jstor:26502783 https://www.jstor.org/stable/26502783

[85] Neil C. Rowe and Julian Rrushi. 2016. Introduction to Cyberdeception. Springer
International Publishing, Cham. https://doi.org/10/d65q

[86] Merve Sahin, Cédric Hébert, and Rocio Cabrera Lozoya. 2022. An Approach
to Generate Realistic HTTP Parameters for Application Layer Deception. In
Applied Cryptography and Network Security (ACNS ’22). Springer International
Publishing, Rome, Italy, 337–355. https://doi.org/10.1007/978-3-031-09234-3_17

[87] Merve Sahin, Cédric Hébert, and Anderson Santana De Oliveira. 2020. Lessons
Learned from SunDEW: A Self Defense Environment for Web Applications. In
Proceedings 2020 Workshop on Measurements, Attacks, and Defenses for the Web
(MADWeb ’20). Internet Society, San Diego, CA, USA, 1–12. https://doi.org/10.
14722/madweb.2020.23005

[88] Merve Sahin, Tolga Ünlü, Cédric Hébert, Lynsay A. Shepherd, Natalie Coull,
and Colin Mc Lean. 2022. Measuring Developers’ Web Security Awareness
from Attack and Defense Perspectives. In 2022 IEEE Security and Privacy Work-
shops (SPW ’22). IEEE, San Francisco, CA, USA, 31–43. https://doi.org/10.1109/
spw54247.2022.9833858

[89] Jeff Sauro and James R. Lewis. 2012. Quantifying the User Experience: Practical
Statistics for User Research. Elsevier/Morgan Kaufmann, Amsterdam Waltham,
MA. https://doi.org/10.1016/C2010-0-65192-3

[90] Aaron Schlenker, Omkar Thakoor, Haifeng Xu, Fei Fang, Milind Tambe, Long
Tran-Thanh, Phebe Vayanos, and Yevgeniy Vorobeychik. 2018. Deceiving Cyber
Adversaries: A Game Theoretic Approach. In Proceedings of the 17th Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AAMAS ’18).
International Foundation for Autonomous Agents and Multiagent Systems,
Richland, SC, 892–900. https://par.nsf.gov/biblio/10050303

[91] Temmie B. Shade, Andrew V. Rogers, Kimberly J. Ferguson-Walter, Sara Beth
Elson, Daniel K. Fayette, and Kristin E. Heckman. 2020. The Moonraker Study:
An Experimental Evaluation of Host-Based Deception. In Proceedings of the 53rd
Hawaii International Conference on System Sciences (HICSS ’20). ScholarSpace,

Maui, Hawaii, 1875–1884. https://doi.org/10.24251/hicss.2020.231
[92] Lance Spitzner. 2003. Honeypots: Catching the Insider Threat. In Proceedings of

the 19th Annual Computer Security Applications Conference (ACSAC ’03). IEEE,
Las Vegas, NV, USA, 170–179. https://doi.org/10.1109/csac.2003.1254322

[93] Lance Spitzner. 2003. Honeytokens: The Other Honeypot. https://www.
symantec.com/connect/articles/honeytokens-other-honeypot

[94] The OWASP Foundation Inc. 2014. OWASP Juice Shop. https://owasp.org/www-
project-juice-shop/

[95] The OWASP Foundation Inc. 2019. OWASP API Top 10:2019. https://owasp.
org/www-project-api-security/

[96] The OWASP Foundation Inc. 2021. OWASP Top 10:2021. https://owasp.org/
Top10/

[97] The OWASP Foundation Inc. 2023. OWASP ZAP. https://www.zaproxy.org/
[98] Walt Tirenin and Don Faatz. 1999. A Concept for Strategic Cyber Defense. In

Proceedings of the 1999 IEEE Military Communications Conference Proceedings
(MILCOM ’99, Vol. 1). IEEE, Atlantic City, NJ, USA, 458–463. https://doi.org/10.
1109/milcom.1999.822725

[99] A.J. Underbrink. 2016. Effective Cyber Deception. In Cyber Deception: Building
the Scientific Foundation. Springer International Publishing, Cham, 115–147.
https://doi.org/10.1007/978-3-319-32699-3_6

[100] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler
Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,
Eric Larson, C. J. Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quin-
tero, Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pe-
dregosa, and Paul van Mulbregt. 2020. SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nature Methods 17, 3 (March 2020), 261–272.
https://doi.org/10.1038/s41592-019-0686-2

