
An Alternating Offers Bargaining Model for
Computationally Limited Agents

Kate Larson
Computer Science Department

Carnegie Mellon University
5000 Forbes Ave

Pittsburgh, PA 15213

klarson@cs.cmu.edu

Tuomas Sandholm
Computer Science Department

Carnegie Mellon University
5000 Forbes Ave

Pittsburgh, PA 15213

sandholm@cs.cmu.edu

ABSTRACT
An alternating offers bargaining model for computationally limited
agents is presented. The gents compute to determine plans, but
deadlines restrict them from determining an optimal solution. As
the agents compute, they also negotiate over whether to perform a
joint plan or whether to act independently and how, if implemented,
the value of the joint plan would be divided. Their computing ac-
tions and bargaining actions are interrelated and both incorporated
into each agent’s strategy. We analyze the model for equilibrium
strategies for agents under different conditions. It is shown that the
equilibrium strategies for the alternating offers model where agents
take turns making offers and counter-offers, even with its extremely
large action space, are equivalent to those of a much simpler single
shot, take–it–or–leave–it bargaining model. In particular, agents
will compute and make no offers until the first agent’s deadline.

Categories and Subject Descriptors
I.2.11 Multiagent systems

General Terms
Theory, Economics, Algorithms

1. INTRODUCTION
Recently, there has been a move from having multiagent sys-

tems with a central designer who controls the behavior of all sys-
tem components, to having a system designer who can control only
the mechanism(rules of the game), while allowing each agent to
choose their own strategies. The efficiency of the system depends
on the agents’ strategies. So, to develop a system that leads to de-
sirable social outcomes the designer must ensure that each agent is
motivated to behave in the desired way. This can be done using the
Nash equilibrium solution concept from game theory (or a refine-
ment) [9]. The problem is that the equilibrium for rational agents
does not generally remain an equilibrium for computationally lim-
ited agents. This leaves a potentially hazardous gap in game theory

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’02,July 15-19, 2002, Bologna, Italy.
Copyright 2002 ACM 1-58113-480-0/02/0007 ...$5.00.

as well as automated negotiation since agents may no longer be
motivated to behave in a desired way.

Decision making under settings of bounded resources is chal-
lenging even for single agents. The field of AI has long searched
for useful techniques for coping with restricted resources. Her-
bert Simon advocated that agents should forgo perfect rationality
in favor of limited, economical reasoning [19]. Considerable work
has focused on developingnormativemodels that prescribe how
a computationally limited agentshouldbehave (see, for example
[14]). This is a highly nontrivial undertaking, encompassing nu-
merous fundamental and technical difficulties. As a result most of
those methods resort to various simplifying assumptions (see, for
example [15, 3, 1]). While such simplifications can be acceptable
in single-agent settings as long as the agent performs reasonably
well, any deviation from full normativity can be catastrophic in
multiagent settings. If the designer cannot guarantee that the strat-
egy (including computing actions) is the best strategy that an agent
can use, there is a risk that an agent is motivated to use some other
strategy. Even if that strategy happens to be “close” to the desired
one, the social outcome may be far from desirable.

Game theorists have also realized the significance of computa-
tional limitations (see, for example [13]), but the models that ad-
dress this issue have mostly had a different focus, instead looking
at such things as the complexity of computing strategies [5], both
memory limitations and limited uniform-depth lookahead capabil-
ity in repeated games [4], and showing that allowing choice in com-
putation can undue the dominant strategy property of the Vickrey
auction [16]. On the other hand, in many multiagent settings the
limited rationality stems from the complexity of each agent’s (op-
timization) problem, a setting which is ubiquitous in practice.

This paper studies the impact of limited computation on bar-
gaining. Bargaining between agents has been studied in both the
game theory literature [10] and the AI literature [6, 11, 7]. In non–
cooperative game theory, the alternating offers model is a standard
model. Much study has focused on the problem of delay in reaching
agreement, when the value of the joint solution decreases over time
and the values of the individual solutions do not change. Instead, in
this paper we present and analyze an alternating offers bargaining
model where agents have to use limited computational resources
in order to determine what they are bargaining over. The agents’
computational actions are interleaved with the bargaining actions
and each agent’s goal is to maximize its individual utility from the
game. These utilities depend on what computation and bargaining
strategies the agents use. We analyze the bargaining game for equi-
libria and show that the equilibrium strategies are in a certain sense
equivalent to strategies agents would play in a simpler, take-it-or-



leave-it bargaining game with computational actions.

1.1 Example Application
To make the presentation more concrete, we now discuss an ex-

ample domain where these methods are needed. Figure 1 is an
example of a multiagent vehicle routing problem with two geo-
graphically dispersed dispatch centers that are self-interested com-
panies. Each center is responsible for certain tasks (deliveries) and
has a certain set of resources (vehicles) to take care of them. So
each agent—representing a dispatch center—has its own vehicles
and delivery tasks. Each agent’sindividual problemis to minimize
transportation costs (driven mileage) while still making all of its
deliveries and maintaining constraints involving maximum route
length, maximum load weight and volume, delivery of all parcels
and insisting that vehicles return to a depot of its center. This prob-
lem isNP-complete [17].

Figure 1: Small example problem instance of the multiagent ve-
hicle routing problem. This instance has two dispatch centers
represented in the figure by computer operators. They receive the
delivery orders and route the vehicles. The light dispatch cen-
ter has light tasks and trucks while the dark dispatch center has
darker tasks and trucks. The dispatch centers receive all of their
delivery orders at once, and then have some deadline by which
they must have determined some delivery route. For example, in
some practical settings, the delivery tasks are known by Friday
evening and the route plan for the next week has to be ready by
Monday morning when the trucks need to be dispatched.

