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Abstract. The subject of this article isdifferential compression, the algorithmic task of finding common
strings between versions of data and using them to encode one version compactly by describing it as a
set of changes from its companion. A main goal of this work is to present new differencing algorithms
that (i) operate at a fine granularity (the atomic unit of change), (ii) make no assumptions about
the format or alignment of input data, and (iii) in practice use linear time, use constant space, and
give good compression. We present new algorithms, which do not always compress optimally but
use considerably less time or space than existing algorithms. One new algorithm runs inO(n) time
and O(1) space in the worst case (where each unit of space containsdlogne bits), as compared to
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algorithms that run inO(n) time andO(n) space or inO(n2) time andO(1) space. We introduce two
new techniques for differential compression and apply these to give additional algorithms that improve
compression and time performance. We experimentally explore the properties of our algorithms by
running them on actual versioned data. Finally, we present theoretical results that limit the compression
power of differencing algorithms that are restricted to making only a single pass over the data.

Categories and Subject Descriptors: D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement—version control; E.4 [Data]: Coding and Information Theory—data compaction and
compression; E.5 [Data]: Files—backup/recovery; F.2.2 [Analysis of Algorithms and Problem
Complexity]: Nonnumerical Algorithms and Problems; H.2.7 [Database Management]: Database
Administration—data warehouse and repository; H.3.5 [Information Storage and Retrieval]: On-
line Information Services—web-based services

General Terms: Algorithms, Experimentation, Performance, Theory

Additional Key Words and Phrases: Delta compression, differencing, differential compression

1. Introduction

Differential compression allows applications to encode compactly anew versionof
data with respect to a previous orreferenceversion of the same data. A differential
compression algorithm locates substrings common to both the new version and the
reference version, and encodes the new version by indicating (1) substrings that
can be located in the reference version and (2) substrings that are added explicitly.
This encoding, called adelta versionor delta encoding, is often compact and may
be used to reduce both the cost of storing the new version and the time and network
usage associated with distributing the new version. In the presence of the reference
version, the delta encoding can be used to rebuild or materialize the new version.

The first applications using differencing algorithms took two versions of text data
as input, and gave as output those lines that changed between versions [de Jong
1972]. Software developers and other authors used this information to control mod-
ifications to large documents and to understand the fashion in which data changed.
An obvious extension to this text differencing system was to use the output of the
algorithm to update an old (reference) version to the more recent version by apply-
ing the changes encoded in the delta version. The delta encoding may be used to
store a version compactly and to transmit a version over a network by transmitting
only the changed lines.

By extending this concept of delta management over many versions, practitioners
have used differencing algorithms for efficient management of document control
and source code control systems such as SCCS [Rochkind 1975] and RCS [Tichy
1985]. Programmers and authors make small modifications to active documents
and check them in to the document control system. All versions of data are kept,
so that no prior changes are lost, and the versions are stored compactly, using only
the changed lines, through the use of differential compression.

Early applications of differencing used algorithms whose worst-case running
time is quadratic in the length of the input files. For large inputs, performance at
this asymptotic bound proves unacceptable. Therefore, differencing was limited to
small inputs, such as source code text files.

The quadratic time of differencing algorithms was acceptable when limiting dif-
ferential compression applications to text, and assuming granularity and alignment
in data to improve the running time. However, new applications requiring the man-
agement of versioned data have created the demand for more efficient differencing
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algorithms that operate on unstructured inputs, that is, data that have no assumed
alignment or granularity. We mention three such applications.

(1) Delta versions may be used to distribute software over low bandwidth chan-
nels like the Internet [Burns and Long 1998]. Since the receiving machine has an
old version of software, firmware or operating system, a small delta version is ad-
equate to upgrade this client. On hierarchical distributed systems, many identical
clients may require the same upgrade, which amortizes the costs of computing the
delta version over many transfers of the delta version.

(2) Recently, interest has appeared in integrating delta technology into theHTTP
protocol [Banga et al. 1997; Mogul et al. 1997]. This work focuses on reducing
the data transfer time for text andHTTP objects to decrease the latency of loading
updated web pages. More efficient algorithms allow this technology to include the
multimedia objects prevalent on the Web today.

(3) In a client/server backup and restore system, clients may perform differential
compression, and may exchange delta versions with a server instead of exchanging
whole files. This reduces the network traffic (and therefore the time) required to
perform the backup and it reduces the storage required at the backup server [Burns
and Long 1997]. Indeed, this is the application that originally inspired our research.
Our differential compression algorithms are the basis for the Adaptive Differencing
technology in IBM’s Tivoli Storage Manager product.

Although some applications must deal with a sequence of versions, as described
above, in this article we focus on the basic problem of finding a delta encoding of
one version, called simply the “version”, with respect to a prior reference version,
called simply the “reference”. We assume that data is represented as a string of
symbols, for example, a string of bytes. Thus, our problem is, given a reference
string R and a version stringV , to find a compact encoding ofV using the ability
to copy substrings fromR.

1.1. PREVIOUS WORK. Differential compression emerged as an application of
the string-to-string correction problem [Wagner and Fischer 1973], the task of
finding the minimum cost edit that converts stringR (the reference string) into
stringV (the version string). Algorithms for the string-to-string correction problem
find a minimum cost edit, and encode a conversion function that turns the contents
of stringR into stringV . Early algorithms of this type compute the longest common
subsequence (LCS) of stringsRandV , and then regard all characters not in the LCS
as the data that must be added explicitly. The LCS is not necessarily connected inR
or V . This formulation of minimum cost edit is reasonable when there is a one-to-
one correspondence of matching substrings inR andV , and matching substrings
appear inV in the same order that they appear inR.

Smaller cost edits exist if we permit substrings to be copied multiple times
and if copied substrings fromR may appear out of sequence inV . This problem,
which is termed the “string-to-string correction problem with block move” [Tichy
1984], presents a model that represents both computation and I/O costs for delta
compression well.

Traditionally, differencing algorithms have been based upon either dynamic pro-
gramming [Miller and Myers 1985] or the greedy algorithm [Reichenberger 1991].
These algorithms solve the string-to-string correction problem with block move
optimally, in that they always find an edit of minimum cost. These algorithms use
time quadratic in the size of the input strings, and use space that grows linearly.
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A linear time, linear space algorithm, derived from the greedy algorithm, sacrifices
compression optimality to reduce asymptotic bounds [MacDonald 2000].

There is a greedy algorithm based on suffix trees [Weiner 1973] that solves the
delta encoding problem optimally using linear time and linear space. Indeed, the
delta encoding problem (called the “file transmission problem” in Weiner [1973])
was one of the original motivations for the invention of suffix trees. The space to
construct and store a suffix tree is linear in the length of the input string (in our case,
the reference string). Although much effort has been put into lowering the multi-
plicative constant in the linear space bound (two recent papers are Grossi and Vitter
[2000] and Kurtz [1999]), the space requirements prevent practical application of
this algorithm for differencing large inputs.

Linear time and linear space algorithms that are more space-efficient are formu-
lated using Lempel–Ziv [Ziv and Lempel 1977, 1978] style compression techniques
on versions. The Vdelta algorithm [Hunt et al. 1998] generalizes the library of the
Lempel–Ziv algorithm to include substrings from both the reference string and the
version string, although the output encoding is produced only when processing
the version string. The Vdelta algorithm relaxes optimal encoding to reduce space
requirements, although no sublinear asymptotic space bound is presented. Based
on the description of this algorithm in Hunt et al. [1998], the space appears to be
at least the length of the L–Z compressed reference string (which is typically some
fraction of the length of the reference string) even when the reference and version
strings are highly correlated. Using a similar technique, there is an algorithm [Chan
and Woo 1999] that encodes a file as a set of changes from many similar files (mul-
tiple reference versions). These algorithms have the advantage that substrings to be
copied may be found in the version string as well as the reference string. However,
most delta-encoding algorithms, including all those presented in this article, can be
modified slightly to achieve this advantage.

Certain delta-encoding schemes take advantage of the structure within versions
to reduce the size of their input. Techniques include: increasing the coarseness of
granularity (which means increasing the minimum size at which changes may be
detected), and assuming that data are aligned (detecting matching substrings only
if the start of the substring lies on an assumed boundary). Some examples of these
input reductions are:

—Breaking text data into lines and detecting only line-aligned common substrings.
—Coarsening the granularity of changes to a record in a database.
—Differencing file data at block granularity and alignment.

Sometimes data exhibit structure to make such decisions reasonable. In databases,
modifications occur at the field and record level, and algorithms that take advan-
tage of the syntax of change within the data can outperform (in terms of running
time) more general algorithms. Examples of differencing algorithms that take ad-
vantage of the structure of data include a tree-based differencing algorithm for
heterogeneous databases [Chawathe and Garcia-Molina 1997] and the MPEG dif-
ferential encoding schemes for video [Tudor 1995]. However, the assumption of
alignment within input data often leads to suboptimal compression; for example,
in block-granularity file system data, inserting a single byte at the front of a file can
cause the blocks to reorganize drastically, so that none of the blocks may match.
We assume data to be arbitrary, without internal structure and without alignment.
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By foregoing assumptions about the inputs, general differencing algorithms avoid
the loss of compression that occurs when the assumptions are false.

For arbitrary data, existing algorithms provide a number of trade-offs among time,
space, and compression performance. At one extreme, a straightforward version of
a greedy algorithm gives optimal compression in quadratic time and constant space.
Algorithms based on suffix trees provide optimal compression in linear time and
linear space. The large (linear) space of suffix trees can be reduced to smaller (but
still asymptotically linear in the worst case) space by using hashing techniques as
in Reichenberger [1991] (which departs from worst-case linear time performance)
or in Hunt et al. [1998] (which departs from optimal compression performance). In
many cases, the space usage of these algorithms is acceptable, particularly when
the input strings are small in comparison to computer memories. However, for
applications to large inputs, neither quadratic time nor linear space are acceptable.
Obtaining good compression in linear time when only a small amount of information
about the input strings can be retained in memory is a challenge not answered by
existing work.

1.2. THE NEW WORK. We describe a family of algorithms for differencing ar-
bitrary inputs at a fine granularity that run in linear time and constant space. Given
a reference stringR and a version stringV , these algorithms produce an encoding
of V as a sequence of instructions either to add a substring explicitly, or to copy
a substring from some location inR. This allows substrings to be copied out of
order fromR, and allows the same substring inR to participate in more than one
copy. These algorithms improve existing technology, since (1) they are more ef-
ficient than previous algorithms; (2) they need not assume alignment to limit the
growth of the time and space required to find matching substrings; and (3) they can
detect and encode changes at an arbitrary granularity. This family of algorithms
is constructed in a modular way. The underlying structure consists of two basic
strategies and two additional techniques. The algorithms that implement the basic
strategies (the “one-pass” and “1.5-pass” strategies) run in linear time and constant
space. One of the techniques (“encoding correction”, or for short, “correction”)
can be applied to improve the compression performance of either basic algorithm,
while increasing somewhat the running time and implementation complexity of
the algorithm. The other technique (“checkpointing”) is useful when dealing with
very large inputs. This modular structure gives the designer of a differential com-
pression algorithm flexibility in choosing an algorithm based on various require-
ments, such as running time and memory limitations, compression performance,
and the sizes of inputs that are expected. Moreover, the techniques of correction and
checkpointing have the potential for new applications beyond those discussed in
this article.

We now outline and summarize the article. In Section 2, we give an overview
of the differencing problem, and we describe certain basic techniques, such as
hashing, that are common to our new differencing algorithms as well as to several
previous ones. In Section 3, we describe a “greedy” differencing algorithm modified
from Reichenberger [1991]. This algorithm always finds an optimally small delta
encoding, under a certain natural definition of the size of a delta encoding. The
principal drawback of this algorithm is that its computational resources are high,
namely, quadratic time and linear space. We present this algorithm mainly to provide
a point of comparison for the new algorithms. In particular, since the new algorithms
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do not always find an optimally small delta encoding, we compare the compression
performance of the new algorithms with that of the greedy algorithm to evaluate
experimentally how well the new algorithms perform.

In Section 4, we present our first new algorithm. It uses linear time and constant
space in the worst case. We call this algorithm the “one-pass algorithm”, because it
can be viewed as making one pass through each of the two input strings. Even though
the movement through a string is not strictly a single pass, in that the algorithm can
occasionally jump back to a previous part of the string, we prove that the algorithm
uses linear time.

In Section 5, we give a technique that helps to mitigate a deficiency of the one-pass
algorithm. Because the one-pass algorithm operates with only limited information
about the input strings at any point in time, it can make bad decisions about how to
encode a substring in the version string; for example, it might decide to encode a
substring of the version string as an explicitly added substring, when this substring
can be much more compactly encoded as a copy that the algorithm discovers later.
The new technique, which we callcorrection, allows an algorithm to go back and
correct a bad decision if a better one is found later. In Section 6, the technique
of correction is integrated into the one-pass algorithm to obtain the “correcting
one-pass algorithm.” The correcting one-pass algorithm can use superlinear time
on certain adversarial inputs. However, the running time is observed to be linear on
experimental data.

Section 7 contains an algorithm that uses a strategy for differencing that is some-
what different than the one used in the one-pass algorithms. Whereas the one-pass
and correcting one-pass algorithms move through the two input strings concur-
rently, the “1.5-pass algorithm” first makes a pass over the reference string in order
to collect partial information about substrings occurring in the reference string. It
then uses this information in a pass over the version and reference strings to find
matching substrings. (The greedy algorithm uses a similar strategy. However, during
the first pass through the reference string, the greedy algorithm collects complete
information about substrings, and it makes use of this information when encoding
the version string. This leads to its large time and space requirements.) Because
correction has proven its worth in improving the compression performance of the
one-pass algorithm, we describe and evaluate the “correcting 1.5-pass algorithm,”
which uses the 1.5-pass strategy together with correction.