[101] Jonathan Voris, Jill Jermyn, Nathaniel Boggs, and Salvatore Stolfo. 2015. Fox
in the Trap: Thwarting Masqueraders via Automated Decoy Document De-
ployment. In Proceedings of the Eighth European Workshop on System Security
(EuroSec ’15). Association for Computing Machinery, Bordeaux, France, 1–7.
https://doi.org/10.1145/2751323.2751326

[102] Cliff Wang and Zhuo Lu. 2018. Cyber Deception: Overview and the Road Ahead.
IEEE Security & Privacy 16, 2 (March 2018), 80–85. https://doi.org/10.1109/msp.
2018.1870866

[103] Colin Watson, Dennis Groves, and John Melton. 2015. AppSensor
Guide: Application-Specific Real Time Attack Detection & Response.
https://web.archive.org/web/20240120084438/https://owasp.org/www-pdf-
archive/Owasp-appsensor-guide-v2.pdf

[104] BartonWhaley. 1982. Toward a General Theory of Deception. Journal of Strategic
Studies 5, 1 (March 1982), 178–192. https://doi.org/10.1080/01402398208437106

[105] Edwin B.Wilson. 1927. Probable Inference, the Law of Succession, and Statistical
Inference. J. Amer. Statist. Assoc. 22, 158 (June 1927), 209–212. https://doi.org/
10.1080/01621459.1927.10502953

[106] HuaWu, Yu Gu, Guang Cheng, and Yuyang Zhou. 2020. Effectiveness Evaluation
Method for Cyber Deception Based on Dynamic Bayesian Attack Graph. In
Proceedings of the 2020 3rd International Conference on Computer Science and
Software Engineering (CSSE ’20). Association for Computing Machinery, Beijing,
China, 1–9. https://doi.org/10.1145/3403746.3403897

[107] Frank Yates. 1934. Contingency Tables Involving Small Numbers and the 𝑋2
Test. Supplement to the Journal of the Royal Statistical Society 1, 2 (1934), 217–235.
https://doi.org/10.2307/2983604 jstor:2983604

[108] Jim Yuill, Dorothy Denning, and Fred Feer. 2006. Using Deception to Hide Things
from Hackers: Processes, Principles, and Techniques. Journal of Information
Warfare 5, 3 (2006), 26–40. jstor:26503456 https://www.jstor.org/stable/26503456

[109] Jim Yuill, Mike Zappe, Dorothy Denning, and Fred Feer. 2004. Honeyfiles:
Deceptive Files for Intrusion Detection. In Proceedings from the Fifth Annual
IEEE SMC Information Assurance Workshop (IAW ’04). IEEE, West Point, NY,
USA, 116–122. https://doi.org/10.1109/iaw.2004.1437806

[110] James Joseph Yuill. 2007. Defensive Computer-Security Deception Operations:
Processes, Principles and Techniques. Ph. D. Dissertation. North Carolina State
University, Raleigh, NC, USA. https://repository.lib.ncsu.edu/handle/1840.16/
5648

[111] Li Zhang and Vrizlynn. L. L. Thing. 2021. Three Decades of Deception Tech-
niques in Active Cyber Defense - Retrospect and Outlook. Computers & Security
106 (July 2021), 102288. https://doi.org/10.1016/j.cose.2021.102288

[112] Mu Zhu, Ahmed H. Anwar, Zelin Wan, Jin-Hee Cho, Charles A. Kamhoua, and
Munindar P. Singh. 2021. A Survey of Defensive Deception: Approaches Using
Game Theory and Machine Learning. IEEE Communications Surveys & Tutorials
23, 4 (2021), 2460–2493. https://doi.org/10.1109/comst.2021.3102874