There is a potential for savings in driven mileage by pooling the
agents’ tasks and resources—e.g., because one agent may be able
to handle some of the other’s tasks with less driving than the other
due to adjacency. The objective in thisjoint problem is to again
minimize driven mileage. This problem is againNP-complete.

The agents independently decide which problem they each should
spend some of their computation resources on. While they compute
solutions for the problems, they engage in bargaining. The agents
take turn making proposals where a proposal is an amountx that
the other agent would be paid if the two agents coordinate their
actions and execute the joint solution. The agent not making the
proposal gets to decide whether to accept the offer or not. If the
offer is accepted, the joint solution is implemented. If the offer is
rejected, the game continues to the next round, each agent can take
another step of computation and the agents switch roles for the bar-
gaining stage. If no agreement is reached by the agents’ deadlines,
then each agent uses the solution it computed for its own problem.

1.2 The General Setting
The multiagent vehicle routing problem is only one example

where the methods of this paper are needed. In general, they are
needed in any 2-agent setting where each agent has an intractable
individual problem, and there is a potential savings from pooling

the problems, giving rise to an intractablejoint problem. We also
assume that the value of any solution to an agent’s individual prob-
lem is not affected by what solution the other agent uses to its in-
dividual problem. Other applications, beyond the vehicle routing
problem, include manufacturing, classroom scheduling, schedul-
ing of scientific equipment among multiple users, and bandwidth
allocation and routing in multi-provider multi-consumer computer
networks, to name just a few.

Computation plays several strategic roles in the game. First, it
improves the solution that is available—for any one of the three
problems. Second, it resolves some of the uncertainty about what
future computation steps will yield. Third, it gives information
about what solution qualities the opponent can expect, and how the
opponent is likely to allocate its computation. In equilibrium, an
agent may want to allocate computation on its individual problem,
the joint problem, and even on the opponent’s problem.

In recent work we modeled a 2–agent bargaining setting where
computing actions were treated strategically [7]. We analyzed sim-
ple bargaining settings for equilibrium strategies and provided al-
gorithms for computing (off–line) the online computing strategies.
Our focus was on the modeling of computing actions as part of
the agents’ strategies and we used a very simple bargaining model
where agents’ bargaining actions were restricted in that only one
agent was allowed to make a single proposal at a specified dead-
line. In this paper we study a richer and natural bargaining model –
the alternating offers model. Computing and bargaining actions are
intertwined and agents can make proposals throughout the game.
We discuss the importance of signaling and belief revision that oc-
cur in such a setting. In the next section we present the model and
describe the computing and bargaining stages. We then analyze the
game for equilibrium strategies.

2. THE MODEL
We study a setting where there are two agents,α andβ, who are

negotiating to reach agreement on whether to coordinate their ac-
tions in order to accomplish some plan, and if coordination occurs,
on how to split the proceeds. As the agents negotiate they also
compute possible solutions to the three different problems (own,
opponent’s, and joint). By some deadline,T , agreement must be
reached or else both agents must implement their individual solu-
tions with no coordination of actions. The process is divided into
discrete stages. At each stage agents can compute one step on one
of the three problems. After each agent has made the single com-
puting step, one agent is allowed to make an offer to the other,
specifying how much it would be willing to pay if the other agent
agreed to cooperate on the joint problem, using the solution com-
puted by the proposing agent. The agent receiving the proposal
can either accept or reject. If the offer is accepted, the joint so-
lution is implemented and the game ends. If the offer is rejected,
the game continues for another stage, where the roles of the agents
are switched. While both agents can observe all proposals and re-
sponses, the computational actions of the agents are private, i.e.,
an agent cannot directly observe what the other has computed on,
but can only try to deduce this information from the other agent’s
offers and accept–reject decisions.

2.1 Normative Models of Deliberation Control
When agents have restrictions on their computational capabili-

ties, there are tradeoffs that must be made when it comes to using
the resources in the best way possible. In this section we present a
way for agents to normatively control their computation.

We study a setting where computation improves the solution to
problems. We assume that each agent hasanytime algorithms.



Anytime algorithms, paired with a meta-level control procedure
that determines how long to run an anytime algorithm, and when
to stop and act with the solution obtained, are a model that allow
for the trading off of computational resources for quality of results.
The meta-level control procedures are called performance profiles,
and are models of how the quality of a solution produced by an
algorithm improves with computation time.

There has been a lot of work on performance profile based con-
trol of computation [20, 2, 1, 3]. To represent performance pro-
files we use aperformance profile tree[7]. The advantage of this
approach is that, unlike earlier approaches, it allows optimal con-
ditioning on solution quality so far, the results of execution so far,
as well as conditioning on the problem instance and other solution
characteristics that may be deemed to be important.

We index a problem(z, i) by i andz, wherei is an agent andz
is the problem to be computed on. For each problem,(z, i), there
is a performance profile tree,T (z,i). This represents the fact that
the tree may be conditioned on features of the problem instance.
Figure 2 exemplifies one such tree.

P(E|C)

D

E

G

H

K

P(H|E)
A

B

4
P(0)

P(1)

2

C

P(F|C) F

6

4

20

15J

I 3

10

5

0

Figure 2: A stochastic performance profile tree for a valuation
problem. The diamond shaped nodes are random nodes and the
round nodes are solution nodes. At random nodeA, the probabil-
ity that the random algorithm uses the number 0 isP (0) while the
probability that the algorithm uses number 1 isP (1). The edges
from any solution node have positive weight, while the edges from
any random node have zero weight.