In Section 8 we introduce another general tool for the differencing toolkit. This
technique, which we callcheckpointing, addresses the following problem. When the
amount of memory available is much smaller than the size of the input, a differenc-
ing algorithm can have poor compression performance, because the information
stored in memory about the inputs must necessarily be imperfect. The effect of
checkpointing is to effectively reduce the inputs to a size that is compatible with
the amount of memory available. As one might expect, there is the possibility of a
concomitant loss of compression. But checkpointing permits the user to trade off
memory requirements against compression performance in a controlled way.

Section 9 presents the results of our experiments. The experiments involved
running the algorithms on more than 30,000 examples of actual versioned files
having sizes covering a large range. In these experiments, the new algorithms run
in linear time, and their compression performance, particularly of the algorithms
that employ correction, is almost as good as the (optimal) compression performance
of the greedy algorithm.
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In Section 10, we give a result that establishes a limitation on the compression
performance of strict single-pass algorithms, which can make only a single pass
through each input string with no reversals or random-accesses allowed. We show
that if memory is restricted, then any such differencing algorithm must have very
bad compression performance on “transposed data,” where there are stringsX and
Y such that the reference string isXY and the version string isY X.

2. An Overview of Version Differencing

We now introduce and develop the differencing problem. At a high level, a dif-
ferencing algorithm encodes a versionV with respect to a referenceR by finding
regions ofV identical to regions ofR, and encoding this data with a reference to
the location and size of the data inR. For many applications of interest, including
files, databases, and binary executables, the input data are composed of strings or
one-dimensional ordered lists of symbols. We refer to the input and output of the
algorithm as “strings”. Because one of our main goals is to perform differential
compression at a fine granularity, we take a “symbol” to be one byte when imple-
menting our algorithms. However, the definitions of our algorithms do not depend
on this particular choice.

A differencing algorithm accepts as inputs two strings, areference string Rand
a version string V, and outputs adelta string1(R:V). A differencing algorithmA
encodes the version string with respect to the reference string:

1(R:V) = A(R,V).

There is also a reconstruction algorithm, denotedA−1, that reconstructs the version
string in the presence of the reference and delta strings:

V = A−1(R,1(R:V)).

In this article, all specific delta encoding algorithmsA are deterministic, and the
reconstruction algorithmA−1 (also deterministic) is the same for all of our encoding
algorithms. In Section 10, we give a lower bound result that is made stronger by
allowing the encoding algorithm to be probabilistic.

We allow our differencing algorithms to make random (i.e., nonsequential) ac-
cesses to stringsV andR. When stating worst-case time bounds, such asO(n), we
assume that an algorithm may jump to an arbitrary data offset in a string in unit
time.1 A space bound applies only to the amount of memory used by the algorithm;
it does not include the space needed to store the input strings. We use memory for
load and store operations that must be done quickly to achieve reasonable time per-
formance. When stating space bounds, we assume that one unit of space is sufficient
to hold an integer that represents an arbitrary offset within an input string.

We evaluate the goodness of a differencing algorithm using three metrics:

(1) the time used by the algorithm,
(2) the space used by the algorithm, and

1 However, the timing results from our experiments reflect the the actual cost of jumps, which can
depend on where the needed data is located in the storage hierarchy when the jump is made.
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(3) the compression achieved, that is, the ratio of the size of the delta string1(R:V)
to the size of the version stringV to be encoded.

It is reasonable to expect trade-offs among these metrics; for example, better
compression can be obtained by spending more computational resources to find the
delta string. Our main goal is to find algorithms whose computational resources
scale well to very large inputs, and that come close to optimal compression in
practice. In particular, we are interested in algorithms that use linear time and
constant space in practice. The constant in our constant space bounds might be a
fairly large number, considering the large amount of memory in modern machines.
The point is that this number does not increase as inputs get larger, so the algorithms
do not run up against memory limitations when input length is scaled up. On the
other hand, we want the constant multiplier in the linear time bounds to be small
enough that the algorithms are useful on large inputs.

We define some terms that will be used later when talking about strings. Any
contiguous part of a stringX is called asubstring(of X). If a andb are offsets
within a stringX anda < b, thesubstring from a up to bmeans the substring ofX
whose first (respectively, last) symbol is at offseta (respectively,b−1). We denote
this substring byX[a, b). The offset of the first symbol of an input string (R or V)
is offset zero.

2.1. GENERAL METHODS FORDIFFERENTIAL COMPRESSION. All of the algo-
rithms we present share certain traits. These traits include the manner in which
they perform substring matching and the technique they use to encode and to re-
construct strings. These shared attributes allow us to compare the compression
and computational resources of different algorithms. So, before we present our
methods, we introduce key concepts for version differencing common to all pre-
sented algorithms.

2.1.1. Delta Encoding and Algorithms for Delta Encoding.An encoding of a
string X with respect to a reference stringR can be thought of as a sequence of
commands to a reconstruction algorithm that reconstructsX in the presence ofR.
(We are mainly interested in the case whereX is the version string, but it is useful
to give the definitions in greater generality.) The commands are performed from
left to right to reconstruct the symbols ofX in left-to-right order. Each command
“encodes” a particular substring ofX at a particular location inX. There are two
types of commands. Acopy commandhas the form (C, l ,a), whereC is a character
(which stands for “copy”) and wherel anda are integers withl > 0 anda ≥ 0; it
is an instruction to copy the substringSof lengthl starting at offseta in R. An add
commandhas the form (A, l , S), whereA is a character (which stands for “add”),
S is a string, andl is the length ofS; it is an instruction to add the stringS at
this point to the reconstruction ofX. Each copy or add command can be thought
of asencodingthe substringS of X that it represents (in the presence ofR). Let
σ =〈c1, c2, . . . , ct〉 be a sequence wheret ≥ 1 andci is an copy or add command
for 1≤ i ≤ t , and letX be a string. We say thatσ is anencoding of X (with respect
to R) if X= S1S2 . . . St whereSi is the string encoded byci for 1 ≤ i ≤ t . For
example, if

R = ABCDEFGHIJKLMNOP
V = QWIJKLMNOBCDEFGHZDEFGHIJKL,
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then the following sequence of five commands is an encoding ofV with respect to
R; the substring encoded by each command is shown below the command:

(A, 2,QW) (C, 7, 8) (C, 7, 1) (A, 1,Z) (C, 9, 3)
QW IJKLMNO BCDEFGH Z DEFGHIJKL·

The reference stringR will usually be clear from context. An encoding of the
version stringV will be called either “a delta encoding” generally or “an encoding
of V” specifically. A delta encoding or a delta string is sometimes called a “delta”
for short.

This high-level definition of delta encoding is sufficient to understand the op-
eration of our algorithms. At a more practical level, a sequence of copy and add
commands must ultimately be translated, or coded, into a delta string, a string of
symbols such that the sequence of commands can be unambiguously recovered
from the delta string. We employ a length-efficient way to code each copy and add
command as a sequence of bytes; it was described in a draft to the World Wide
Web Consortium (W3C) for delta encoding in theHTTP protocol. This draft is
no longer available. However, a similar delta encoding standard is under consid-
eration by the Internet Engineering Task Force (IETF) [Korn and Vo 1999]. This
particular byte-coding method is used in the implementations of our algorithms.
But conceptually, the algorithms do not depend on this particular method, and other
byte-coding methods could be used. To emphasize this, we describe our algorithms
as producing a sequence of commands, rather than a sequence of byte-codings of
these commands. Although use of another byte-coding method could affect the
absolute compression results of our experiments, it would have little effect on the
relative compression results, in particular, the compression of our algorithms rel-
ative to an optimally compressing algorithm. For completeness, the byte-coding
method used in the experiments is described in the Appendix.

2.1.2. Footprints—Identifying Matching Substrings.A differencing algorithm
needs to match substrings of symbols that are common between two strings, a
reference string and a version string. In order to find these matching substrings,
the algorithm remembers certain substrings that it has seen previously. However,
because of storage considerations, these substrings may not be stored explicitly.

In order to identify compactly a fixed length substring of symbols, we reduce a
substringS to an integer by applying a hash functionF . This integerF(S) is the
substring’sfootprint. A footprint does not uniquely represent a substring, but two
matching substrings always have matching footprints. In all of our algorithms, the
hash functionF is applied to substringsD of some small, fixed lengthp. We refer
to these length-p substrings asseeds.

By looking for matching footprints, an algorithm can identify a matching seed
in the reference and version strings. By extending the match as far as possible
forwards, and in some algorithms also backwards, from the matching seed in both
strings, the algorithm hopes to grow the seed into a matching substring much longer
thanp. For the first two algorithms to be presented, the algorithm finds a matching
substringM in R andV by first finding a matching seedD that is a prefix ofM
(so thatM = DM ′ for a substringM ′). In this case, for an arbitrary substringS,
we can think of the footprint ofSas being the footprint of a seedD that is a prefix
of S (with p fixed for each execution of an algorithm, this length-p seed prefix is
unique). However, for the second two algorithms (the “correcting” algorithms), the
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algorithm has the potential to identify a long matching substringM by first finding
a matching seed lying anywhere inM ; that is,M =M ′DM ′′, whereM ′ and M ′′
are (possibly empty) substrings. In this case, a long substring does not necessarily
have a unique footprint.

We often refer to thefootprint of offset a in string X; by this we mean the footprint
of the (unique length-p) seed starting at offseta in stringX. This seed is called the
seed at offset a.

Differencing algorithms use footprints to remember and locate seeds that have
been seen previously. In general, our algorithms use a hash table with as many
entries as there are footprint values. All of our algorithms use a hash table for the
reference stringR, and some use a separate hash table for the version stringV as
well. A hash table entry with indexf can hold the offset of a seed that generated
the footprint f . When a seed hashes to a footprint that already has a hash entry in
the other string’s hash table, a potential match has been found. To verify that the
seeds in the two strings match, an algorithm looks up the seeds, using the stored
offsets, and performs a symbol-wise comparison. (Since different seeds can hash to
the same footprint, this verification must be done.) Having found a matching seed,
the algorithm tries to extend the match and encodes the matching substring by a
copy command.False matches, different seeds with the same footprint, are ignored.

2.1.3. Selecting a Hash Function.A good hash function for generating foot-
prints must (1) be run-time efficient and (2) generate a near-uniform distribution of
footprints over all footprint values. Our differencing algorithms (as well as some
previously known ones) need to calculate footprints of all substrings of some fixed
lengthp (the seeds) starting at all offsetsr in a long stringX, for 0≤ r ≤ |X|− p;
thus, two successive seeds overlap inp−1 symbols. Even if a single footprint can be
computed incp operations wherec is a constant, computing all these footprints in
the obvious way (computing each footprint separately) takes aboutcpnoperations,
wheren is the length ofX. Karp and Rabin [1987] have shown that if the footprint
is given by a modular hash function (to be defined shortly), then all the footprints
can be computed inc′n operations wherec′ is a small constant independent ofp.
In our applications,c′ is considerably smaller thancp, so the Karp–Rabin method
gives dramatic savings in the time to compute all the footprints, when compared to
the obvious method. We now describe the Karp–Rabin method.

If x0, x1, . . . , xn−1 are the symbols of a stringX of lengthn, let Xr denote the
substring of lengthp starting at offsetr . Thus,

Xr = xr xr+1 · · · xr+p−1.

Identify the symbols with the integers 0, 1, . . . , b− 1, whereb is the number of
symbols. Letq be a prime, the number of footprint values. To compute the modular
hash value (footprint) ofXr , the substringXr is viewed as a base-b integer, and this
integer is reduced moduloq to obtain the footprint; that is,

F(Xr ) =
(

r+p−1∑
i=r

xi b
r+p−1−i

)
mod q. (1)

If F(Xr ) has already been computed, it is clear thatF(Xr+1) can be computed in a
constant number of operations by

F(Xr+1) =
((

F(Xr )− xr b
p−1
) · b+ xr+p

)
mod q. (2)
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All of the arithmetic operations in (1) and (2) can be done moduloq, to reduce the
size of intermediate results. Sincebp−1 is constant in (2), the valuebp−1 modq can
be precomputed once and stored.

In all of our new algorithms, each hash table locationf holds at most one offset
(some offset of a seed having footprintf ), so there is no need to store multiple
offsets at the same location in the table. However, in our implementation of the
greedy algorithm (Section 3.1) all offsets of seeds that hash to the same location
are stored in a linked list; in Knuth [1973] this is calledseparate chaining.

Using this method, a footprint function is specified by two parameters:p, the
length of substrings (seeds) to which the function is applied; andq, the number of
footprint values. We now discuss some of the issues involved in choosing these pa-
rameters. The choice ofq involves a trade-off between space requirements and the
extent to which the footprint values of a large number of seeds faithfully represent
the seeds themselves in the sense that different seeds have different footprints. De-
pending on the differencing algorithm, having a more faithful representation could
result in either better compression or better running time, or both. Typically, a foot-
print value gives an index into a hash table, so increasingq requires more space for
the hash table. On the other hand, increasingq gives a more faithful representation,
because it is less likely that two different seeds will have the same footprint. The
choice ofp can affect compression performance. Ifp is chosen too large, the al-
gorithm can miss “short” matches because it will not detect matching substrings of
length less thanp. Choosingp too small can also cause poor performance, but for
a more subtle reason. Footprinting allows an algorithm to detect matching seeds of
lengthp, but our algorithms are most successful when these seeds are part of much
longer matching substrings; in this case, a matching seed leads the algorithm to
discover a much longer match. Ifp is too small, the algorithm can find many “spu-
rious” or “coincidental” matches that do not lead to longer matches. For example,
suppose that we are differencing text files, the reference and version strings each
contain a long substringS, and the word “the” appears inS. If p is three symbols,
it is possible that the algorithm will match “the” inS in the version string with
some other occurrence of “the” outside ofS in the reference string, and this will not
lead the algorithm to discover the long matching substringS. Increasingp makes
it less likely that a substring of lengthp in a long substring also occurs outside
of the long substring in either string. This intuition was verified by experiments
wherep was varied. Asp increased, compression performance first got better and
then got worse. The optimum value ofp was between 12 and 18 bytes, depending
on the type of data being differenced. In our implementations,p is taken to be
16 bytes.