16

https://doi.org/10.1145/1233341.1233399
https://doi.org/10.48550/arXiv.1608.06249
https://arxiv.org/abs/1608.06249
https://doi.org/10.24251/hicss.2020.233
https://www.usenix.org/conference/leet11/exposing-lack-privacy-file-hosting-services
https://www.usenix.org/conference/leet11/exposing-lack-privacy-file-hosting-services
https://doi.org/10.1145/3337772
https://doi.org/10.1109/mipro.2015.7160478
https://doi.org/10.1007/978-3-319-18467-8_18
https://doi.org/10.1007/978-3-319-18467-8_18
https://www.usenix.org/legacy/publications/library/proceedings/sec04/tech/provos.html
https://www.usenix.org/legacy/publications/library/proceedings/sec04/tech/provos.html
https://doi.org/10.1016/j.comnet.2023.109776
https://doi.org/10.1007/978-3-319-75268-6
https://doi.org/10.4304/jcp.2.2.25-36
https://doi.org/10.4304/jcp.2.2.25-36
https://doi.org/10.1109/iaw.2006.1652099
https://www.jstor.org/stable/26502783
https://doi.org/10/d65q
https://doi.org/10.1007/978-3-031-09234-3_17
https://doi.org/10.14722/madweb.2020.23005
https://doi.org/10.14722/madweb.2020.23005
https://doi.org/10.1109/spw54247.2022.9833858
https://doi.org/10.1109/spw54247.2022.9833858
https://doi.org/10.1016/C2010-0-65192-3
https://par.nsf.gov/biblio/10050303
https://doi.org/10.24251/hicss.2020.231
https://doi.org/10.1109/csac.2003.1254322
https://www.symantec.com/connect/articles/honeytokens-other-honeypot
https://www.symantec.com/connect/articles/honeytokens-other-honeypot
https://owasp.org/www-project-juice-shop/
https://owasp.org/www-project-juice-shop/
https://owasp.org/www-project-api-security/
https://owasp.org/www-project-api-security/
https://owasp.org/Top10/
https://owasp.org/Top10/
https://www.zaproxy.org/
https://doi.org/10.1109/milcom.1999.822725
https://doi.org/10.1109/milcom.1999.822725
https://doi.org/10.1007/978-3-319-32699-3_6
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1145/2751323.2751326
https://doi.org/10.1109/msp.2018.1870866
https://doi.org/10.1109/msp.2018.1870866
https://web.archive.org/web/20240120084438/https://owasp.org/www-pdf-archive/Owasp-appsensor-guide-v2.pdf
https://web.archive.org/web/20240120084438/https://owasp.org/www-pdf-archive/Owasp-appsensor-guide-v2.pdf
https://doi.org/10.1080/01402398208437106
https://doi.org/10.1080/01621459.1927.10502953
https://doi.org/10.1080/01621459.1927.10502953
https://doi.org/10.1145/3403746.3403897
https://doi.org/10.2307/2983604
https://www.jstor.org/stable/26503456
https://doi.org/10.1109/iaw.2004.1437806
https://repository.lib.ncsu.edu/handle/1840.16/5648
https://repository.lib.ncsu.edu/handle/1840.16/5648
https://doi.org/10.1016/j.cose.2021.102288
https://doi.org/10.1109/comst.2021.3102874

Honeyquest: Rapidly Measuring the Enticingness of Cyber Deception Techniques with Code-basedQuestionnaires RAID 2024, September 30-October 02, 2024, Padua, Italy

A Expressing Results with Typical Confusion
Matrices

Neutral queries. Consider that a user anwers a neutral
query 𝑞𝑁 ∈ 𝑄𝑁 . Neutral queries never have line annotations. If
the user places no marks on 𝑞𝑁 , we consider this as a “true neg-
ative” (TN) classification. If the user places some, we say this is a
“false positive” (FP) classification.

Deceptive and risky queries. As defined in Equation (1),
we say that “answer marks 𝐴 match line annotations 𝐿” if they
intersect each other. Given a deceptive query 𝑞𝐷 ∈ 𝑄𝐷 , where

trap marks 𝐴𝑇𝑟 match deceptive lines 𝐿𝐷 , we say this as a “true
positive” (TP) classification. If they do not match, we count a “false
negative” (FN) instead. Given a risky query 𝑞𝑅 ∈ 𝑄𝑅 , the same
rule applies, but exploit marks 𝐴𝐸𝑥 are matched against risky
lines 𝐿𝑅 instead. There are at least four ways to match one of the
two kinds of answer marks against one of the two kinds of line
annotations. If we want to assess if participants fell for a trap, we
would adapt the previous formulation tomatch exploit marks𝐴𝐸𝑥

against deceptive line annotations 𝐿𝐷 instead. In all cases, we can
arrange the counts in a confusionmatrix. Table 12 shows this for the
aforementioned formulation. Then, we can derive metrics such as
accuracy, precision, or recall. Table 13 shows the confusion matrices
of our experiment, whose results we also presented in §6.