A performance profile tree consists of two types of nodes, as
well as weighted edges connecting nodes. Nodes can be eitherso-
lution nodesor random nodes. Solution nodes store the solution
that has been computed at a certain point in time. A solution node
may store only the value of the solution, or may contain informa-
tion about other solution features, such as slackness in schedules
for example. Random nodes occur in the tree whenever a random
number was used to chart the path of an algorithm run. For ex-
ample, an anytime algorithm for the Travelling Salesman Problem
(TSP) randomly chooses cities and swaps them in the route. A ran-
dom node would be inserted into the tree whenever the algorithm
randomly selected cities to swap. All edges in the trees have both
a weight and a label associated with them. Every edge that origi-
nates from a solution node has a positive weight, while every edge
emanating from a random node has a weight of zero. The weights
correspond to the number of computational steps it takes to reach
the child node. Edges from random nodes have zero weight since
we assume that the choosing of a random number takes no compu-
tation steps for the agent. All edges in the tree are also labelled.
The label on an edge is the probability of reaching the child node,
given that the parent was reached. The labels (probabilities) on
edges emanating from solution nodes are obtained from statistics
obtained from running the algorithm in the path. The labels (prob-
abilities) on edges emanating from random nodes are the probabil-
ities that specific random numbers were used. The labels on the
edges allows one to compute the probability of reaching any partic-
ular future node in the tree given any node. This is done by simply
multiplying the probabilities on the path between the nodes. An-

other important aspect in computing is how much time it will take
to obtain a certain solution. The weights on the edges correspond
to the amount of time to reach the solution at the child, given that
one has reached the parent. Therefore, the amount of time to reach
a certain solution is simply the sum of the edge weights on the path
to the solution.

We specify two different types of performance profiles;stochas-
tic anddeterministic. In a stochastic performance profile there is
uncertainty as to what solutions will be obtained with future com-
putation. At least one node in the tree has multiple children. The
uncertainty can arise from the use of randomized algorithms, vari-
ation of algorithm performance on different problem instances, or
some combination of both. In a deterministic performance pro-
file the algorithm’s performance can be projected with certainty.
That is, the performance profile tree is a branch – all nodes have at
most one child. Before taking any computation steps, an agent can
determine what the resulting solution will be after any amount of
computation is devoted to the problem.

Agents use the performance profile trees to help in making de-
cisions about how to use their computational resources. As agents
allocate computational time to an algorithm, the solutions returned
move the agents from node to node in the performance profile tree.
The performance profile trees provides information about how the
solution is likely to improve with future computation. In practice,
it is unlikely that an agent knows the solution for every time alloca-
tion without actually doing the computation. Rather, there is uncer-
tainty about how the solution improves over time. A performance
profile tree captures this uncertainty. The tree can be used to deter-
mineP (v(z,i)|t), denoting the probability that running to algorithm
for t time steps results in a solution of valuev(z,i). In particular,
the performance profile tree supports conditioning on the path of
solution quality. The performance profile tree that applies given
a path of computation is the subtree rooted at the current noden.
This subtree is denoted byT (z,i)(n). If an agent has reached node
n, which has a solution of valuev, then when estimating how much
additional computation would improve the solution, the agent need
only consider paths that emanate from noden. That is, the agent
need only be interested in the subtreeT (z,i)(n). The probability,
Pn(n′), of reaching a particular future node,n′, in T (z,i)(n) is
simply the product of the probabilities on the path from noden to
noden′. The expected value of the solution after allocatingt more
time step to the problem, if the current node isn, is∑

Pn(n′) · V (n′)

where the sum is over the set{n′|n′ is a node inT (z,i)(n) which
is reachable int time steps}, andV (n′) is the value of the solution
at noden′.

Computation plays several roles. In particular, agents are free to
devote computational time toward their own problems (individual
or joint) in order to improve solutions or else gather information so
as to have better knowledge as to what is the solution. Agents are
also free to compute on other’s individual problem in order to bet-
ter be able to determine what solution their opponent has obtained.
This information can be used during the negotiation process, or
in the decision making process about where to devote more com-
putation. However, there is one problem with agents computing on
other agent’s problem. An agent may not know which random num-
bers were used if the algorithm was randomized, nor may it have
full information about which problem instances the other agent has
encountered. Therefore, even if the same amount of computation is
spent on the problem, different agents may get different solutions.
To overcome this problem We allow agents to bothcomputeon



problems andemulateproblems. Computing on problems means
to actually compute on a problem so as to obtain a usable solu-
tion. Emulation of an algorithm is slightly different. Instead of
computing to obtain a usable solution, agents compute to see what
solutions are possible. Whenever a random node is reached in the
performance profile tree, an agent can choose which random num-
ber to use, instead of relying on a random number generator. This
allows the agent to obtain information about what could happen
along different pathes of the algorithm. When emulating, agents
are also permitted to “back up” a performance profile tree, and use
a different random number to see what other possible solution are
obtainable. Solutions obtained while emulating can not be used by
an agent as solutions to the actual problem, as they arepossible
solutions, notactualsolutions.

An agent’sstate of computationhas two components, the com-
puting component and the emulating component. The computing
component consists of one node for each performance profile tree,
T (z,i), which is the deepest node reached in the tree while comput-
ing on the problem(z, i). The emulation component consists of a
set of nodes for each performance profile tree. Each set of nodes
is the deepest node reached on the various paths explored by the
agent. For both the computing and emulating components, no ex-
plicit path information is stored, as a node uniquely defines a path
in the tree. The formal definition of the state of computation is as
follows.