2.2. A NOTATION FOR DESCRIBING DIFFERENCING ALGORITHMS. We have
covered some methods that are common to all algorithms that we present. We
now develop a common framework for describing the algorithms. The input con-
sists of a reference stringR and a version stringV . The output of a differencing
algorithm is a delta encoding, that encodesV as a sequence of add and copy com-
mands. All of the algorithms in this paper encodeV in a left-to-right manner. A fact
that we use several times is that, at any point during an execution of one of these
algorithms,V is divided into two substrings (so thatV = EU), where theencoded
prefix E has already been encoded, and theunencoded suffix Uhas not yet been
encoded. For example, at the start of the algorithm,U =V , andE is empty.
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FIG. 1. A configuration of the pointers used for string differencing algorithms, which indicates that
the algorithm has scanned fromvs to vc in the version string and found a matching substring starting
at rm andvm.

Within the stringsR andV , our algorithms use data pointers to mark locations
in the input strings. These pointers include:

vc Current offset in the version string.
rc Current offset in the reference string.
vs Starting offset in the version string. This pointer stores the first

offset of the unencoded suffix in the version string.
vm Matching offset in the version string. When matching substrings

are found inV and R, the starting offsets of these substrings are
stored in the matching pointers.

rm Matching offset in the reference string.

Figure 1 indicates a configuration of these pointers. In this scenario, all data
previous to pointervs was encoded and was output to the delta encoding. The
algorithm then examined data in the interval fromvs to vc and found matching
substrings starting at offsetsvm andrm. At this point, the algorithm might encode
the region fromvs to the end of the match that starts atvm andrm, update all pointers,
and look for the next matching substring.

In addition to the pointers, we define some functions and quantities to help
describe algorithms. These include:

p Seed length—the length of substrings over which a footprint is
calculated.

q The number of footprint values—each footprint valuef is an integer
in the range 0≤ f < q.

FX(a,a+ p) The footprint of the substringX[a,a + p) from a up toa + p in
the input stringX (this substring has lengthp).

HX Hash table, indexed by footprints of seeds in the stringX.
HX[i ] The i th element inHX. In general, hash table entries contain the

starting offsets of seeds indexed by footprint value. For example,
HV [FV (a,a+ p)] might holda, or it might hold the starting offset
of some other seed inV that has the same footprint as the seed
V [a,a+ p).

|X| Length or cardinality operator—indicates the length ofX whenX
is a string, and indicates the cardinality ofX whenX is a set.

n = |R| + |V |, the combined lengths of the reference and version
strings.



330 M. AJTAI ET AL.

In later sections, we give pseudocode for four algorithms. The pseudocode is
written so that same-numbered steps perform a similar function in all four algo-
rithms; the details vary depending on the algorithm. The basic outline of the steps
follows. All four algorithms use the pointervc, and two userc. Actions involving
rc are in parentheses and are done only ifrc is used.

Algorithm Outline

(1) Initialize hash table(s). Create empty hash table(s). In some algorithms, put
information aboutR in a hash table.

(2) Initialize pointers. Set pointersvc (andrc) andvs to offset zero.
(3) Generate new footprint(s). Generate a new footprint atvc (and atrc) if there

is enough input string to the right ofvc (to the right ofrc) to generate a new
footprint. If at least one new footprint was generated, continue at Step (4). If
not, go to Step (8) to finish the encoding ofV and terminate.

(4) Try to find a matching seed. Use the newly generated footprint(s) and the hash
table(s) to try to find a matching seed inR and V . In some algorithms, the
new footprint(s) are also used to update the hash tables. If a matching seed is
not found, incrementvc (and incrementrc) by one, and repeat Step (3). If a
matching seed is found, continue at Step (5) to extend the match.

(5) Extend the match. Attempt to extend the matching seed to a longer matching
substring inR andV , by comparing symbols betweenR andV . In the greedy
and one-pass algorithms, the extension is done forward from the matching seed.
In the correcting algorithms, the extension is done both forward and backward
from the matching seed. (If no extension is possible, the matching substring is
the seed.)

(6) Encode the match. Encode the substring ofV fromvs to the end of the matching
substring by producing the appropriate command sequence; this will always
end with a copy command that encodes the matching substring. Updatevs to
the new start of the unencoded suffix.

(7) Update and return to top of main loop. Updatevc (andrc). In one algorithm,
modify the hash tables. Return to Step (3).

(8) Finish up. If there is an unencoded suffix ofV , encode this suffix with an add
command.

3. Perfect Differencing

An algorithm for perfect differencing finds the most compact delta encoding pos-
sible. This definition of “perfect” depends on the cost measure for copying and
adding substrings. For this discussion, we consider perfect differencing using the
following simple cost measure:

—A copy command has cost one (regardless of the length and offset of the substring
copied fromR).

—An add command that adds a substring of lengthl has costl .
—The cost of a delta encoding, a sequence of copy and add commands, is the sum

of the costs of the commands in the sequence.
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The simple cost measure eases analysis while retaining the essence of the problem.
Practical methods of byte-coding commands (like the one described in the Ap-
pendix) generally have much more complex cost measures, which complicates the
analysis of optimality. We now give a useful property of the simple cost measure.
Let σ be a delta encoding. Under the simple cost measure, the following transfor-
mations ofσ do not change the cost ofσ : (i) an add command to add a substring
S of lengthl (l ≥ 2) is replaced byl add commands, each of which adds a single
symbol ofS; (ii) an add command to add a single symbolx, wherex appears inR,
is replaced by a copy command to copyx from R. Assuming that these transfor-
mations are applied whenever possible, a delta encoding of minimum cost is one
that has the minimum number of copy commands. (In such an encoding, the only
use of add commands is to add symbols that do not appear inR.)

We consider perfect differencing to be the following version of the string-to-
string correction problem with block move [Tichy 1984]: GivenR andV , find a
delta encoding ofV having minimum cost under the simple cost measure.

3.1. A GREEDY DIFFERENCINGALGORITHM. We describe a greedy algorithm
based on that of Reichenberger [1991] within our framework. We use it as an exam-
ple of a perfect differencing algorithm that will serve as the basis for a comparison
of the time and compression trade-offs of other algorithms that require less execu-
tion time.

Before turning to the pseudocode for the greedy algorithm, we describe its oper-
ation informally. The greedy algorithm first makes a pass over the reference string
R; it computes footprints and stores in a hash table, for each footprintf , all offsets
in R that have footprintf . It then moves the pointervc throughV , and computes
a footprint at each offset. At each step it does an exhaustive search, using the hash
table and the stringsR andV , to find the longest substring ofV starting atvc that
matches a substring appearing somewhere inR. The longest matching substring is
encoded as a copy,vc is set to the offset following the matching substring, and the
process continues.

Let us refer now to the pseudocode in Figure 2. In Step (1), the algorithm summa-
rizes the contents of the reference string in a hash table where each entry contains
all offsets that have a given footprint; in Steps (3) to (6), it finds longest matching
substrings in the version string and encodes them. As noted in Section 3.2, this
algorithm is one in a class of algorithms that implement a common greedy method.
When we speak of “the greedy algorithm” in the sequel, we mean the algorithm
in Figure 2.

The space used by the algorithm is dominated by the space for the hash table.
This table stores|R| − p + 1 offset values in linked lists. Sincep is a constant,
the space is proportional to|R|. To place an upper bound on the time complexity,
break time into periods, where the boundaries between periods are increments of
vc, either in Step (4) or in Step (7). If a period ends with an increment ofvc by l
(including the casel = 1 in Step (4), the time spent in the period isO(l |R|). This is
true because in the worst case, at each offset inR the algorithm spends timeO(l ) to
find a matching substring of length at mostl starting at this offset. Becausevc never
decreases, the total time isO(|V ||R|), that is, O(n2). The quadratic worst-case
bound is met on certain inputs, for example,R=DzDz· · · DzandV =DD · · · D,
where|D| = p and the characterz does not appear inD. In Section 9, we observe
that the greedy algorithm does not exhibit quadratic running time in cases where
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Greedy Algorithm

Given a reference stringR and a version stringV , generate a delta encoding ofV as follows:

(1) For all offsets in input stringR in the interval [0, |R| − p], generate the footprints of seeds
starting at these offsets. Store the offsets, indexed by footprint, in the hash tableHR. At
each footprint value maintain a linked list of all offsets that hashed to this value, that is,
handle colliding footprints by chaining entries at each value:

for a = 0, 1, . . . , |R| − p : adda to the linked list atHR[FR(a,a+ p)].

(2) Start string pointersvc andvs at offset zero inV .

(3) If vc + p > |V | go to Step (8). Otherwise, generate a footprintFV (vc, vc + p) atvc.

(4) (and (5)) In this algorithm it is natural to combine the seed matching and substring extension
steps into one step. Examine all entries in the linked list atHR[FV (vc, vc + p)] (this list
contains the offsets inR that have footprintFV (vc, vc + p)) to find an offsetrm in R that
maximizesl , wherel is the length of the longest matching substring starting atrm in R and
at vc in V . If no substring starting at the offsets listed inHR[FV (vc, vc + p)] matches a
substring starting atvc, incrementvc by one and return to Step (3). Otherwise, setvm and
rm to the start offsets of the longest matching substring found. (In this algorithm,vm= vc

at this point.) Letl be the length of this longest matching substring.

(5) The longest match extension has already been done in the combined step above.

(6) If vs < vm, encode the substringV [vs, vm) using an add command containing the substring
V [vs, vm) to be added. Encode the substringV [vm, vm + l ) as a copy of the substring of
lengthl starting at offsetrm in R. Setvs← vm + l .

(7) Setvc← vm + l and return to Step (3).

(8) All of the remaining unencoded input has been processed with no matching substrings
found. If vs < |V |, encode the substringV [vs, |V |) with an add command. Terminate the
algorithm.

FIG. 2. Pseudocode for the greedy algorithm.

the reference and version strings are highly correlated, that is, where they have long
substrings in common. However, we also observe that the greedy algorithm does
exhibit quadratic running time on uncorrelated inputs.

3.2. THE GREEDY METHOD. The greedy algorithm in Figure 2 is one imple-
mentation of a generalgreedy methodfor solving perfect differencing. The key
step in an algorithm using the greedy method is the combined Step (4) and (5). In
general, this step must findrm andl such thatR[rm, rm + l )=V [vc, vc + l ) andl
is as large as possible. In general, Step (1) builds a data structure that summarizes
the substrings ofR and is used to perform the key step. For example, in the greedy
algorithm based on suffix trees, Step (1) creates a suffix tree [Weiner 1973; Gusfield
1997] forR (using time and spaceO(n)). This permits the key step to be performed
in time O(l + 1), and it is easy to see that this implies that the total running time is
O(n). There is also a simple implementation of the greedy method that uses constant
space and quadratic time; in this algorithm, Step (1) is empty (no data structure is
constructed) and the key step is done by trying all values ofrm for 0≤ rm ≤ |R|−1,
and for eachrm finding the largestl such thatR[rm, rm + l )=V [vc, vc + l ). Even
though both this simple algorithm and the algorithm of Figure 2 use quadratic
time in the worst case, the latter algorithm typically uses significantly less time in
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practice because it limits its search to thoserm where there is known to be a match
of length at leastp.

3.3. PROVING THAT THE GREEDY ALGORITHM FINDS AN OPTIMAL DELTA
ENCODING. Tichy [1984] has proved that any implementation of the greedy
method is a solution to perfect differencing. Here we give a version of Tichy’s
proof that appears simpler; in particular, no case analysis is needed. Although we
give the proof for the specific greedy algorithm above, the only properties of the
algorithm used are that it implements the greedy method.

We show that ifp ≤ 2, the greedy algorithm always finds a delta encoding
of minimum cost, under the simple cost measure defined above. Ifp > 2, the
algorithm might not find matching substrings of length 2, so it might not find a
delta of minimum cost. (The practical advantage of choosing a largerp is that it
decreases the likelihood of finding spurious matches, as described in Section 2.1.3.)

Let R andV be given. LetM be a delta encoding of minimum cost for thisR
andV , and letG be the delta encoding found by the greedy algorithm. We let|M |
and|G| denote the cost ofM andG, respectively. Each symbol ofV that does not
appear inR must be encoded by an add command in bothM andG. Because the
greedy algorithm encodesV in a left-to-right manner, it suffices to show, for each
maximal length substringS of V containing only symbols that appear inR, that
the greedy algorithm finds a delta of minimum cost when givenR andS. As noted
above, the simple cost of a delta encoding does not increase if an add command
of length l is replaced byl add commands that copy single symbols. Therefore,
for R, V , M , andG as above, it suffices to show that|G| = |M | in the case where
every symbol ofV appears inR and whereM andG contain only copy commands.
Because the cost of a copy command is one,|M | (respectively,|G|) equals the
number of copy commands inM (respectively,G).