Table 12: Matching answer marks and line annotations.

𝑞 ∈ 𝑄𝑁 TN 𝐴 = ∅ FP 𝐴 ≠ ∅
𝑞 ∉ 𝑄𝑁 FN 𝐿 ∩𝐴 = ∅ TP 𝐿 ∩𝐴 ≠ ∅

Table 13: Results on the enticingness of traps and risks.

Qry. TN FP FN TP ACC PPV TPR FPR

1403 136 1325 234 53% 63% 15% 9%
857 682 256 204 53% 23% 44% 44%

Description: Confusion matrix and metrics on how well users are enticed by
traps and risks. The opposing class was always a neutral query.

B Alternative Matching of Answer Marks and
Line Annotations

There are fivemutually exclusive variations on how answermarks𝐴
can possibly intersect with (non-empty) line annotations 𝐿 ≠ ∅:

𝐴 = 𝐿 marked 𝐿 exactly (A1)
𝐴 ≠ ∅ ∧𝐴 ⊂ 𝐿 marked 𝑜𝑛𝑙𝑦 some in 𝐿 (A2)

𝐴 ⊈ 𝐿 ∧ 𝐿 ∩𝐴 ≠ ∅ marks 𝑜𝑛𝑙𝑦 overlap with 𝐿 (A3)
𝐴 ≠ ∅ ∧ 𝐿 ∩𝐴 = ∅ marked 𝑜𝑛𝑙𝑦 lines not in 𝐿 (A4)

𝐴 = ∅ no marks, but non-empty 𝐿 (A5)

The criterion in §3.1.1 assumes that answer marks match line
annotations when lines are marked exactly (A1) or partially (A2),
while also allowing overlaps (A3) with other (not-annotated) lines.
In all three cases, it is valid to imply that a user at least partially
identified a risk or a trap.

C Details on Counting Answer Marks
Aspect A (§3.2.1) required a more concrete formalization of the
matching criteria of §3.1.1. We grouped answers to our queries by
query type, and computed the following counts:

• 𝑛𝐸𝑥 How often were neutral lines mistaken for traps? Num-
ber of answers that only received exploit marks 𝐴𝐸𝑥 .
• 𝑛𝑇𝑟 How often were neutral lines mistaken for risks? Num-
ber of answers that only received trap marks 𝐴𝑇𝑟 .
• 𝑛∧ How often were neutral lines mistaken for risks and
traps in the same answer? Number of answers that received
both exploit marks 𝐴𝐸𝑥 and trap marks 𝐴𝑇𝑟
• 𝑛∅ How often have humans not reacted to neutral lines?
Number of answers to neutral queries without any marks.

• 𝑑𝐸𝑥 How often fell humans for traps? Number of answers,
where exploit marks 𝐴𝐸𝑥 match deceptive lines 𝐿𝐷 .
• 𝑑𝑇𝑟 How often were traps detected? Number of answers,
where trap marks 𝐴𝑇𝑟 match deceptive lines 𝐿𝐷 .
• 𝑑△ How often have humans reacted to other lines? Number
of answers with marks but no match on decept. lines 𝐿𝐷 .
• 𝑑∅ How often have humans not reacted to traps? Number
of answers to deceptive queries without any marks.

• 𝑟𝐸𝑥 How often were risks detected? Number of answers,
where exploit marks 𝐴𝐸𝑥 match risky lines 𝐿𝑅 .
• 𝑟𝑇𝑟 How often were risks mistaken for traps? Number of
answers, where trap marks 𝐴𝑇𝑟 match risky lines 𝐿𝑅 .
• 𝑟△ How often have humans reacted to other lines? Number
of answers with marks but no match on risky lines 𝐿𝑅 .
• 𝑟∅ How often have humans not reacted to risks? Number
of answers to risky queries without any marks.

D Aligning Prior Work to Our Cyber Deception
Techniques

This section describes how we mapped our CDTs (Table 9) to tech-
niques from prior work [88, 87, 54, 77, 75, 83, 82]. A comparison
and discussion of the results can be found in §7.3.