DEFINITION 1. Thestate of computationfor agenti at timei is

θi(t) = (θci (t
c), θei (t

e))

with t = tc + te.
The computing component,θci (t

c), is a list of nodes, one for each
performance profile tree, that agenti has reached by computing;

θci (t
c) = 〈n(z,j)〉 wheren(z,j) is a node inT (z,j)

with
∑

(z,j) time(n(z,i)) = tc.
The emulating component,θei (t

e), is a list of sets of nodes, one
set for each performance profile. These are the nodes that agenti
has reached by emulating,

θei (t
e) = 〈{n(z,j)}〉 where{n(z,i)} is a set of nodes inT (z,i)

and with
∑

(z,j)

∑
n∈{n(z,j)} time(n) = te.

In our equilibrium analysis, we assume that agents have the same
performance profile trees for all problems, that is,T (z,α) = T (z,β)

for all problemsz. This models a real world setting where the
agents have been solving similar problems in the past, and have
been improving their algorithms for those problems resulting in
comparable algorithms among the agents. This allows one to drop
the agent indices on the trees, solution values and allocated time
variables. However, all the results still hold if agents have differ-
ent performance profiles for the same problems, as long as this is
common knowledge.

2.2 Bargaining
The termbargainingis used to refer to a situation in which

1. Agents have the possibility of concluding a mutually benefi-
cial agreement,

2. There is a conflict of interests about which agreement to con-
clude, and

3. No agreement may be imposed on any agent without its ap-
proval.

In our setting agents bargain over how to divide the surplus (or cost)
associated with implementing the joint solution. Each agent prefers
to receive more rather than less and each has the possibility to opt
out of the bargaining procedure and to implement its individual so-
lution with the associated valuevi. If the agents reach agreement,
then they implement the solution to the joint problem.

An agenti’s goal is to maximize its own utility,ui. Its utility is
determined by what solution is finally implemented and the cost or
revenue generated by the solution. If agenti decides to implement
its individual solution that has a value ofvi then the agent’s utility
is ui = vi. If, instead, the joint solution is implemented then the
agent’s utility depends not only on the value of the solution but also
on what has been negotiated. If an agent accepts a proposal ofx
then its utility isui = x. If it has made an offer of an amountx
which has been accepted, and has computed a joint solution valued
vjoint, then its utility isui = vjoint − x.

2.3 Formal Model
The game is divided into stages. In every stage, both agents are

allowed to perform one computational action on any problem they
want. The computational action is followed by bargaining actions.
In each stage one agent is the proposer and the other agent is the
responder. The proposer makes an offer,x. If the offer is accepted
by the responder, the game ends. The joint solution is executed, the
utility for the responding agent isx and the utility for the proposing
agent is the value it has computed for the joint solution at that point
in time minusx. If the proposal is rejected then in the next stage,
the two agents switch roles for the bargaining portion. The actions
and strategies in such a game can be defined formally as follows.

DEFINITION 2. Assume that at timet agenti is the proposer.
Anactionfor agenti at timet is

Ai(t) = (az, x)

whereaz ∈ {aα, aβ , ajoint} is a computing action andx ∈ R ∪ ∅
is an offer. The empty offer,∅, signals that the agent does not want
to implement the joint solution at timet.

At timet+ 1, agenti’s action is

Ai(t+ 1) = (az, res)

whereaz is a computing action andres ∈ {yes, no} is agenti’s
response to the opposing agent’s offer.

A historydescribes the computing state of both agents at timet
and the offers and responses of both agents.

DEFINITION 3. At time t, a history, h(t), is h(t) = θα(t −
1)× θβ(t− 1)× ((x, res)i)

t−1
i=0 .

There may be many histories at timet since there are many possi-
ble computation states each agent may be in (recall that computing
actions are private). LetHi(t) = {h(t)} be the set of all possible
histories at timet, as perceived by agenti.

A strategy for an agent specifies an action for every possible his-
tory after which it has to move.

DEFINITION 4. A strategyfor agenti, Si, is

Si = (σi(t))
T
t=0

whereT is agenti’s deadline andσi(t) : Hi(t− 1)→ Ai(t).

We also allow for mixed strategies whereσi(t) is a mapping from
the set of histories at timet − 1 to a probability distribution over
actions at timet.



In general, astrategy profileis a vectors = (s1, . . . , sn) which
specifies one strategy for each playeri in the game. The notation
s = (si, s−i) is used to denote the strategy profile where agenti’s
strategy issi ands−i = (s1, . . . , si−1, si+1, . . . , sn). Each agent
wants to maximize its utility,ui(s), which is determined once all
agents have chosen their strategies and the game has been played.
Game theory is interested in finding stable points on the space of
strategy profiles. These stable points are calledequilibria. There
are many types of equilibria but in this paper we shall be interested
in some of the most common ones, dominant strategy equilibria,
Nash equilibria, Bayes-Nash equilibria and perfect Bayesian equi-
libria.

A strategy is said to bedominantif it is a player’s strictly best
strategy against any strategies that the other agents might play. For-
mally, it is defined as follows.

DEFINITION 5. Agenti’s strategys∗i is a dominant strategy if

ui(s
∗
i , s−i) > ui(s

′
i, s−i) ∀s−i ∀s′i 6= s∗i .

If all agents have a dominant strategy then there is a dominant
strategy equilibrium.

DEFINITION 6. A dominant strategy equilibriumis a strategy
profile consisting of each player’s dominant strategy.

Agents may not always have dominant strategies and so dom-
inant strategy equilibria do not always exist. Instead a different
notion of equilibrium is often used, that of the Nash equilibrium.

DEFINITION 7. A strategy profiles∗ is aNash equilibriumif no
agent has incentive to deviate from its strategy given that the other
players do not deviate. Formally

∀i ui(s∗i , s∗−i) ≥ ui(s′i, s∗−i) ∀s′i.