For j ≥ 1, let xj be the largest integer such thatV [0, xj ) can be encoded byj
copy commands. Also, letx0= 0. Let t be the smallest integer such thatxt = |V |.
The minimality of t implies thatx0 < x1 < · · · < xt . By the definition oft ,
the cost ofM is t . To complete the proof, we show by induction onj that, for
0 ≤ j ≤ t , the first j copy commands inG encodeV [0, xj ). Taking j = t , this
implies that the cost ofG is t , so|G| = |M |. The base casej = 0 is obvious, where
we view V [0, 0) as the empty string. Fixj with 0 ≤ j < t , and assume by
induction that the firstj copy commands inG encodeV [0, xj ). It follows from
the definition of the greedy algorithm (more generally, the greedy method) that its
( j + 1)th copy command will encode the longest substringS that starts at offsetxj
in V and is a substring ofR. Because the longest prefix ofV that can be encoded
by j copies isV [0, xj ), and j + 1 copies can encodeV [0, xj+1), it follows that
V [xj , xj+1) is a substringSj of R. Therefore, the greedy algorithm will encode
S= Sj with its ( j + 1)th copy command, and the firstj + 1 copy commands in
G encode [0, xj+1). This completes the inductive step, and so completes the proof
that|G| = |M |.

4. Differencing in Linear Time and Constant Space

While perfect differencing provides optimally compressed output, the exist-
ing methods for perfect differencing do not provide acceptable time and space



334 M. AJTAI ET AL.

performance. Since we are interested in algorithms that scale well and can differ-
ence arbitrarily large inputs, we focus on the task of differencing in linear time
and constant space. We now present such an algorithm. This algorithm, termed the
one-pass algorithm, uses basic methods for substring matching, and will serve as
a departure point for examining further algorithms that use additional methods to
improve compression.

4.1. THE ONE-PASSDIFFERENCINGALGORITHM. The one-pass differencing al-
gorithm finds a delta encoding in linear time and constant space. It finds matching
substrings in a “next match” sense. That is, after copy-encoding a matching sub-
string, the algorithm looks for the next matching substring forward in both input
strings. It does this by flushing the hash tables after encoding a copy. The effect
is that, in the future, the one-pass algorithm ignores the portion ofR andV that
precedes the end of the substring that was just copy-encoded. The next match pol-
icy detects matching substrings sequentially. As a consequence, in the presence of
transposed data (withR as· · · X · · ·Y · · · andV as· · ·Y · · · X · · · ), the algorithm
will not detect both of the matching substringsX andY.

The algorithm scans forward in both input strings and summarizes the seeds that
it has seen by footprinting them and storing their offsets in two hash tables, one
for R and one forV . The algorithm uses the footprints in the hash tables to detect
matching seeds, and it then extends the match forward as far as possible. Unlike
the greedy algorithm, the one-pass algorithm does not store all offsets having a
certain footprint; instead it stores, for each footprint, at most one offset inR and
at most one inV . This makes the hash table forR smaller (sizeq rather than
|R|) and more easily searched, but the compression is not always optimal. At the
start of the algorithm, and after each flush of the hash tables, the stored offset in
R (respectively,V) is the first one found inR (respectively,V) having the given
footprint. Pseudocode for the one-pass algorithm is in Figure 3.

Retaining the first-found offset for each seed is the correct way to implement the
next match policy in the following sense, assuming that the hash function is ideal.
We say that a hash functionF is ideal for R andV when, for all seedss1 ands2 that
appear in eitherR or V , if s1 6= s2 thenF(s1) 6= F(s2). Consider an arbitrary time
when Step (3) is entered, either for the first time or just after the hash tables have
been flushed in Step (7). At this point, the hash tables are empty and the algorithm
is starting “fresh” to find another match (rm, vm) with rc ≤ rm andvc ≤ vm. We say
that a pair (r, v) of offsets is amatchif the seeds at offsetsr andv are identical. It is
not hard to see that if the match (rm, vm) is found at this iteration of Steps (3)–(7),
then there does not exist a match (r ′m, v

′
m) 6= (rm, vm) with rc ≤ r ′m ≤ rm and

vc ≤ v′m ≤ vm. This property can be violated if the hash function is not ideal, as
discussed in Section 4.3.

The one-pass differencing algorithm focuses on finding pairs ofsynchronized
offsetsin R andV , which indicates that the data at the synchronized offset inR
is the same as the data at the synchronized offset inV . The algorithm switches
betweenhashing mode(Steps (3) and (4)) where it attempts to find synchronized
offsets, andidentity mode(Step (5)) where it extends the match forward as far
as possible. When a match is found and the algorithm enters identity mode, the
pointers are “synchronized”. When the identity test fails at Step (5), the strings
differ and the string offsets are again “out of synch”. The algorithm then restarts
hashing to regain the location of common data in the two strings.
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One-Pass Algorithm

Given a reference stringR and a version stringV , generate a delta encoding ofV as follows:

(1) Create empty hash tables,HV andHR, for V andR. Initially, all entries are⊥ (i.e., empty).
(2) Start pointersrc, vc, andvs at offset zero. Pointervs marks the start of the suffix ofV that

has not been encoded.

(3) If vc+p > |V |andrc+p > |R|go to Step (8). Otherwise, generate footprintFV (vc, vc+p)
whenvc+ p ≤ |V | and footprintFR(rc, rc+ p) whenrc+ p ≤ |R|.

(4) For footprintsFV (vc, vc + p) andFR(rc, rc + p) that were generated:
(a) Place the offsetvc (resp.,rc) into HV (resp.,HR), provided that no previous entry

exists. The hash tables are indexed by footprint. That is, ifHV [FV (vc, vc + p)] = ⊥
assign HV [FV (vc, vc + p)] ← vc; similarly, if HR[FR(rc, rc + p)] =⊥ assign
HR[FR(rc, rc + p)] ← rc.

(b) If there is a hash table entry at the footprint value in the other string’s hash table, the
algorithm has found a likely matching substring. For example,HV [FR(rc, rc+ p)] 6=⊥
indicates a likely match between the seed at offsetrc in R and the seed at offset
HV [FR(rc, rc+ p)] in V . In this case setrm← rc andvm← HV [FR(rc, rc+ p)] to the
start offsets of the potential match. Check whether the seeds at offsetsrm andvm are
identical. If the seeds prove to be the same, matching substrings have been found. If
this is the case, continue at Step (5) to extend the match (skipping the rest of Step (4b)).
Symmetrically, ifHR[FV (vc, vc+p)] 6=⊥, setvm← vc andrm← HR[FV (vc, vc+p)].
If the seeds at offsetsrm andvm are identical, continue at Step (5) to extend the match.
At this point, no match starting atvc or starting atrc has been found. Increment both
rc andvc by one, and continue hashing at Step (3).

(5) At this step, the algorithm has found a matching seed at offsetsvm andrm. The algorithm
matches symbols forward in both strings, starting at the matching seed, to find the longest
matching substring starting atvm andrm. Let l be the length of this substring.

(6) If vs < vm, encode the substringV [vs, vm) using an add command containing the substring
V [vs, vm) to be added. Encode the substringV [vm, vm + l ) as a copy of the substring of
lengthl starting at offsetrm in R. Setvs to the offset following the end of the matching
substring, that is,vs← vm + l .

(7) Setrc andvc to the offset following the end of the match inR andV , that is,rc← rm + l
andvc← vm+ l . Flush the hash tables by setting all entries to⊥. We use a non-decreasing
counter (version number) with each hash entry to invalidate hash entries logically. This
effectively removes information about the strings previous to the new current offsetsvc and
rc. Return to hashing again at Step (3).

(8) All input has been processed. Ifvs < |V |, output an add command for the substring
V [vs, |V |). Terminate the algorithm.

FIG. 3. Pseudocode for the one-pass algorithm.

In Section 10, we show that differencing algorithms that take a single pass over
the input strings, with no random access allowed, achieve suboptimal compres-
sion when data are transposed (i.e., when substrings occur in a different order
in the reference and version strings). The one-pass algorithm is not a strict sin-
gle pass algorithm in the sense of Section 10, as it performs random access in
both strings to verify the identity of substrings with matching footprints. How-
ever, it does exhibit the limitations of a strict single pass algorithm in the pres-
ence of transpositions, because after finding a match it limits its search space for
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subsequent matches to only the offsets greater than the end of the previous match-
ing substring.

4.2. TIME AND SPACE ANALYSIS. We now show that the one-pass algorithm
uses time linear innp+ q and space linear inq; recall thatq is the number of
footprint values (i.e., the number of entries in each hash table), andn= |R|+ |V |.2
We always use the algorithm withp a (small) constant andq a (large) constant
(i.e., p andq do not depend onn). In this case, the running time isO(n) and the
space isO(1) in the worst case.

THEOREM 4.1. If the one-pass algorithm is run with seed length p, the number
of footprints equal to q, and input strings of total length n, then the algorithm runs
in time O(np+ q) and space O(q).

PROOF. The constants implicit in all occurrences of theO-notation do not
depend onp, q, R, V , or n.

The space bound is clear. At all times, the algorithm maintains two hash tables,
each of which containsq entries. After finding a match, hash entries are flushed
and the same hash tables are reused to find the next matching substring. Except for
the hash tables, the algorithm uses spaceO(1). So the total space isO(q).

We now show the time bound. Initially, during Steps (1) and (2), the algorithm
takes timeO(q). For the remainder of the run of the algorithm, divide time into
periods, where the boundaries between periods are the times when the algorithm
enters hashing mode; this occurs for the first time when it moves from Step (2) to
Step (3), and subsequently every time it moves from Step (7) to Step (3). Focus on
an arbitrary period, and letr 0

c andv0
c be the values ofrc andvc at the start of the

period. In particular, the startvs of the unencoded suffix isv0
c . At this point, the

hash tables are empty. We follow the run of the algorithm during this period, and
bound the time used during the period in terms of the net amount that the pointers
rc andvc advance during the period. (By “net,” we mean that we subtract from the
net advancement when a pointer moves backwards.) Whenrc andvc are advancing
in hashing mode (repetitions of Steps (3) and (4)), the algorithm uses timeO(p)
each time that these pointers advance by one. When a matching seed is found in
Step (4b), either (i)v0

c ≤ vm= vc and r 0
c ≤ rm ≤ rc, or (ii) r 0

c ≤ rm= rc and
v0

c ≤ vm ≤ vc. Let M = max(vm − v0
c, rm − r 0

c ). (The following also covers the
case that the algorithm moves to the finishing Step (8) before a match is found.)
Because eithervm= vc or rm= rc, the total time spent in hashing mode isO(pM).
The number of non-⊥ hash table entries at this point is at most 2M . The match
extension Step (5) takes timeO(l ). The encoding Step (6) takes timeO(vm− v0

c),
that is,O(M). In Step (7), the pointersvc andrc are reset to the end of the match;
let v1

c = vm + l andr 1
c = rm + l be the values ofvc andrc after this is done. These

are also the values of these pointers at the start of the next period. It follows that:

(1) vc andrc advanced by a total net amount of at leastM + 2l during the period
(i.e., (v1

c − v0
c)+ (r 1

c − r 0
c ) ≥ M + 2l ), and

(2) the time spent in the period wasO(pM + l ).

2 The termnp is needed to handle the worst-case situation that Step (4b) is executed approximatelyn
times, and at each execution of this step the algorithm spends timep to discover that seeds with the
same footprint are not identical. In practice, we would not expect this worst-case situation to happen.
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R :  ........ A B C X Y ........... A B C D E F G ........

V :  ..................... A B C D E F G ..........................

FIG. 4. An example of a spurious match.

It follows that the algorithm runs in timeO(np+ q), as we now show. Lett be
the number of periods, and for 1≤ i ≤ t let Mi andl i be the values ofM andl ,
respectively, for periodi . Let M∗ (respectively,l ∗) be the sum ofMi (respectively,
l i ) over 1≤ i ≤ t . Because the pointers can advance by a total net amount of at most
n= |R| + |V | during the entire run, statement 1 above implies thatM∗ + 2l ∗ ≤ n.
Initially, during Steps (1) and (2), the algorithm takes timeO(q). By Statement (2)
above, the algorithm uses timeO(pM∗ + l ∗) during all t periods. It follows that
the total time isO(np+ q).

4.3. SUBOPTIMAL COMPRESSION. In addition to failing to detect transposed
data, the one-pass algorithm achieves less than optimal compression when it falsely
believes that the offsets are synchronized or when the hash function exhibits less
than ideal behavior. (Recall that a hash function is “ideal” if it is one-to-one on the
set of seeds that appear inR andV .) We now consider each of these issues.

When we say that the algorithm falsely believes that the offsets are synchro-
nized, we are referring to “spurious” or “coincidental” matches (as discussed in
Section 2.1.3), which arise as a result of taking the next match rather than the best
match. These collisions occur when the algorithm believes that it has found syn-
chronized offsets between the strings when in actuality the collision just happens
to be between substrings whose length-p prefixes match by chance, and a longer
matching substring exists at another offset. An example of a spurious match is
shown in Figure 4. Call the substring ABCDEFG the “long match” inR andV .
In this simple example, letp= 2, and assume that the symbols A,. . . , G, X, Y
do not appear anywhere else inR andV . The one-pass algorithm might first find
the match between the prefix ABC of the long match inV and the first occurrence
of ABC in R, and encode ABC with a copy. Then the hash tables are flushed,
so no match starting at the offset of A, B or C inV can be found in the future.
The algorithm might later discover the match DEFG inV and R, and encode it
with a copy. So the long match is encoded by at least two copy commands, rather
than one.