Nikiforakis et al. [75] (DF4, DF6, DF8) Their experiment
placed six files on public file hosting services. We randomly injected
three of those, whose names seem most likely to represent a real
weakness, in some of our file system queries: “SPAM_list.pdf” (DF8),
“customer_list_2010.html” (DF6), “card3rz_reg_details.html” (DF4).
We omitted the other names (“phished_paypal_details.html”, “Pay-
pal_account_gen.exe”, “Sniffed_email1.doc”) because these names
sound more like they would only be found on an adversary’s com-
puter and not on a real server.

Petrunić [77] (DS5) We randomly appended the suggested
“admin=false” parameter in our HTTP request queries.

Han et al. [54] (DP2, DS3, DS5, DS7) Their experiment primar-
ily evaluated placement strategies rather than specific techniques.
We mapped their mention of an “additional cookie” to our CDT that
injects a deceptive cookie into HTTP headers (DP2). We assumed
that their mention of “honey GET parameters” is similar to our
three CDTs that inject parameters into URLs: “admin=false” (DS5),
“SESSID=odq...” (DS3), and “system=prod” (DS7).

17

RAID 2024, September 30-October 02, 2024, Padua, Italy Kahlhofer et al.

Rowe et al. [83, 82] (DF9) Their experiment showed humans
pairs of “real” and “fake” file listings. We used the pair that they
illustrated in the paper to create two file system queries: Listing 4
shows the “real” file listing and Listing 5 shows the “fake” file
listing (with every line except for “.” and “..” annotated as deceptive).

drwxr-xr-x 2 gaitan gaitan 4.0K Nov 30 17:42 .
drwxr-xr-x 4 gaitan gaitan 4.0K Nov 30 17:42 ..
-rw-r--r-- 1 gaitan gaitan 1.4K Nov 30 17:42 specv
-rw-r--r-- 1 gaitan gaitan 3.2K Nov 30 17:42 other
-rw-r--r-- 1 gaitan gaitan 1.1K Nov 30 17:42 rp
-rw-r--r-- 1 gaitan gaitan 6.7K Nov 30 17:42 gilmore
-rw-r--r-- 1 gaitan gaitan 1.2K Nov 30 17:42 int
-rw-r--r-- 1 gaitan gaitan 5.2K Nov 30 17:42 trash
-rw-r--r-- 1 gaitan gaitan 2.0K Nov 30 17:42 old.imsl
-rw-r--r-- 1 gaitan gaitan 2.7K Nov 30 17:42 flynn

Listing 4: Representation of “real” file listing [83, 82].

drwxr-xr-x 2 cooper cooper 4.0K Nov 30 17:42 .
drwxr-xr-x 4 cooper cooper 4.0K Nov 30 17:42 ..
-rw-r--r-- 1 cooper cooper 1.2K Nov 30 17:42 examples
-rw-r--r-- 1 cooper cooper 2.0K Nov 30 17:42 gif_files
-rw-r--r-- 1 cooper cooper 3.2K Nov 30 17:42 idlold
-rw-r--r-- 1 cooper cooper 5.2K Nov 30 17:42 wizard
-rw-r--r-- 1 cooper cooper 2.7K Nov 30 17:42 114564-01
-rw-r--r-- 1 cooper cooper 1.4K Nov 30 17:42 template
-rw-r--r-- 1 cooper cooper 1.1K Nov 30 17:42 target_n_horiz
-rw-r--r-- 1 cooper cooper 6.7K Nov 30 17:42 ass2

Listing 5: Representation of “fake” file listing [83, 82].

Sahin et al. [87] (DP2, DS1) Their experiment tested seven
CDTs in a CTF experiment. They had a “Username” and “Role”
cookie with similar detection rates that we mapped to our CDT
that injects a deceptive cookie into HTTP headers (DP2). They also
had a deceptive GET parameter on a “/view_patient/$id” endpoint
that we mapped to our CDT with a “/secrets/$id” endpoint (DS1).