The Nash equilibrium concept assumes that all agents have full
information about the other agents in the game. This may not al-
ways be true. Instead, agents may have secret information that
influences their choice of strategies, yet is unknown by the other
agents. An agent’s choice of actions may provide a signal as to
what its private information is. These signals can be used by the
other agents to update their beliefs about the private information.
A Bayes-Nash equilibrium is a Nash equilibrium where agents up-
date their beliefs about other agents’ private information after ob-
serving signals [9]. We analyze the bargaining model using the
perfect Bayesian equilibrium[9]. This solution concept requires
that players form a complete system of beliefs about the opponents’
types at each decision node that can be reached. The system of be-
liefs is updated according to Bayes’ rule whenever possible. Given
each player’s system of beliefs, the strategies form best responses
to one another in the sense of an ordinary Bayes-Nash equilibrium.
A perfect Bayesian equilibrium is a profile of complete strategies
and a profile of complete beliefs such that;i) Given the beliefs, the
strategies are unilaterally unimprovable at each potential decision
node that might be reached, andii) the beliefs are consistent with
the actual evolution of play as prescribed by the equilibrium strate-
gies. When we include the computational actions into the agents’
strategies, we obtain aperfect Bayesian deliberation equilibrium
[7].

2.4 Agents’ Beliefs and the Role of Signaling
Bargaining settings where agents are restricted to one round of

communication at the end of the computing phase has been previ-
ously studied [7]. This form of bargaining has the advantage that
agents did not leak information about their computation strategies.

On the other hand, in the alternating offers model, each proposal
and response provides information as to what problems the agents
have computed on and what solutions have been obtained. Propos-
als and responses aresignalsthat can be used by agents to update
their beliefs about where the other has computed. Each agent uses
this information, along with the values obtained by its own com-
puting actions, to guide its future computing actions, proposals and
responses.

Each agent’s beliefs are centered on the state of computation that
the other agent is in. Recall, that a state of computation is a list
specifying which nodes in which performance profile trees an agent
has reached by computing. An agenti’s belief at timet, Bi(t), is
a probability distribution over the set of states of computation that
agentj (j 6= i) may be in at timet. Let bi(θj(t)) be the probability
with which agenti believes that agentj is in state of computation
θj(t). An agent updates its beliefs whenever it receives some form
of relevant information. This information comes from one of two
sources; the agent’s own computation, and the other agent’s pro-
posals and responses. The rest of this section describes how agents
use these information sources to update beliefs.

First, we require that beliefs be consistent. For example, if at
time t− 1, agenti believed thatbi(θj(t− 1)) = 0 for some com-
putation stateθj(t−1), then agentimust have beliefbi(θj(t)) = 0
if computation stateθj(t) can only be reached by passing through
θj(t−1). Secondly, agents obtain information from their own states
of computation. This information can be used to update their be-
liefs about what computation states the other agent is in. In partic-
ular, given its own computation state at timet, θi(t), agenti is able
to compute the probability with which it is possible to move from
some stateθj(t−1) toθj(t) by either reading the probabilities from
the edges of the performance profile subtrees rooted at the nodes in
θi(t), or from already having computed along pathes that contained
nodes inθj(t). We denote byP (θj(t−1)→ θj(t)|θi(t)) to be the
probability that agentj may have moved from computation state
θj(t−1) to θj(t), given agenti’s own knowledge from computing.
Then

bi(θj(t)) =
∑

θj(t−1)

P (θj(t− 1) 7→ θj(t)|θi(t))bi(θj(t− 1)).

Agents also use information obtained from observing the bar-
gaining actions of their opponent. Assume that agenti receives a
proposal,x, from agentj at timet. Since we assume that agents
are individually rationalin the sense that they would never know-
ingly make a proposal that, if accepted, would make them worse
off than under no agreement, agentj’s proposals give information
about the possible computation states it is in. In particular, it must
be in a computing stateθj(t) such that

vjoint(tjoint)− x ≥ E[vβ(T − tβ − tjoint)].

Therefore, once an offer,x, is observed, agenti can update its be-
liefs by using Bayes Rules. That is, given original beliefbi(θ

′
j(t)),

agenti updates it tob′i(θ
′
j(t)) by computing

b′i(θ
′
j(t)) =

P (x|θ′j(t))bi(θ′j(t))∑
o∈{θj(t)} P (x|o)bi(o)

.

3. RESULTS
The bargaining settings differ based on whether agents have the

same deadline or different deadlines, and whether the performance
profiles are deterministic or stochastic. Without loss of generality,
we assume that agentα gets to make the first proposal at timet =
1. This means that agentα proposes whenever timet is odd, and
agentβ proposes whenever timet is even.



3.1 Common Deadline
The setting where there is a common deadlineT is analyzed first.

The deadline is the time when the agents have to start execution of
their solutions. Agreement between agents can be reached at any
time beforeT , however if no agreement is reached byT , the agents
must act on their individual solutions. No computation can occur
beyond timeT .

The expression “flattening out” is used in this section to refer
to paths in the performance profiles. We say that a path of a per-
formance profile to problemz has ”flattened out” if for somet′,
vz(t′) = vz(t) for all t ≥ t′.

3.1.1 Deterministic Performance Profiles
In a deterministic setting there exist situations (determined by

the performance profiles) where there is a unique perfect Bayesian
equilibrium, and other settings where there are multiple equilibria.
The next theorem characterizes these different settings.

THEOREM 1. Case 1: DeadlineT is odd.

1. vα(T ) ≤ vjoint(T ) − vβ(T ) and either none of the perfor-
mance profiles or only agentα’s flatten out. Agentβ has a
dominant strategySβ = (σβ(t))Tt=1 where

σβ(t) =


(aβ , yes) if t odd,t ≤ T , andx ≥ vβ(T )
(aβ , no) if t odd,t ≤ T , andx < vβ(T )
(aβ , ∅) if t is even

That is, agentβ computes only on its individual solution,
makes no offers and only accepts an offer if it is greater than
or equal to the value it expects to obtain for its individual
solution.