Spurious matches are less likely when the seed lengthp is increased. However,
increasingp increases the likelihood of missed matches, because matches shorter
than p will not be detected.

We now discuss problems that arise when the hash function is not ideal. Hash
functions generally hash a large number of seeds to a smaller number of footprints,
so a footprint does not uniquely represent a seed. Consequently, the algorithm
may also experience theblockingof footprints, as we now describe. For a newly
generated footprintf of an offsetb in string S (S= R or V), if there is another
offseta < b already occupyingf ’s entry in the hash tableHS, thenb is ignored
andHS[ f ]=a is retained. If the seeds at offsetsa andb are different, we say that
the footprint f is blocked. Referring again to Figure 4, a blocked footprint can
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cause an even worse encoding of the long match, as follows. Suppose that the seeds
XY and DE have the same footprintf . Assume as before that the algorithm finds
the spurious match ABC and encodes it with a copy command. The hash tables
are flushed, and the algorithm restarts with the current pointers at X inR and D
in V . When the footprints of XY and DE are generated, the algorithm setsHR[ f ]
to the offset of X. A match is not found because the seeds XY and DE differ,
so the algorithm continues in hashing mode. If the algorithm later generates the
footprint f of DE in R during the same execution of hashing mode, the offset of
D will be discarded inHR, becauseHR[ f ] already has a nonnull entry. Thus, the
best the algorithm can do is to encode D with an add command, and EFG with a
copy command.

5. Compression Improvements to Existing Differencing Methods

We now introduce a new technique calledencoding correction, or for short,cor-
rection, which is an approach to improving the compression performance of our
algorithms, including the one-pass algorithm. When a differencing algorithm runs,
it outputs the appropriate add and copy commands to a delta encoding. We modify
this scheme by sending all add and copy commands to a buffer. By caching com-
mands, an algorithm has the opportunity to recall a subsequence of commands and
exchange it for a better one. In many cases, an algorithm that uses this technique can
make a quick decision as to an encoding, and if this decision turns out not to be the
best decision, the encoding can be undone later by replacing it with a more favorable
one. For example, it might happen that two or more adjacent copy commands can
be replaced by a single new copy command, or that an explicitly added substring
can be wholly or partially encoded by a new copy command. As discussed in the
previous section, spurious matches and blocked footprints can cause the one-pass
algorithm to make bad decisions. Correction helps to mitigate this bad effect.

When an algorithm corrects the existing encoding of a region ofV , this does not
necessarily mean that the algorithm has found the “best” encoding of this region.
The encoding of this region might be corrected several times as longer and longer
portions of this region are found to match substrings inR.

To implement correction, the algorithm inserts add and copy commands into a
buffer rather than writing them directly to the delta encoding. The buffer, in this
instance, is a FIFO queue of commands called theencoding lookback buffer, or for
short, thebuffer. When a substring of the version string is encoded, the appropriate
command is written to the buffer. The buffer collects commands until it is full.
Then, when writing a command to a full buffer, the oldest command gets pushed
out and is written to the delta encoding. When a command “falls out of the buffer,”
it becomes immutable and has been committed to the delta encoding. In theory, the
buffer can have unlimited size, so that commands never fall out. But in practice,
it is useful for the buffer to be implemented in memory so that operations on the
buffer can be done efficiently, and this limits the size of the buffer.

The objects in the buffer are not strictly add and copy commands, as defined
in Section 2.1.1. In particular, an add command in the buffer does not contain the
added substring. However, each command in the buffer is associated with itsversion
offset, the starting offset of the substring in the version string that this command
encodes. The length and version offset stored with an add command permit the
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FIG. 5. An illustration of tail correction. Before the correction, a rightmost part of the encoded prefix
of V is encoded by an add, copy, add, copy command sequence. The new matching substring inV
is encoded as a copy command. This new copy command absorbs a partial add command, a whole
copy command, a whole add command, and another whole copy command, and it also encodes part
of the previously unencoded suffix ofV . The corresponding commands near the tail of the buffer are
also shown before and after the correction.

added substring to be found inV when the add command exits the buffer. In
addition, the version offsets in the buffer are increasing and distinct. This permits
the use of binary search to find commands in the buffer by their version offsets.
For simplicity, we refer to the objects in the buffer as “commands,” because each
object in the buffer specifies a unique add or copy command.

Correction can cause algorithmic running time to depart from a strict linear
worst-case bound. But on all experimental inputs (as discussed in Section 9) the
one-pass algorithm with correction displays time performance similar to that of the
original one-pass algorithm, and the compression is much improved.

5.1. EDITING THE ENCODING LOOKBACK BUFFER. An algorithm may perform
two types of correction.Tail correctionoccurs when the algorithm encodes a previ-
ously unencoded portion of the version string with a copy command. The algorithm
attempts to extend that matching string backwards in both the version and reference
strings. If this backward matching substring extends into the prefix of the version
string that is already encoded, note that the relevant commands are ones that have
been issued most recently, so the relevant commands in the buffer start at the tail
of the buffer (hence, the nametail correction). In this case, there is the potential
to remove or shorten these commands by integrating them into the new copy com-
mand. The algorithm will integrate commands from the tail of the buffer into the
new copy command as long as the commands in question are either:

—A copy command that can be wholly integrated into the new copy command. If
the copy command in the buffer can only be partially integrated, the command
should not be reclaimed, as no additional compression can be attained.

—Any wholly or partially integrated add command. Since an add command in the
delta encoding contains the data to be added, reclaiming partial add commands
benefits the compression. While no commands are reclaimed, the length of the
data to be added is reduced and the resulting delta decreases in size accordingly.
This is illustrated in Figure 5.

General correctionmay change any previous commands, not just the most recent
commands. If a new matching substringM is found, both starting and ending in the
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add
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copycopycopy
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. . .

copy copy copy

copycopycopy

add

Buffer Before
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FIG. 6. An illustration of general correction. A new matching substring is found within the previously
encoded prefix ofV . A copy-encoding of part of the new matching substring absorbs a partial add
command, a whole copy command, and a whole add command. The existing copy command that is
only partially covered by the matching substring is not absorbed. The relevant regions ofV and the
buffer are shown before and after the correction. TheX in the buffer after the correction is a dummy
command, an entry in the buffer where a command was deleted and not replaced by another command.

prefix of V that has already been encoded, the algorithm determines if the existing
commands that encodeM can be improved, given thatM can be copied from
R. The algorithm searches through the buffer to find the commands that encode
M in V . The algorithm then reencodes this region, reclaiming whole and partial
add commands and whole copy commands, to the extent that this gives a better
encoding. This is illustrated in Figure 6.

As should be clear from the description and examples of correction, an algorithm
that uses this technique should, after finding a matching seed, try to extend the match
both backwards and forwards from the matching seed inR andV .

5.2. IMPLEMENTING THE ENCODING LOOKBACK BUFFER. Correction requires
that the encoding lookback buffer be both searchable and editable, as the algorithm
must efficiently look up previous commands and potentially modify or erase those
entries. The obvious implementation of the encoding lookback buffer is a linked
list that contains the commands, in order, as they were emitted from a differencing
algorithm. This data structure has the advantage of simply supporting the insert,
modify, and delete operations on commands. However, finding elements in this
list using linear search is time consuming. Consequently, we implemented the
encoding lookback buffer as acircular queue, a FIFO queue built on top of a fixed-
size contiguous region in memory. Two fixed pointers mark the boundaries of the
allocated region. Within this region, the data structure maintains pointers to the
logical head and tail of the FIFO queue. Simple pointer arithmetic around these
four pointers supports the access of the head and tail elements, and appending to
or deleting from the head or the tail, all in constant time. Commands in the circular
queue can be looked up by their version offsets using binary search, with improved
search performance compared to a linked list.

While the implementation of a FIFO queue in a fixed memory region greatly
accelerates look-up operations, it does not directly support inserting or deleting
elements in the middle of the queue. This is an issue only for general correction,
because tail correction operates only on the head and tail of the queue. When per-
forming general correction, we are trying to reduce the size of the delta encoding.
Most often, this involves reducing the number of commands that encode any given
region, and this can always be done without insertion into the middle of the queue.
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Consider an operation that merges a pair of adjacent commands into a single copy
command in the middle of the buffer. This operation performs a replace of one com-
mand in the pair and a delete of the other. We perform this action by editing one
command to contain the new longer copy command, and marking the other com-
mand as a “dummy” command. (Whenever an algorithm creates a dummy, the
usable length of the buffer is reduced by one until that entry is emitted or reused.)
However, there is one case of general correction that is excluded by our implemen-
tation. Assume that we have encoded an add command, we later find that a portion
of this add command can be reencoded as a copy command, and the add command
is not at the head or tail of the buffer at the time we want to correct it. Replacing
a portion of the add command with a copy command reduces the size of the delta
encoding while increasing the number of commands. Our implementation fails to
support this, unless we are lucky enough to find a dummy command adjacent to the
add command we are modifying. We feel that this limitation is a desirable trade-off,
since we achieve superior search time when using a circular queue, as compared to
a linked list.

One might consider balanced search trees (see, e.g., Knuth [1973, Sect. 6.2.3]) as
a way to implement the buffer, because they support all of our needed operations in
logarithmic time per operation. However, a main goal in choosing a data structure
for the buffer is to minimize the time required for operations at the head and tail
of the buffer, because these occur much more frequently than operations in the
middle of the buffer. In particular, tail correction does not need operations in the
middle at all. Circular queues (and linked lists) meet this goal better than balanced
search trees.

6. The Correcting One-Pass Algorithm

We now reconsider our one-pass differencing algorithm in light of the technique for
correction. This combination results in an algorithm that provides superior com-
pression without significantly increasing execution time. We term this algorithm
thecorrecting one-pass algorithm.

The one-pass algorithm focuses on finding matches between substrings ofR and
V in the “next match” sense. It does this by:

(1) flushing the hash tables after encoding a copy command; and
(2) discarding multiple instances of offsets having the same footprint in favor of

the first offset having that footprint.

However, strictly adhering to the next match policy causes the one-pass algorithm
to lose compression when it fails to find transposed data. Since the correcting one-
pass algorithm uses correction to recover the lost compression when making a poor
encoding, it may relax the strict policies used for enforcing the next match policy
and look more optimistically for any matching substrings, since a better match can
still be found later even if it is not contained in the current encoding.

In terms of bookkeeping, the correcting one-pass algorithm differs from the
one-pass algorithm by:

(1) keeping all existing entries in the hash tables after encoding a copy command;
and
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(2) discarding a prior offset that has a particular footprint in favor of the current
offset having that footprint.

By keeping all existing entries in the hash table, the correcting one-pass algo-
rithm retains information about past substrings in both input strings. Favoring more
recent offsets keeps the hash tables’ contents current without flushing the hash
tables. In effect, the algorithm maintains a “window into the past” for each in-
put string. This window tends to well represent substrings that have been seen
recently, but the representation becomes more sparse for substrings seen longer
ago. By retaining information about past substrings, the correcting one-pass al-
gorithm can detect “nonsequential” matching substrings, that is, substrings that
occur in the version string in an order different from the order in which they occur
in the reference string; in particular, the correcting one-pass algorithm can detect
transpositions. The problem with nonsequential matches is that it can lead to spu-
rious matches. Correction deals handily with spurious matches, by exchanging the
bad encodings of spurious matches for the “correct” encodings that occur later in
the input.

Another significant difference between the one-pass and correcting one-pass
algorithms is that the correcting one-pass algorithm performs match extension both
backwards and forwards from a matching seed. This is needed to take full advantage
of correction. The correcting one-pass algorithm outputs all commands through the
encoding lookback buffer. Data is written to the delta encoding only by flushing
the buffer at the end of the algorithm or by overflowing the buffer, which causes
a command to be written to the delta. Pseudocode for the correcting one-pass
algorithm is in Figure 7.

The correcting one-pass algorithm differs from the one-pass algorithm in five
ways: (i) in Step (4a), the insert-new rather than retain-existing policy is used for
entering an offset at a hash table entry that already contains an offset; (ii) in Step (5),
the match is extended backwards as well as forwards; (iii) in Step (6), correction is
performed on the buffer, and commands are output to the buffer rather than to the
delta; (iv) in Step (7), the current pointersvc andrc must advance by at least 1; and
(v) in Step (7), the hash tables are not flushed.

Looking again at Figure 4, we can see how either tail correction or general
correction might correct a suboptimal encoding of the long match, caused by a
spurious match. The correcting one-pass algorithm might also first encode the
spurious match ABC, but if it later finds a matching seed anywhere in the long
match ABCDEFG inR andV , it will find the complete long match by forwards
and backwards match extension, and it will correct the spurious match by integrating
it into the new single-copy encoding of the long match. The correcting one-pass
algorithm can also experience the blocking of footprints (but the offsets lost are
ones appearing earlier in the string, rather than later as in the one-pass algorithm).
Reverse matching in the correcting one-pass algorithm can find matches starting at
offsets having a blocked footprint, and bad encodings caused by blocked footprints
can be corrected.

Despite the similarity between the correcting one-pass algorithm and the one-
pass algorithm, the correcting one-pass algorithm does not have the same linear
running time guarantee. The algorithm potentially spends a large amount of time
extending matches backwards at many executions of Step (5), so that the total
time spent during backwards matching grows faster than linearly in the length
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Correcting One-Pass Algorithm

Given a reference stringR and a version stringV , generate a delta encoding ofV as follows:

(1) Create empty hash tables,HV andHR, for V andR.

(2) Start pointersrc, vc, andvs at offset zero. The pointervs marks the start of the suffix ofV
that has not been encoded.