Sahin et al. [88] (DP2, DS2, DS4, DS6, DS7, DS9) Their experi-
ment recorded 17 attack vectors that participants tried in their CTF
experiment. We designed CDTs for six of them: “Cross-site script-
ing” (found in payloads with “<script>” tags) as a CDT that adds
unescaped JavaScript (DS6). “Credential guessing” (found in pay-
loads with clear-text credentials) as a CDT that adds clear-text pass-
words (DS2). “SQL injection” (found in payloads with unescaped
quotes) as a CDT that adds unescaped JSON (DS9). “Cookie tamper-
ing” as a CDT that adds a deceptive cookie into HTTP headers (DP2).
“Client-side bypass” (found by tampering with a “system” parame-
ter) as a CDT that adds a “system=prod” parameter into URLs (DS7).
“Path traversal” (found in payloads with “..” strings) as a CDT that
imitates a path traversal vulnerability (DS4). Lastly, their “Content-
Type header attack” (found by header tampering) was not mapped
to any of our CDTs, but we counted how many participants marked
lines containing “Content-Type” in our queries.

E User Study Details
E.1 Experiment Website and Tutorial
Participants who have agreed to share their data with us (Appen-
dix E.3), were then directed to a tutorial (Appendix E.7) to familiarize
them with the experiment. After answering the profiling questions
(Appendix E.4), the actual experiment began. Figure 6 shows the
user interface for all subsequent 174 queries.

A manual investigation of the answers to the tutorial questions
revealed that all participants understood the interface and the ex-
periment. This is not surprising, as the tutorial was also pre-tested
to ensure that it is understandable. Two colleagues who did not
participate in the actual experiment pre-tested the tutorial.

E.2 Recruitment Message

Would you lend me some of your valuable time to advance
research on cyber deception and prove your secure coding skills?
We created an interactive game, where you have to think and
act like you were a hacker: LINK
If you can participate, please do so by DATE. Answering all
questions will take you between 30 - 60 minutes. But, you can
stop any time. You can also continue later. Progress saves
automatically. If you would like to discuss some queries with us
afterwards, leave us a comment with your name.

E.3 Data Privacy Consent and Intent Form

Honeyquest is a game where you have to identify security
vulnerabilities in web applications. Be careful, some of the
vulnerabilities are traps trying to trick you into thinking
something is vulnerable. During the game, we will collect some
data to help us advance research on cyber deception:
We store a cookie on your computer to identify you.Why? So
that we know which answers belong to the same person, even
when you continue the game later.
We store your profile information, like your job, years of
experience, and skill level.Why? So that we can research, if
there are differences among professions.
We store your answers and the time of your answers.Why? So
that we can research what kinds of questions humans are good
at and what kinds of questions are hard to get right.
We do not store your IP address, location, name, email address,
or any other PII.Why? Because we don’t need it.

E.4 Participant Profiles
Figure 5 shows our participant’s answers to these questions:
• What describes your current profession best?
– Development: Developer, Engineer, Architect
– Operations: System Administrator, SRE
– Security Operations: Penetration Tester, Incident Detec-
tion and Response, Product Security

– Business: Manager, Leader, Sales, Marketing
– Research: Researcher, Scientist, Innovator
• How would you describe your secure coding skills?
– None: What do you mean by secure coding?
– Little: I only heard about a few concepts.
– Good: I get the basics but still need guidance.
– Advanced: I apply secure coding concepts regularly.
– Expert: I educate others about secure coding.
• Roughly, how many years have you been professionally in-
volved in the field of cyber security?

18

Honeyquest: Rapidly Measuring the Enticingness of Cyber Deception Techniques with Code-basedQuestionnaires RAID 2024, September 30-October 02, 2024, Padua, Italy

CTF Players Security Professionals
0

5

10

15

20

25

C
ou

nt

1
3

19

5
8

2 3
1 1 2 2

Manager
Developer
Researcher
Student

Admin
SecOps
Other

CTF Players Security Professionals
0

5

10

15

20

25

C
ou

nt

2 21

8
6

14

3

9

2

None
Little

Good
Advanced

Expert

0 2 4 6 8 10 12 14 16 18 20

Years of professional experience

CTF Players

Professionals

Figure 5: Our participants’ self-reported profiles.

E.5 Participant Demographics
We asked participants about their professional role, secure coding
skills, and years of professional experience in the field of cyber
security (§E.4). We did not collect demographic information, but
we can describe the target audience (all of which are located in
Europe) to which we posted our recruitment message (§E.2):
• Security Professionals were predominantly male and be-
tween 20 and 45 years old. The majority of them had a uni-
versity degree in Computer Science.
• CTF Players were predominantly male and between 18 and
35 years old. The majority of them were graduate Computer
Science students.