Agentα has a unique best response,Sα = (σα(t))Tt=1 where

σα(t) =


(ajoint, ∅) if t odd,t < T
(ajoint, vβ(T )) t = T
(ajoint, no) t even,t < T , and

x < vjoint(T )− vβ(T )
(ajoint, yes) otherwise

That is, agentα computes only on the joint solution, makes
no offers and accepts only offers that are greater than the
difference between the best computable joint solution and the
best computable solution for agentβ’s individual problem.

2. vα(T ) ≤ vjoint(T )− vβ(T ) and the solution toβ’s individ-
ual problem flattens out. Agentβ has multiple equilibrium
strategies. It computes until it obtains the maximum value
for its own problem and then may compute on any of the
problems. It makes empty proposals and accepts any offer
greater than its fallback. Agentα’s best response strategy
remains the same as in the first situation.

3. vα(T ) ≤ vjoint(T ) − vβ(T ) and the solution to the joint
problem flattens out. Agentβ has a dominant strategy as in
the first situation. However,α no longer has a unique best
response strategy. Once it has computed the maximum value
for the joint problem it can then compute on any of the three
problems. The bargaining part of its strategy remains the
same as in the first situation.

4. vα(T ) > vjoint(T ) − vβ(T ) and either none of the per-
formance profiles or else only the one for the joint problem
flattens out. Agentβ has the same dominant strategy as in the
first situation. Agentα also has a dominant strategy which is
to compute on its own problem, make empty offers whent is
odd and accept any proposal greater thanvα(T ).

5. vα(T ) > vjoint(T ) − vβ(T ) and β’s performance profile
flattens out. There is no longer an undominated strategy for
agentβ. Once it has computed the maximum value for its
individual problem then it may continue computing on any
of the three problems. It makes empty proposals and accepts
any offer which is greater than its maximum fallback value.
Agentα has the same dominant strategy as in situation 4.

6. vα(T ) > vjoint(T ) − vβ(T ) andα’s performance profile
flattens out. β has the same dominant strategy as in the
first situation. Agentα has no unique best response strat-
egy. Once it has computed the maximum value for its own
problem, it may then compute on any of the three problems.
It will make the empty offer whenevert is odd and accept any
offer greater thanvα(T ).

7. If all performance profiles flatten out beforeT then it is pos-
sible that in equilibrium agreement may or may not be reached
before the deadline.

Case 2: DeadlineT is even. Therefore agentβ gets to make the
final proposal. The equilibrium strategy for agentα is the same
as the equilibrium strategy for agentβ is Case 1. The equilibrium
strategy for agentβ is the same as that of agentα in Case 1.

Proof: We will only provide a proof of Case 1. The other cases
follow a similar argument. SinceT is odd, if the game reaches time
T then agentα will get to make the final proposal. At this moment,
the agents are engaged in a take–it or leave–it game. Agentα will
try to make the lowest acceptable offer to agentβ and agentβ will
want to be in its strongest bargaining position by having a high
fallback value. That is,vβ(T ). Sincevjoint(T )−vβ(T ) ≥ vα(T ),
and both agents knew this before beginning the game, agentα will
offer x = vβ(T ) and agentβ will accept.

Assume that agentβ had made an offer,x, at timet < T . Since
we assume that neither agent would make or accept an offer that
would result in a utility that is less than their expected utility from
making no offer, it must be the case that at timet, vjoint(t)− x ≥
vβ(T − t). Sincevβ(T − t) ≤ vβ(T ), upon seeing an offer of
x, agentα would update its beliefs about what possible solution
agentβ is able to compute for its own problem, reject the offer and
proposevβ(T − t) at timeT . This results in a lower utility for
agentβ. If agentα makes an offery such thaty ≥ vβ(T ) then
agentβ will accept it as this offer is greater than what it expects
it can receive if it stays longer in the game. Agentα has a best
response strategy to agentβ’s strategy. It knows that by computing
only on the joint problem and offering agentβ an amount ofvβ(T )
at timeT , then its utility will bevjoint(T )− vβ(T ). If it computes
t time steps on its own problem anytime in the game then its utility
would bemax[vjoint(T−t)−vβ(T ), vα(t)] ≤ vjoint(T )−vβ(T ).
Assume that at timet < T agentα makes an offer ofx. If the
offer is accepted by agentβ then agentα must update its beliefs
about what solution agentβ has obtained and must conclude than
it has made an offer which is too high. Therefore, agentα would
deviate from this strategy, and would want to make a lower offer.
In the limit, the offer agentα would want to make (after all belief
updates) is∅. 2

3.1.2 Stochastic Performance Profiles
In the stochastic setting there is uncertainty associated with the

values being computed. Agents no longer generally have dominant
strategies when it comes to computing and bargaining. A proposal
becomes a signal which leaks information to the other agent about
what values the agent has computed. Each agent would like the
other to believe that it is in a strong bargaining position, i.e., it has



a high fallback value and is willing to bargain hard in order to get
the best possible deal. We obtain the following result.

THEOREM 2. Assume that the deadlineT is odd and that there
exists at least one path in each performance profile that does not
flatten out beforeT . Agentβ has a dominant strategy(σβ(t))Tt=1

where

σβ(t) =


(aβ , no) for oddt, t < T
(aβ , yes) for t = T andx ≥ vβ(T )
(aβ , no) for t = T andx < nβ(T )
(aβ , ∅) for event

That is, agentβ computes only on its individual problem, makes
no offers and only accepts an offer if it is made at timeT and is
greater than, or equal to the value it can obtain from the solution
of its individual solution.