(3) If vc+p > |V |andrc+p > |R|go to Step (8). Otherwise, generate footprintFV (vc, vc+p)
whenvc + p ≤ |V | and footprintFR(rc, rc + p) whenrc + p ≤ |R|.

(4) For footprintsFV (vc, vc + p) andFR(rc, rc + p):
(a) Place the offsetvc (resp.,rc) into HV (resp.,HR). That is, assignHV [FV (vc, vc+ p)] ←

vc andHR[FR(rc, rc + p)] ← rc.
(b) As in the one-pass algorithm, ifHV [FR(rc, rc + p)] 6=⊥, setrm ← rc andvm ←

HV [FR(rc, rc + p)] to the start offsets of the potential match. If the seeds at offsets
rm andvm are identical, continue at Step (5) to extend the match (skipping the rest of
Step (4b)).
Symmetrically, ifHR[FV (vc, vc+ p)] 6=⊥, setvm← vc andrm← HR[FV (vc, vc+ p)].
If the seeds at offsetsrm andvm are identical, continue at Step (5) to extend the match.
At this point, no match starting atvc or starting atrc has been found. Increment both
rc andvc by one, and continue hashing at Step (3).

(5) Having found a matching seed at Step (4b), extend this match forwards and backwards from
vm andrm as long as possible, resetvm andrm to the start offsets of the matching substring
(if the match extended backwards), and setl to the length of the matching substring.

(6) Encode the matching substring and attempt to use this substring to correct encodings in the
encoding lookback buffer. One of the following three sub-steps is performed:
(a) If vs ≤ vm, the matching substring overlaps only the previously unencoded suffixV ;

it cannot be used to correct encodings already in the buffer. Ifvs < vm, encode the
substringV [vs, vm) using an add command. Encode the substringV [vm, vm + l ) as a
copy of the substring of lengthl starting at offsetrm in R. Output the command(s) to
the buffer. Setvs← vm + l .

(b) If vm < vs < vm + l , the matching substring overlaps both the encoded prefix and
the unencoded suffix ofV . Perform tail correction as described in Section 5.1. That
is, attempt to correct encodings from the tail of the buffer by integrating commands
into the new copy command. All whole and partial add commands and all whole
copy commands that encode the substringV [vm, vs) can be integrated into the new
copy command, that also encodes the substringV [vs, vm + l ). Delete from the buffer
all commands that were wholly integrated. Output the new copy command to the buffer.
Setvs← vm + l .

(c) If vm+ l ≤ vs, the matching substring overlaps only the existing encoded prefix ofV .
Perform general correction as described in Section 5.1. That is, perform binary search
in the buffer to find the commands that encode the substringV [vm, vm+ l ) and correct
sub-optimal encodings when possible. (In this case,vs does not change.)

(7) Setvc← max(vm+ l , vc+1) andrc← max(rm+ l , rc+1); that is, we set the new values
of these pointers to the offsets just following the matching substring, but we also require
these pointers to advance by at least 1. Return to Step (3).

(8) All of the input has been processed. Flush all commands from the buffer to the delta
encoding. Ifvs < |V |, encode the substringV [vs, |V |) with an add command. Terminate
the algorithm.

FIG. 7. Pseudocode for the correcting one-pass algorithm.
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of the input. While this does not occur in our experiments, adversarial inputs
do exist that cause the algorithm to exhibit this behavior. Rather than attempt to
place a (superlinear) worst-case upper bound on the running time of the algorithm,
we choose instead to let the algorithm express its running time experimentally
(Section 9), where the correcting one-pass algorithm mimics the time performance
of the one-pass algorithm, and compresses data more efficiently in a large majority
of cases.

Note that a pointerrc or vc can increase by more than one in Step (7), when
the algorithm finds a matching substring that extends past the current value ofrc
or vc. A consequence is that footprints are not computed in a region ofR from
rc + 1 up to the updated valuerm + l , and similarly forV . This leaves a hole
in the “window into the past.” An alternative would be to continue footprinting
and modifying the hash tables when extending a match (in identity mode) past the
current value ofvc andrc. (The one-pass algorithm does not continue footprint-
ing in identity mode. This would be useless in the one-pass algorithm, because
the hash tables are flushed before the new footprint information can be used.) The
reason that we chose not to continue footprinting in identity mode in the correcting
one-pass algorithm was to keep running time small. As previously noted, check-
ing equality of symbols is significantly faster than computing a new footprint,
and we expect the algorithm to spend a significant fraction of its time in identity
mode when the inputs are highly correlated. There is the potential for a loss of
compression if, say, an unfootprinted region ofR could have been used to copy-
encode another part ofV (in addition to the copy-encoding that the algorithm found
when passing over this region ofR in identity mode). In this case, the additional
match might not be found. It could still be found, though, if a match originating
at a seed outside the region extends into the region. We have not investigated the
compression-time trade-off caused by continuing to generate footprints while in
identity mode.

7. The Correcting 1.5-Pass Algorithm

In contrast to the correcting one-pass algorithm, which improves the compres-
sion of the one-pass algorithm, the correcting 1.5-pass algorithm can be viewed
as a reformulation of the greedy algorithm (Section 3.1) that improves the run-
ning time of the greedy algorithm. The principal change is that the correcting
1.5-pass algorithm encodes the first matching substrings found, rather than search-
ing exhaustively for the best matching substrings as the greedy algorithm does.
Both the greedy algorithm and the correcting 1.5-pass algorithm first make a
pass over the reference string computing footprints and storing information in a
hash table.3 But where the greedy algorithm stores, for each footprint, all offsets
having that footprint, the correcting 1.5-pass algorithm stores only the first such
offset encountered. By not searching through all possible matching substrings,
the correcting 1.5-pass algorithm exhibits linear execution time in practice. Since
the correcting 1.5-pass algorithm uses correction to repair poor encodings, it can

3 The name “1.5-pass” was chosen for consistency with the name of the one-pass algorithm, which
makes one pass over both halves,R andV , of the input. A 1.5-pass algorithm makes an additional
pass over one half of the input (R,V), namely,R.
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Correcting 1.5-Pass Algorithm

Given a reference stringR and a version stringV , generate a delta encoding ofV as follows:

(1) For each offseta in input string R in the interval [0, |R| − p], generate the footprint
FR(a,a+ p). For each footprint generated, if the entry ofHR indexed by that footprint is
empty, store the offset in that entry:

for a = 0, 1, . . . , |R| − p : if HR[FR(a,a+ p)] =⊥ then HR[FR(a,a+ p)] ← a.

(2) Startvc andvs at offset zero.

(3) If vc + p > |V | go to Step (8). Otherwise, generate a footprintFV (vc, vc + p) atvc.

(4) If HR[FV (vc, vc+ p)] 6=⊥, check that the seed inRat offsetHR[FV (vc, vc+ p)] is identical
to the seed inV at offsetvc. If matching seeds are found, continue at Step (5). Otherwise,
incrementvc by one and repeat Step (3).

(5) Extend the matching substring forwards and backwards as far as possible from the matching
seed. Setvm andrm to the start of the matching substring inV andR, respectively, and set
l to the length of this substring. Note thatvs ≤ vc < vm + l becausevc never decreases,
and because the match originated at the seed at offsetvc.

(6) Encode the match and attempt to correct bad encodings. The following two sub-steps are
identical to sub-steps (6a) and (6b) in the correcting one-pass algorithm (sub-step (6c)
cannot occur here, becausevs < vm + l ):
(a) If vs ≤ vm: If vs < vm, encode the substringV [vs, vm) using an add command. Encode

the substringV [vm, vm + l ) as a copy of the substring of lengthl starting at offsetrm

in R. Output the command(s) to the buffer. Setvs← vm + l .
(b) If vm < vs: We have noted in Step (5) thatvs < vm + l . Attempt to correct encodings

from the tail of the buffer (tail correction described in Section 5.1). Delete from the
buffer all commands that were wholly integrated. Output the new copy command to
the buffer. Setvs← vm + l .

(7) Setvc← vm + l and return to Step (3).

(8) All of the input has been processed. Flush all commands from the buffer to the delta
encoding. Ifvs < |V |, encode the substringV [vs, |V |) with an add command. Terminate
the algorithm.

FIG. 8. Pseudocode for the correcting 1.5-pass algorithm.

optimistically encode the first matching substring it finds, and rely on correction to
improve the encoding if a better one is found later. Pseudocode for this algorithm is
in Figure 8.

The correcting 1.5-pass algorithm differs from the greedy algorithm at Steps (1),
(5), and (6). In Step (1), the correcting 1.5-pass algorithm keeps only a single offset
for each footprint value. At Step (5), the correcting 1.5-pass algorithm extends
the match backwards as well as forwards. (Because the greedy algorithm optimally
encodes the encoded prefix ofV at every step, extending backwards would not help.)
Step (6a) differs only because the correcting 1.5-pass algorithm outputs commands
to the buffer rather than directly to the delta. Step (6b) not only outputs a command
to the buffer, but can also correct bad encodings from the tail of the buffer. As
explained in Step (6) of Figure 8, the general correction Step (6c) of the correcting
one-pass algorithm is irrelevant to the correcting 1.5-pass algorithm. Because the
correcting 1.5-pass algorithm does only tail correction, the problem of inserting
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commands in the middle of the buffer does not occur with this algorithm, and it
never has to use dummy commands.

As with the correcting one-pass algorithm, the correcting 1.5-pass algorithm has
the potential to exhibit superlinear time behavior in the worst case. This can again
be attributed to the potential for the algorithm to spend superlinear time during
backwards matching. Again, the bad inputs for the correcting 1.5-pass algorithm
are adversarial and not witnessed by the inputs in our experiments. The algorithm
exhibits linear asymptotic execution time on all examined inputs and even runs
faster than the correcting one-pass algorithm on many inputs.

One can also consider the1.5-pass algorithm, which is the correcting 1.5-pass
algorithm without correction. The 1.5-pass algorithm can be described by the
pseudocode in Figure 8, with a few modifications: in Step (5), the match is ex-
tended only forwards, not backwards; Step (6b) does not occur; and there is
no encoding lookback buffer, so commands are output directly to the delta. Be-
cause the 1.5-pass algorithm does not do backwards match extension, it runs
in linear time in the worst case. Based on our experience with the one-pass
and correcting one-pass algorithms, we would expect the 1.5-pass algorithm to
run a little faster than the correcting 1.5-pass algorithm in practice, but give
worse compression.

The correcting 1.5-pass algorithm will likely have poor compression performance
when the size of the reference string is much larger than the size of the hash table.
In the next section, we explain why this poor performance occurs, and we describe
a technique that essentially reduces the length of the inputs to a length that is
compatible with the size of the hash table.

8. Handling Arbitrarily Large Input Data

The correcting algorithms have compression limitations when operating on very
large inputs. These limitations arise as a result of the hash tables these algorithms
use becoming overloaded. As increasing the size of the hash table is not a scalable
solution, we present a method to reduce the amount of information in an input
string to an amount that is compatible with the correcting one-pass and correcting
1.5-pass algorithms.

The compression performance of the correcting 1.5-pass algorithm breaks down
when there are many more offsets than footprint values, that is, when the length
of the reference string significantly exceeds the size of the hash table. When this
occurs, many offsets in the reference string have the same footprint value and must
be discarded. As the correcting 1.5-pass algorithm chooses to remember the first
offset found for each footprint, the hash table contains better information about the
earlier substrings in the string. For long inputs, information at the end of the string
can be sparse, as many footprints will have already occurred. As the reference
string get larger and larger, the hash table contains less information about the
whole string and compression degrades accordingly.

In contrast, the correcting one-pass algorithm loses the ability to detect “distant”
matching data when inputs grow. The hash tables in the correcting one-pass algo-
rithm always contain the last offset with a particular footprint. So when inputs are
large, the hash table does not cover all previously seen offsets, only the recently seen
offsets (the “window into the past”). If matching substrings occur far apart from
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synchronized offsets, the algorithm may miss them, as the “distant” offsets will
have been replaced. This mode of failure is far less severe than that of the correct-
ing 1.5-pass algorithm. Consequently, without the use of some additional technique
to effectively reduce the size of the inputs (such as the technique to be described in
this section), the correcting one-pass algorithm is preferable for large inputs.

To address large inputs, we present a technique calledcheckpointing. The check-
pointing technique declares a certain subset of all possible footprints to be check-
points. The algorithm will then only operate on footprints that are in this checkpoint
subset. An algorithm modified with checkpointing will still compute a footprint
every time that the original algorithm would, but only those footprints that are in
the checkpoint subset participate in finding matches. This reduces the number of
entries in the hash table(s), and allows algorithms to accept longer inputs without
the hash table(s) becoming overloaded. For the correcting 1.5-pass algorithm, the
expected frequency of checkpoints is chosen so that the hash table contains a good
representation of all sufficiently large regions of the reference string, although not
necessarily of all offsets in the reference string. Because the correcting one-pass
algorithm does not need to remember checkpoints over the entire reference string,
but only those in some “window into the past”, the frequency of checkpoints can
be larger for the correcting one-pass algorithm than for the correcting 1.5-pass
algorithm; this is discussed in Section 8.2.2.

Checkpointing allows an algorithm to reduce the input size by an arbitrary fac-
tor chosen so that the algorithm exhibits its best performance. We then need to
address the issues of selecting checkpoints and integrating checkpointing into the
existing algorithms.