E.6 Study Timeline and Incentives
The user study was conducted in two phases, each with exactly
the same experimental setup. The first phase with 23 participants
(13 professionals, 10 CTF players) was held in February 2023. The
second phase with 24 new participants (22 professionals, 2 CTF
players) was held in January 2024.

To increase the number of participants in the second phase, we
introduced an incentive to win a 50€ Amazon gift card, if they an-
swered at least 50% of queries. We promoted this incentive a few
days after the second phase started. 18 of the 22 security profes-
sionals (in that phase) joined after that promotion. In the end, 8 of
them answered enough queries to qualify for the incentive.

E.7 Tutorial Queries
Every participant had to answer these 8 tutorial queries prior to
the actual experiment. Lines are only highlighted in the paper.

You are reading a tutorial QUERY.
A query is simply a text of a certain TYPE.
Honeyquest shows you queries of different types.

We want to understand how you would respond to them,
if you act like a hacker or cyber security researcher.

Listing 6: Tutorial query 1 / 8.

The following is a QUERY of type HTTPHEADERS, meaning,
you observe that an application is making this HTTP request:

> GET /wiki/Cat HTTP/1.1
> Host: en.wikipedia.org
> User-Agent: curl/7.68.0
> Accept: */*

Behind the scenes, Honeyquest classified this query as NEUTRAL.
This means, there is nothing RISKY or DECEPTIVE about it.

If you agree that this query is NEUTRAL, click the button above.

Listing 7: Tutorial query 2 / 8 with neutral HTTP headers.

Correct! This query was indeed NEUTRAL.

Let's look at another query of the same type:

> HTTP/1.1 200 OK
> Date: Wed, 04 Jan 2016 23:18:20 GMT
> Server: Apache/1.0.3 (Debian)
> Content-Type: text/html
> Transfer-Encoding: chunked

If you think this query is NEUTRAL, click the button, as before.
But, if you see a VULNERABILITY please mark the indicative line.
You can mark and unmark lines by clicking to the LEFT of a line.

Hint: There is exactly one vulnerability to be found here.

Listing 8: Tutorial query 3 / 8 with risky “Server” header.

Well done! You found the vulnerability:

> Server: Apache/1.0.3 (Debian)

When we say VULNERABILITY, we mean an indicator for it.
The vulnerability here is CVE-1999-0067.
The old version of Apache indicated that.

We don't expect you to look that up.
Think like an attacker looking for vulnerabilities to EXPLOIT.

Listing 9: Tutorial query 4 / 8.

Let's look at another query.

> GET /wiki/view?file=../articles/Cat.php 200 OK
> Host: en.wikipedia.org
> User-Agent: curl/7.68.0
> Accept: */*

This time, you may also mark lines as TRAPS instead.
A trap wants you to believe that there is something to exploit.
You want to avoid them so you don't waste time or set off alarms.
You can mark and unmark traps by clicking to the RIGHT of a line.

So, you now have three options:

- Mark lines that you would like to EXPLOIT
- Mark lines that you think are TRAPS (and therefore, will avoid)
- Continue without marking, if you think this query is NEUTRAL

Listing 10: Tutorial query 5 / 8 with deceptive path traversal.

19

RAID 2024, September 30-October 02, 2024, Padua, Italy Kahlhofer et al.

Figure 6: A screenshot of the web-based user interface of Honeyquest that shows a query of the type “.htaccess file”. In this
example, the user placed an exploit mark on line 5 and a trap mark on line 2. When hovering over the info icon right next
to the query type, a tooltip with an extensive description of the syntax in the query is shown. The progress bar at the top shows
how many of the queries have already been answered. The little pin on the progress bar indicates how many queries an average
player has answered. Users can submit feedback or report mistakes by clicking on the speech bubble in the lower right corner.

This was a bit harder, wasn't it? You probably marked this line:

> GET /wiki/view?file=../articles/Cat.php 200 OK

This looks like a path traversal vulnerability, doesn't it?

Honeyquest classified this query as either RISKY or DECEPTIVE.

- RISKY queries contain vulnerabilities or weaknesses
- DECEPTIVE queries contain traps you must avoid

You may now wonder if this was truly a vulnerability or a trap.
We don't know either. That depends on the actual implementation.

What matters is only what you - the hacker - THINK it was.
Honeyquest wants to understand how you PERCEIVE such queries.