Agentα has possibly multiple equilibrium strategies which all
have the same form. At oddt, t < T , it offers∅, for event, t < T it
accepts any offer greater thanmax[max vα(T ),max vjoint(T )].
It follows a computing policy and makes an offer at the deadline
such that its expected utility,E[uα] is maximized, i.e.,

E[uα] = max
x,(tα,tβ ,tjoint)

{P (x ≥ vβ(T ))(vjoint(tjoint)− x)

+(1− P (x ≥ vβ(T )))vα(tα)}

where(tα, tβ , tjoint) ∈ Part(T). If T is even, the equilibrium
strategies of the agents are reversed.

Proof Sketch: The proof follows a similar argument to that of
Theorem 1. The difference is that the agents no longer know with
certainty what final solutions their opponent may have obtained
from computing as there is uncertainty in the performance profiles.
Therefore, the agent who gets to make the final offer at timeT may
use some of its own computational resources in order to refine its
beliefs about what its opponent’s fallback value is. 2

In other words, no proposals are made before the deadline. At
the deadline, an agreement may or may not be reached. There are
some special cases where there are multiple equilibria. IfT is odd
and every path in agentβ’s individual problem’s performance pro-
file flattens out beforeT , then agentβ will compute until it has
obtained the maximum fallback value possible after which it may
compute on any of the three solutions. Agreement still may or may
not be reached at timeT . If every single path in all performance
profiles flatten out beforeT , then it is possible that the game will
end beforeT .

The beauty of this result is that it takes a complex situation and
reduces it to a simple one. While the space of possible actions
for both agents is extremely large, in equilibrium agents behave as
if they were in a restricted action space where only one agent is
allowed to propose at only one time point (i.e., at the deadline).
This simplified problem was discussed in an earlier paper where an
algorithm was presented for determining the agents’ equilibrium
strategies (Algorithm 1) [7]. Given Theorem 2, this algorithm can
also be used in the alternating offers setting. Then, using the equi-
librium strategies, and depending on the algorithms’ performance
profiles and the problem instance, agreement may or may not be
reached at the deadline.

3.2 Different Deadlines
Another situation which may arise is the case where agents have

different deadlines. Let the agents’ deadlines be noted bydα and
dβ . Since a deadline,di, means that at timet = di agenti must
begin executing a solution to a problem, the final deadline for the

joint solution isd = min[dα, dβ ]. If d < di for i = α or β, and no
agreement is reached byd, then it is in the best interest for agenti
to continue computing on the solution to its individual problems.

What is interesting in this setting is that the agent who has the
most power in the negotiation is not necessarily the one with the
latest deadline (unlike in, e.g., [18]). Instead, which agent gets
to make the offer at the earliest deadline also plays a vital role in
which strategies the agents will want to execute.

If both deadlines are common knowledge, the game is similar to
the settings described in the previous section except that agreement
must be reached bymin[dα, dβ ]. However, the agents have to take
into account that the agent with the later deadline can compute on
its own problem alsoafter the first deadline (and before its own
deadline). The results from the previous section still hold with the
following slight modifications to account for this. Due to space
constraints, we omit the proofs.

THEOREM 3. With different deadlines that are common knowl-
edge, Theorems 1 and 2 hold ifvα(T ) is replaced byvα(dα),
vβ(T ) is replaced byvβ(dβ) andvjoint(T ) is replaced by
vjoint(min[dα, dβ ]).

If the deadlines are private information, but there is common
knowledge of the joint distribution from which the deadlines are
drawn,f(dα, dβ), then the situation is more complicated. Agents
must maintain a second set of beliefs about when its opponent’s
deadline will occur. As time passes, the beliefs are updated using
Bayes rule and are used in speculating what the opponents fallback
values might be.

In both the deterministic and stochastic settings a similar prob-
lem arises. The only equilibria that exist have the agents waiting for
the first deadline to arrive. Early proposals leak too much informa-
tion to the opposing agent and thus reduces the proposing agent’s
expected utility.

THEOREM 4. If the agents’ private deadlines are drawn from
a joint distribution,f(dα, dβ), then there will be no proposing and
counter-proposing until the earliest deadline is reached. At that
time an agreement may or may not occur.

4. DISCUSSION
Whether or not agreement is reached depends on the agents’

equilibrium strategies, performance profiles and the problem in-
stance. Determining the equilibrium strategies for the agents in-
volves Bayesian updating as agents update their beliefs as to what
the other agent has obtained as solution values. For a computa-
tionally limited agent, the cost of performing such belief revision
may be prohibitive. However, it has been shown that there exist
strategies which are equivalent to the ones played in take-it-or-
leave-it bargaining games. For some settings (depending on the
performance profiles and knowledge about deadlines) there are al-
gorithms that can compute offline, the online computing and bar-
gaining policies for agents participating in take-it-or-leave-it bar-
gaining games [7]. For example, Algorithm 1, Strategy Finder,
based on dynamic programming, can be used to determine the opti-
mal computing policy in situations where agents know each other’s
deadlines and have stochastic performance profiles [7].

In equilibrium, agentβ will follow a computing policy which
has it obtain a value ofvβ(T ). The algorithm computes an optimal
offer for agentα, for each possible state of computation, given that
agentβ has computed so as to maximize its fallback value. The
algorithm then works backwards, determining the optimal compu-
tation and bargaining actions.