8.1. SELECTING CHECKPOINTS. LetC be the set of checkpoint values andF be
the set of footprint values, soC ⊆ F . Say that a seed is acheckpoint seedif the foot-
print of the seed belongs to the setC of checkpoints. Below, we describe a method
for defining the setC, testing whether a given footprint belongs toC, and integrating
checkpointing into differencing algorithms; the only details that the method needs
are the number|C| of checkpoints and the number|F | of footprints. Because there
is a one-to-one correspondence between checkpoint values and entries in the hash
table, we choose|C| based on the amount of memory that we want to use for the
hash table. The choice of|F | can depend on the differencing algorithm and the
length of the input. For definiteness, we next describe a heuristic for choosing|F |
that suits the needs of the correcting 1.5-pass algorithm.

The heuristic is to arrange things so that we expect the number of checkpoint
seeds inR to be some chosen fraction of the number of entries in the hash table.
For definiteness, we take this fraction to be 1/2 (the modifications needed for an
arbitrary fraction will be obvious). This fraction is chosen to balance two competing
goals: (i) to make it unlikely that two different checkpoint seeds that appear inR
will collide (have the same footprint), so that the hash table will contain an entry
for (almost) all of the checkpoint seeds that actually appear; and (ii) to utilize a
significant fraction of the hash table.

Let L be the length of the string that is to be represented by entries in the
hash table; in the present case,L = |R|. In this string, we expect there to be about
L · |C|/|F | checkpoint seeds. Using the heuristic that this number should be about
half the number of hash table entries, we want

L · |C|/|F | ≈ |C|/2, that is, |F | ≈ 2L .
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For example, since we are using a modular hash function to generate footprints,
|F | equals the modulusq, soq ≈ 2L is used to selectq.

We now turn to the process of deciding if a given footprint is a checkpoint.
With the goals of efficiency and simplicity, we take every (|F |/|C|)th footprint
to be a checkpoint. Letm be an integer close to|F |/|C|, eitherm=d|F |/|C|e or
m=b|F |/|C|c. Fix an integerk with 0 ≤ k < m. A given footprint f ∈ F is a
checkpoint if

f ≡ k (mod m). (3)

(The number of checkpoint values might be slightly smaller or larger than the origi-
nal goal|C|, depending on the choice ofk and how|F |/|C| is rounded to obtainm.)

To complete the determination of the checkpoints,k must be determined. One
possibility is to choosek at random. A better method is to bias the random choice
in favor of checkpoints that appear more often inV , because this gives a better
expected coverage ofV by checkpoints. To do this, choose a random offseta in V ,
compute the footprintfa of a, and setk= fa modm. Consider, as a simple example,
that m= 2, there are a large number` of offsetsa in V with fa ≡ 1 modm,
and there are a relatively small numbers with fa ≡ 0 modm. If k is chosen
at random, the expected coverage isE1= (`+ s)/2. If k is chosen by randomly
choosinga as above, then the expected coverage isE2= (`2+ s2)/(` + s). Now
E2 − E1= (`− s)2/(`+ s). Becausè + s is a constant (|V | − p+ 1), it follows
that E2− E1 increases as the square of`− s.

If a footprint f passes the checkpoint test (3), another computation must be done
to map f uniquely to an integeri with 0≤ i ≤ |F |/m, which will be used to index
the hash table. This is easily done by takingi =b f/mc.

Methods other than (3) are possible for defining the set of checkpoints. Assuming
that the footprinting (hash) function produces a uniform distribution of footprints
over its range [0, |F |), then once we have decided on the number of footprints and
the number|C| of checkpoints, it should not matter what subset of (approximately)
|C| footprints is defined to be the set of checkpoints. For example, we could divide
the interval [0, |F |) into disjoint subintervals, each containing approximately|C|
footprints, and use the biased random method to randomly choose one of these
sub-intervals to be the set of checkpoints. This alternative requires one or two
comparisons to test if a footprint is a checkpoint, and a checkpoint is mapped to an
index by one subtraction.

Of course, nothing comes for free: checkpointing has a negative effect on the
ability of the algorithm to detect short matching substrings between versions.
If an algorithm is to detect and encode a matching substring, one of the seeds
of this substring must be a checkpoint seed. Shorter matching substrings will have
fewer checkpoint seeds. If the length of a “short” matching substring is small when
compared to the distance between checkpoint seeds,|F |/|C| on average, the short
matching substring will likely be missed, since none of its seeds are checkpoint
seeds. On the other hand, for versioned data, we expect highly correlated input
strings and can expect long matching substrings that contain checkpoint seeds.

8.2. INTEGRATING CHECKPOINTS WITHDIFFERENCINGALGORITHMS. We per-
form checkpointing in an on-line fashion by testing for checkpoints at the same
time that we generate footprints. For all of our algorithms described above, when-
ever a footprintf of an offset in stringX is generated: (i) the algorithm might add
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or replace an entry at indexf in X’s hash table, and (ii) the algorithm checks if
f has a nonnull entry in the other string’s hash table. In the algorithm modified
with checkpointing, it first testsf (by (3)) to see if it is a checkpoint. Iff is not a
checkpoint, the algorithm does not perform (i), and it assumes that the test (ii) is
false. If f is a checkpoint,f is converted to a hash table indexi (by i =b f/mc),
and (i) and (ii) are performed usingi in place of f .

We also note that the checkpointing technique performs better with algorithms
that employ correction. Since an algorithm using checkpointing does not remem-
ber offsets whose footprint is not a checkpoint, the algorithm is likely to miss the
starting offsets of matching substrings. With correction, however, the algorithm
can still find a matching substring if a checkpoint seed appearsanywherein the
substring. With correction, missed starting offsets are handled transparently by
backwards matching, and the algorithm finds the true starts of matching substrings
without additional modifications to the algorithm. An algorithm that uses check-
pointing but not correction would fail to copy-encode any portion of a matching
substring prior to its first checkpoint seed, as it has no way to encode data prior to its
current offset.

8.2.1. Checkpointing and the Correcting 1.5-Pass Algorithm.Checkpointing
alleviates the breakdown of the correcting 1.5 pass algorithm operating on large
inputs. Using the heuristic described above for choosing|F |, the algorithm can fit
an approximation of the contents of any reference string into its hash table. The
argument behind the heuristic is probabilistic, and it is possible that some of our
checkpoints will be very popular (appear at many offsets ofR) or not appear at all.
A checkpoint that does not appear is a loss, because an entry in the hash table is
wasted. A frequently appearing checkpoint does not affect the time performance of
the algorithm, because we store at most one offset for each checkpoint value. For
the same reason, this could be detrimental to compression performance, because the
offsets appearing in the hash table will be biased toward those near the beginning
of R.

8.2.2. Checkpointing and the Correcting One-Pass Algorithm.The correcting
one-pass algorithm has problems detecting distant matches when its hash table
becomes over-utilized. This is not so much a mode of failure as a property of the
algorithm. Applying checkpointing as we did in the correcting 1.5-pass algorithm
allows such distant matches to be detected. In effect, checkpointing gives a “window
into the past” that covers a larger portion of the past, but with a more sparse
representation. Yet, if the version of the data does not exhibit transpositions, then
checkpointing sacrifices the ability to detect short matches and gains no addi-
tional benefit.

With the correcting one-pass algorithm, the appropriate frequency of check-
point seeds depends on the nature of the input data. For data without transpositions,
checkpointing can be disregarded. Any policy decision as to the frequency of check-
points is subject to differing performance, and the nature of the input data needs
to be considered to formulate such a policy. In our opinion, it can rarely be correct
to choose the frequency as small as was done in the heuristic for the correcting
1.5-pass algorithm, because the correcting one-pass algorithm will then never fill
its hash tables and never use its full substring matching capabilities. Frequently
occurring checkpoints are not as much of a problem for the correcting one-pass
algorithm, because it constantly updates its hash tables (the window into the past).
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Perhaps a more appropriate heuristic would be to choose enough checkpoints so
that the window into the past covers some fraction of the input strings.

9. Experimental Results

We implemented the greedy, one-pass, correcting one-pass, and correcting 1.5-pass
algorithms to evaluate their compression and running time performance experimen-
tally. Checkpointing was used with the two correcting algorithms, but not with the
one-pass or greedy algorithms. Experiments were performed on two types of input
pairs (reference file, version file).4 The first type consisted of two versions of actual
files, such as two versions of software. This type generally consisted of pairs where
the version file is highly correlated with the reference file (an earlier version). On in-
puts of this type, the two correcting algorithms achieve better compression than the
one-pass algorithm, which confirms our intuition that correction (with checkpoint-
ing) helps compression. Another result is that the compression performance of the
correcting algorithms is close to that of the greedy algorithm that achieves optimal
compression. The results also indicate that the running times of the new algorithms
grow linearly in the size of the files. Although the greedy algorithm uses more time
than the new algorithms, it does not exhibit its worst-case quadratic growth on
these highly correlated pairs. To evaluate the time performance of the algorithms
on uncorrelated pairs, the algorithms were run on pairs of randomly generated files.
Here, the running times of the new algorithms are linear, while the greedy algorithm
does exhibit quadratic time. The experiments verify theoretical results about the
algorithms. In particular, the one-pass algorithm runs in linear time, and the greedy
algorithm uses quadratic time in the worst case. The experiments also support our
assertion that the correcting one-pass algorithm and correcting 1.5-pass algorithms
run in linear time, both on actual (correlated) versioned files and on uncorrela-
ted files.

9.1. EXPERIMENTAL SETUP. All algorithms were implemented in the C pro-
gramming language and were executed on an IBM PowerPC workstation running
the AIX operating system. The workstation was an IBM model 43-P with a 133 MHz
processor and 128 MB of RAM. Files were used as the input strings and all file
I/O was performed through the local file system. Experiments were conducted out
of a warm cache; that is, the input files were already resident in the computer’s
memory before measurements were taken. This eliminates the effect of caching
on the measurement of running time. In particular, the first algorithm to run is not
penalized for the extra time it spends conducting I/O from disk drives, rather than
a cached copy of the data.

Our experiments measure both the time it takes an algorithm to execute and the
compression that the algorithm achieves. Compression is measured as the ratio of
the size of the output delta file to the size of the input version file (when defined
this way, smaller compression is better). Running time is a measurement of the
total execution time of the algorithm. This time includes time the algorithms spend
waiting for file system I/O operations to complete.

4 In this section, we use the term “file” rather than “string.” A file is given as input to a differencing
algorithm by regarding it as a string of bytes.
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We gave all algorithms 64 kilobytes (KB) of memory for each of their hash
tables. However, each entry of the hash table of the greedy algorithm is the head
of a linked list containing all offsets with a given footprint. Thus, the total space
used by the greedy algorithm’s hash table structure is at least|R|, whereas that of
the new algorithms is at most 128 KB. The significance of the amount of memory
we chose is not in the total memory, but the ratio of the size of the memory to the
size of the input. We chose 64 KB of memory for each hash table so that our input
data included files that were more than ten times larger than the algorithm’s fixed
memory for the hash table used to store information about the seeds appearing in
the file. The two correcting algorithms used a relatively small amount, 4 KB, of
additional memory for the buffer (Section 5), divided into 256 entries of 16 bytes
each. Each entry stored the information associated with one command; thus, the
buffer could hold up to 256 commands at the same time. The lengthp of seeds was
held fixed atp= 16. (Thus, the delta encodings found by the greedy algorithm are
optimal given that matching substrings of length less thanp= 16 are not found.
To obtain a fair comparison of the new algorithms with the greedy algorithm, it is
reasonable to use the samep for each.)

9.2. EXPERIMENTAL DATA. For experimental data, we used multiple versions
of application and operating system software distributions that are commonly down-
loaded from the Internet. These distributions include multiple versions of the GNU
tools and the BSD operating system distributions, among other data. The files con-
sist of binary and executable files, source files, and documentation. It does not
include image files, multimedia data, or databases. We were restricted to distri-
butions of software for which multiple versions were available so that we could
difference old files against new. In total, our data set consists of over 30,000 files.
The average file size is approximately 180,000 bytes and the maximum file size is
900,000 bytes.

The files we ran experiments against were acquired from various Web sites
that mirrored GNU and BSD distributions at various dates during 1996 and 1997.
When we found a software distribution for which we already had an older copy, we
would download and build that distribution. Then, we ran scripts that would find
files having same path and name in the distribution and would compare them. We
discarded all files with identical contents and all files not matched, leaving only
files that were non-trivially modified between versions.5

9.3. COMPARISONSAGAINST SUFFIX TREES. We do not include a direct com-
parison against algorithms based on suffix-trees [Weiner 1973], because their space
bounds are unreasonable for our intended applications. However, we do draw some
conclusions based on results presented by Kurtz [1999]. A major goal of our dif-
ferencing algorithms is to compress versions of data much larger than the amount
of memory available. This cannot be realized using suffix trees. The most space-
efficient implementation of a suffix tree considered in Kurtz [1999] builds a tree
10 times the size of the input, determined experimentally, and has an analytical
bound of 16 times this input size.

When looking at other performance measures, suffix trees are still unattractive.
All data in Kurtz [1999] indicate that suffix trees are substantially less time efficient

5 These data will be made available by request fromrandal@cs.jhu.edu.
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FIG. 9. Compression results on experimental data.

than our methods. On a machine over twice as fast (300 MHz vs. 133 MHz) and
with more memory (192 MB vs. 128 MB), suffix trees can be constructed at an
average rate of 0.4 MB/sec [Kurtz 1999] as compared to our algorithms, which
produce output at an average rate of 0.5 MB/sec or better in our experiments.
A delta algorithm based on suffix trees would use even more time, because it has to
take a pass over the version file and output a delta after the suffix tree is constructed.
Suffix trees compress data optimally, so the compression performance is equal to
or slightly better than the greedy algorithm (recall that the greedy algorithm cannot
detect matches smaller than the length of a seed). Most compression arises from
long matching strings, so this difference is very small.6

While suffix trees are noteworthy for being the only known linear-time, optimally
compressing delta algorithms, a small amount of compression loss can be traded
for significant time and space performance improvements.