Listing 11: Tutorial query 6 / 8.
Let's look at one last query. This time, it is of type FILESYSTEM.

> -rw-r--r-- 1 goofy goofy 3.5K Sep 17 2017 .bashrc
> drwx------ 7 goofy goofy 4.0K Jan 12 2022 .cache
> drwx------ 6 goofy goofy 4.0K Sep 25 17:40 .config
> -rw-r--r-- 1 goofy goofy 64 Jun 16 2019 .gitconfig
> drwxr-xr-x 5 goofy goofy 4.0K Jul 10 2021 git-crypt
> drwx------ 4 goofy goofy 4.0K Jan 14 2022 .gnupg
> lrwxrwxrwx 1 goofy goofy 19 Jan 23 2018 html -> /srv/html
> drwxr-xr-x 4 goofy goofy 4.0K Aug 1 2021 app-browser
> -rw-r--r-- 1 goofy goofy 816M Nov 18 2020 nginx-proxy-logs.txt
> drwxr-xr-x 5 goofy goofy 4.0K Mar 21 2021 terraform-saas

Here, marking something to EXPLOIT means opening the file or folder.
Marking something as a TRAP means you want to AVOID opening it.

You might also have noticed that we put numbers next to your marks.
With them, indicate the ORDER in which you like to EXPLOIT things.

A few notes:

- Marking multiple lines is OPTIONAL. Marking one or none is fine.
- There might be queries where indicating an order makes no sense.
Ignore the numbers then.

- We don't expect you to go over every single line and mark it.
Remember, you are a hacker, rather tell us your next move,
not an exhaustive list of all possible moves.

Listing 12: Tutorial query 7 / 8 with neutral file system.
You are all set, here is a brief summary.

Honeyquest shows you NEUTRAL or RISKY or DECEPTIVE queries.
You can answer as many questions as you like and come back later.
Honeyquest saves your progress automatically.

Think like a hacker and tell us your NEXT MOVE.

- You can CONTINUE without marking anything
- You can mark lines to EXPLOIT or mark them as a TRAP to avoid
- You can indicate the ORDER in which you would like to exploit

That's it. Enjoy the game!

Listing 13: Tutorial query 8 / 8.

E.8 Image Attribution
Lightning Thunder Icon by svgrepo.com licensed under CC0
Bee Icon by bypeople.com licensed under CC BY 4.0
Neutral Face Icon by joypixels.com licensed under CC BY 4.0
Hammer Icon by Muh Zakaria licensed under CC BY 3.0
Bear Trap Icon by Daniela Howe licensed under SIL OFL 1.1

20

https://www.svgrepo.com/svg/200115/lightning-thunder
https://iconduck.com/icons/176847/bee
https://www.svgrepo.com/svg/402205/neutral-face
https://thenounproject.com/icon/hammer-6543915/
https://www.svgrepo.com/svg/499005/bear-trap

	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Lack of Reproducible Experiments
	2.2 Defending Threats with Cyber Deception

	3 Measuring the Enticingness of Cyber Deception Techniques
	3.1 Queries, Labels, Marks, and Annotations
	3.2 Research Questions

	4 Prototype Design
	4.1 Risky Queries
	4.2 Deceptive Queries and HoneYAML
	4.3 Honeyquest

	5 Experiment Design
	5.1 Query Design
	5.2 User Study Details and Ethics

	6 Results
	7 Discussion
	7.1 Aspect A: Enticing Deception
	7.2 Aspect B: Defensive Deception
	7.3 Replication of Prior Findings
	7.4 Challenges and Limitations

	8 Related Work
	8.1 Honeypots and Honeytokens
	8.2 Taxonomies and Classifications
	8.3 Evaluating Cyber Deception
	8.4 Effective Cyber Deception

	9 Future Work
	10 Conclusion
	Acknowledgments
	References
	A Expressing Results with Typical Confusion Matrices
	B Alternative Matching of Answer Marks and Line Annotations
	C Details on Counting Answer Marks
	D Aligning Prior Work to Our Cyber Deception Techniques
	E User Study Details
	E.1 Experiment Website and Tutorial
	E.2 Recruitment Message
	E.3 Data Privacy Consent and Intent Form
	E.4 Participant Profiles
	E.5 Participant Demographics
	E.6 Study Timeline and Incentives
	E.7 Tutorial Queries
	E.8 Image Attribution