In certain settings, such as when agents’ deadlines are drawn
from some joint distribution, determining the optimal strategies is



Algorithm 1 Strategy Finder
Require: T ≥ 0

for each computation stateθα(T ) at timeT do
xoα(θα(T )) ← arg maxx[Pa(x)[V (njoint

α ) − x] + (1 −
Pa(x))V (nαα)]

end for
for t = T − 1 down to0 do

for each computation stateθα(t) do
az(θα(t))← arg maxaz E[uα((az, θα(t)), Sβ)]

end for
end for
return ((az(θα(t)))T−1

t=0 , (x
o
α(θα(T ), V (nαα))θα(T ))

difficult because each agent’s best-response strategy depends on the
strategies of the other. It might be possible to use new game repre-
sentations to solve for equilibrium in such games [5].

5. RELATED RESEARCH
There is a substantial body of work in both economics and AI

that has investigated different bargaining settings. In this section
we discuss some of the work that is closely related to this paper.

Rubinstein developed a bargaining model of alternating offers
that took time into consideration [12]. He studied situations where
time was finite, where both agents had the same deadline, and also
situations where time was infinite but there was a cost function
which reduced the value of agreement as time passed. In his model,
both bargainers knew what the value of the item being negotiated
over was, and what the fallback values were. While we use the al-
ternating offers model, we include another dimension to the prob-
lem. Agents must invest resources in order to determine what is
being bargained over and what the fallback values are.

In AI, Kraus, Wilkenfeld and Zlotkin looked at the alternating
offers model of bargaining where agents take the passage of time
into account [6]. They investigated the effects of time preferences
on bargaining strategies. Other work that studied the effects of time
in bargaining has been done by Sandholm and Vulkan [18]. They
investigated a bargaining setting where agents were free to make
and respond to offers at any point in time, but were constrained
by deadlines. Our work is different from both of these since time is
considered to be a resource that is used by agents to determine what
is actually being negotiated over. The use of time for computation
is an integral part of agents’ strategies.

6. CONCLUSIONS AND FUTURE WORK
The contribution of this work is that it incorporates the com-

puting actions of computationally limited agents into a complex,
but standard bargaining model. In this paper we presented an al-
ternating offers computing and bargaining model for agents nego-
tiating in an open system. At each time step agents are allowed
to take one computing step for computing solutions to either an
agent’s individual problem, its opponent’s individual problem or
the joint problem. Agents take turns making a proposal or respond-
ing to the other’s proposal. We presented two main results. First,
in a deterministic setting we characterized all possible equilibrium
outcomes. The second result is that even in a stochastic setting,
even with the rich bargaining model with a large strategy space,
the game is equivalent to a much simpler bargaining setting with
a small strategy space. If an agreement is reached, it occurs at the
(earlier) deadline (for which there exist algorithms to determine
off–line the optimal online computing strategies).

Future research includes generalizing this work to more than two

agents. Using different models of bounded rationality (e.g., costly
but unlimited computation [8]) would be another interesting direc-
tion of further exploration.

Acknowledgments
This material is based upon work supported by the National Sci-
ence Foundation under CAREER Award IRI-9703122, Grant IIS-
9800994, ITR IIS-0081246, and ITR IIS-0121678.

7. REFERENCES
[1] M. Boddy and T. Dean. Deliberation scheduling for problem

solving in time-constrained environments.Artificial
Intelligence, 67:245–285, 1994.

[2] E. Hansen and S. Zilberstein. Monitoring and control of
anytime algorithms: A dynamic programming approach.
Artificial Intelligence, 126:139–157, 2001.

[3] E. Horvitz. Reasoning about beliefs and actions under
computational resource constraints. In3rd Workshop on
Uncertainty in AI, pages 429–444, Seattle, 1987.

[4] P. Jehiel. Limited horizon forecast in repeated alternate
games.Journal of Economic Theory, 67:497–519, 1995.

[5] D. Koller, N. Megiddo, and B. Stengel. Efficient computation
of equilibria for extensive two-person games.Games and
Economic Behavior, 14(2):247–259, 1996.

[6] S. Kraus, J. Wilkenfeld, and G. Zlotkin. Multiagent
negotiation under time constraints.Artificial Intelligence,
75:297–345, 1995.

[7] K. Larson and T. Sandholm. Bargaining with limited
computation: Deliberation equilibrium.Artificial
Intelligence, 132(2):183–217, 2001.

[8] K. Larson and T. Sandholm. Costly valuation computation in
auctions. InTARK VIII, pages 169–182, Sienna, July 2001.

[9] A. Mas-Colell, M. Whinston, and J. R. Green.
Microeconomic Theory. Oxford University Press, 1995.

[10] M. J. Osborne and A. Rubinstein.Bargaining and Markets.
Academic Press, Inc., 1990.

[11] J. S. Rosenschein and G. Zlotkin.Rules of Encounter:
Designing Conventions for Automated Negotiation among
Computers. MIT Press, 1994.

[12] A. Rubinstein. Perfect equilibrium in a bargaining model.
Econometrica, 50:97–109, 1982.

[13] A. Rubinstein.Modeling Bounded Rationality. MIT Press,
1998.

[14] S. Russell. Rationality and intelligence.Artificial
Intelligence, 94(1):57–77, 1997.

[15] S. Russell and E. Wefald.Do the right thing: Studies in
Limited Rationality. The MIT Press, 1991.

[16] T. Sandholm. Issues in computational Vickrey auctions.
International Journal of Electronic Commerce,
4(3):107–129, 2000.

[17] T. Sandholm and V. R. Lesser. Coalitions among
computationally bounded agents.Artificial Intelligence,
94(1):99–137, 1997.

[18] T. Sandholm and N. Vulkan. Bargaining with deadlines. In
AAAI’99, pages 44–51, Orlando, FL, 1999.

[19] H. Simon.Models of bounded rationality, vol. 2. MIT Press,
1982.

[20] S. Zilberstein and S. Russell. Optimal composition of
real-time systems.Artificial Intelligence, 82(1–2):181–213,
1996.