9.4. COMPRESSIONRESULTS ONFILE DATA. Compression results from our ex-
periments show the effectiveness of our algorithms in creating a compact differential
encoding of a version file in terms of a previous reference file. Figure 9 compares
the relative compression performance of the four implemented algorithms. This
plot compares input file size on the X-axis and compression (size of the delta file
divided by the size of the version file) on the Y-axis.

As shown in Section 3, the greedy algorithm provides optimally compressed
deltas (under the simple cost measure). So, the curve for the greedy algorithm
represents a lower bound on how much compression can be achieved. All other
algorithms compress less well. The difference between the compression curve of an
algorithm and the curve for the greedy algorithm describes how much compression
the algorithm sacrifices to achieve its better time performance.

6 We ran the greedy algorithm with seeds as small as 2 bytes and there was no detectable compression
difference.
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In general, the one-pass algorithm compresses input data significantly less well
than the correcting algorithms and the greedy algorithm.

For smaller input files, the correcting 1.5-pass algorithm closely matches the
(optimal) compression performance of the greedy algorithm. In this case, “small”
means that file size is a small multiple of the amount of memory in which the
algorithm operates. For small files, the checkpoints in the correcting 1.5-pass algo-
rithm cover the input files densely. However, as the size of the input files increase,
the checkpoints become more sparse, which adversely affects the compression.
Recalling that the correcting 1.5-pass algorithm is a time-efficient variation of the
greedy algorithm, we observe the similarities between the curves of the greedy and
correcting 1.5-pass algorithms and conclude that a small amount of compression is
lost to improve the time performance.

The correcting one-pass algorithm addresses the compression performance short-
comings of the one-pass algorithm. Its compression performance resembles that of
the greedy and correcting 1.5-pass algorithms, more than that of the one-pass al-
gorithm from which it is derived. The improved compression of the correcting
one-pass algorithm is a testament to the effectiveness of correction and check-
pointing. For small files, the correcting one-pass algorithm is outperformed by the
correcting 1.5-pass algorithm, which collects more complete information about the
reference file before encoding—recall that the one-pass algorithm goes through
both input files simultaneously. Interestingly, the correcting one-pass algorithm
performs almost identically to the correcting 1.5-pass algorithm on large files.
The most plausible explanation for this is that the checkpoints in the one-pass al-
gorithm can be taken more densely than for the 1.5-pass algorithm, because the
one-pass algorithm does not need to process the whole reference file at one time.
The more dense checkpoints find matching substrings that the relatively sparse
checkpoints in the correcting 1.5-pass algorithm miss. It is the authors’ intuition
that this effect will be dependent upon the input data, but should be prevalent on
large inputs.

9.5. RUNNING TIME RESULTS ONFILE DATA. From the compression experi-
ments, we also extract running time information to compare the relative performance
of all algorithms. The graph in Figure 10 describes our results. Again, the X-axis
represents file size. The Y-axis represents the average amount of time that it takes
for the algorithm to process a byte of data (seconds/byte). The seconds/byte metric
is chosen because it normalizes the amount of time the algorithm uses with respect
to file size, so that results from different file sizes may be compared. We also con-
sidered the inverse of our metric—data rate (bytes/second), but chose seconds/byte,
as it allows us to easily correlate experimental results with asymptotic time bounds
for algorithms.

The relative compression performance of the algorithms, from best to worse
(see Figure 9), is: (1) greedy; (2) correcting 1.5-pass; (3) correcting one-pass; and
(4) one-pass. The relative time performance of the algorithms, from best to worse
(see Figure 10) is: (1) correcting one-pass; (2) correcting 1.5-pass; (3) one-pass; and
(4) greedy. Thus, if we ignore the one-pass algorithm, we see the expected inverse
correlation between compression and running time. (The one-pass algorithm suffers
from not doing checkpointing.)

For all algorithms, on small files, the seconds/byte is significantly larger than
that on larger files, due to certain start-up costs such as program load, initializing
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FIG. 10. Running time results on experimental data.

data structures, and memory allocation. For larger inputs, the total time over which
an algorithm runs increases, so the start-up cost is amortized over more bytes.

The running time results show that the one-pass algorithm and the two cor-
recting algorithms proceed through data at roughly a constant rate for files of all
sizes. This represents linear asymptotic growth in the algorithms’ times. Small
variations in seconds/byte arise due to differences in the experimental data. The
one-pass algorithm proceeds through data at different rates depending upon whether
it is searching for matching strings or encoding matching data between versions
(Section 4). So the actual time performance varies depending upon the compress-
ibility of data and type of changes that occur.

We first consider the effect of correction by comparing the one-pass algorithm
with the correcting algorithms. For larger files, both correcting algorithms use
less time than the one-pass algorithm. Because the correcting algorithms use the
checkpointing technique to reduce the number of offsets that they examine to find
and encode matches, the seconds/byte decreases as files grow. That is, the larger
the file, the larger the checkpoint interval, and the less dense the checkpoints in
the file. For large files, checkpointing dominates performance, and the correcting
algorithms outperform the one-pass algorithm. For small files, where checkpointing
is not a factor, the performance of the one-pass algorithm is inferior to the perfor-
mance of other algorithms because it produces significantly larger delta files. Poor
compression performance causes the algorithm to perform significantly more I/O,
increasing the running time.

Comparing now the correcting one-pass and the correcting 1.5-pass algorithms,
we see that their running times are very similar, with the correcting one-pass
algorithm having slightly faster running time than the correcting 1.5-pass algo-
rithm at all points. The correcting one-pass algorithm has the advantage of be-
ing able to go through both files at the same time, as opposed to examining
the whole reference file before encoding the version file. The slight time ad-
vantages of the correcting one-pass algorithm should be compared against the
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slight compression advantages of the correcting 1.5-pass algorithm. Neither al-
gorithm stands out as clearly superior; rather, the correcting one-pass algorithm
has advantages for large inputs where its running time is superior, while the cor-
recting 1.5-pass algorithm has compression advantages for small and moderate
sized inputs.

The greedy algorithm has running time comparable to that of other algorithms
for very small files, but for larger file sizes its running time is significantly worse.
The greedy algorithm displays a moderate increase in seconds/byte running time
as file size increases. However, the algorithm does not display a linear increase in
seconds/byte running time that would result from quadratic growth of time versus
file size. The greedy algorithm does not display quadratic time behavior here,
because the experimental data is so compressible. For illustration, consider the
greedy algorithm differencing two files that are identical. The algorithm builds its
data structures in linear time,7 finds a matching seed at the first offset of each file,
extends this match to the end of both files, and encodes the match with a single
copy command. This all occurs inO(n) time.

9.6. RUNNING TIME RESULTS ONUNCORRELATED VERSIONS. Almost all the
file data used in our experiments shared the trait of similarity between versions. The
version files were highly compressible using differencing algorithms, which indi-
cates that they share many common substrings with their corresponding reference
versions. To better understand the time performance of the four algorithms, and ex-
plore worst case behavior, we also ran the algorithms against uncorrelated files, two
files that are likely to share only very short common substrings. We tested differenc-
ing on pairs of files that were roughly the same length, but whose bytes were random
with respect to each other. To create uncorrelated files, we took a data string (any
string would do), and encoded it using the PGP cryptography [Zimmerman 1995]
package with two different keys. The output of this process is two strings of
roughly the same length that are random with respect to each other and the
input string. We created random files for many file sizes and ran our algorithms
against them.

Since the strings were random, all four differencing algorithms were unable to
achieve any compression. The size of the delta file was, without exception, the size
of the version file plus a small encoding overhead.

The running time results appear in Figure 11. In these graphs, the X-axis is
file size and the Y-axis is seconds/byte. Since, we were generating data, we could
choose the file size. However, each point does represent many samples at that size.

The one-pass algorithm proceeds through inputs of any size using the same
seconds/byte, that is, at a constant rate. This is the expected result, since the one-
pass algorithm examines every byte of the two files and, finding no matches, hashes
the seed at that offset and places it in the hash table if that table entry is empty. File
size has no effect on the seconds/byte performance.

7 Our implementation of the greedy algorithm is based on an algorithm in the literature [Reichenberger
1991] that constructs its hash table using time inÄ(n2). We modified the algorithm to construct the
hash table inO(n) time. This modification in no way changes the manner in which the algorithm
finds and encodes matching substrings, so it does not affect the proof that it compresses optimally.
This change makes for a more equitable comparison of a greedy algorithm with other algorithms.
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FIG. 11. Running time results on random data.

The correcting algorithms both show a moderate decrease in seconds/byte as file
size increases. This, just like the results on actual file data, can be attributed to
checkpointing. As files grow larger, checkpoints are less dense, and the algorithm
looks at fewer substrings in each region of the file.

The seconds/byte used by the greedy algorithm grows roughly linearly as file
size increases. Linear growth in seconds/byte is equivalent to quadratic growth in
time as file size increases, that is,Ä(n2). Unlike the experiments on correlated files,
on uncorrelated inputs the greedy algorithm shows its worst time behavior.
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10. A Limitation of Single-Pass Differencing Algorithms

We had previously (Section 4) indicated that single-pass differencing algorithms
have limited differencing power. We now present a lower bound on the length of
the delta string1(R:V) produced by single-pass differencing algorithms when the
reference string has the formR= XY and the version string has the formV =Y X,
whereX andY have the same length. This limits the differencing power of single-
pass algorithms in the presence of transposed data and illuminates the limitations
of any algorithm operating in a single pass over the input.

The definition of “single-pass” in this section is strict: each string is scanned
by one pointer that can only move from the beginning of the string to the end; no
random-access or reversal is allowed. This is a considerably more stringent restric-
tion than the one used in the one-pass algorithm, because the one-pass algorithm
can use random-access in its attempts to find matching substrings. The inputsR
andV and the output delta are all binary strings. Ifn is the length ofR (this is a
different definition ofn than the one used previously) and the algorithm hasm bits
of memory, the lower bound isn/2−m− O(logn). As shown below, this lower
bound is optimal to within an additiveO(logn) term. In the strongest version of
the result, the algorithm can be probabilistic,X andY are random strings of length
n/2, and the lower bound is on the expected length of1(R:V). The lower bound
holds for any encoding method having the property thatV can be recovered from
R and1(R:V). One such method is the one described in Section 2.1.1, whereV is
encoded as a sequence of added substrings and substrings copied fromR.

10.1. ENCODINGMETHODS. Let {0, 1}∗ denote the set of all binary strings, and
let {0, 1}n denote the set of binary strings of lengthn. All logarithms are to the
base 2.

An encoding methodis a functionδ that maps each pairRandV of binary strings
to a nonempty setδ(R,V) of binary strings. Each string inδ(R,V) is an encoding
of V with respect toR. In order thatV be recoverable fromR and every string in
δ(R,V), we require that, for allR,V,V ′, if V 6= V ′ thenδ(R,V) ∩ δ(R,V ′)=∅.

10.2. MODEL OF COMPUTATION. A single-pass differencing algorithm is per-
formed by an automaton, that we call asingle-pass automaton, having two input
tapes, a finite-state control, and a mechanism for producing an output string (de-
scribed below). A few words should be said about the assumption of a finite-state
control, even though the input strings could be arbitrarily large. In the definitions
given next and in the statements of the results, we assume that the length of each
input is some fixed (but arbitrary) even numbern. The lower bound on the length
of the output is stated in terms ofn and the number of bits of memory in the finite
state control, that is, the log of the number of states. Alternatively, the results could
be stated in an “asymptotic” way, where the size of memory increases as some
function ofn. Stating the results as we do has the advantage that the results hold
in a nonuniformmodel, where we can use a different differencing algorithm for
each lengthn of the inputs; again the size of memory can increase asn increases.
Because we are provinglower boundson the length of the output, our results can
only become stronger by using a more general model.

We first describe this type of automaton informally, and then give a more precise
definition. One input tape (tape 1) holds the reference stringR, and the other
(tape 2) holds the version stringV ; each string is followed by an end-of-string
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character denoted $. Each input tape is scanned by a single reading head, which is
initially positioned on the leftmost bit of the string. Each head on an input tape can
move only from left to right. Typically, the output string of a finite-state machine
is produced incrementally, by issuing the symbols of the string from left to right.
We can use a more general type of output mechanism, which permits incremental
changes other than appending a symbol at the end. For example, this mechanism
allows a certain number of symbols to be erased from the end. In more detail, the
finite-state control can issueoutput actions. Each output action is a function from
binary strings to binary strings. Initially, the output string is the empty string. If the
output actionα is issued when the output string isw, the output string is changed to
α(w). Without some restriction on the output actions, this model can compute any
function f (R,V) (e.g., the function computed by a perfect differencing algorithm):
the automaton first copies the inputsRandV to the output string and then issues an
output action that has the effect of applyingf to R andV . A sufficient restriction
for our purposes is that, for every output actionα and every two stringsu andw, if
|u| = |w|, then|α(u)| = |α(w)|. Examples of output actions meeting this restriction
are: for each positive integeri , the actionαi that erasesi bits from the end of the
string; and for each binary stringy, the actionαy that appendsy to the end of
the string, that is,αy(w)=wy. To make our proof work using this general type
of output mechanism, we must also assume an upper bound on the length of the
output string at every point during execution of the algorithm. (In general, the output
string at some intermediate point could be longer than the final output.) To simplify
the statements of the results, we assume that the length of the output string never
exceeds the lengthn of the inputs. As remarked below, we still get meaningful
results if this upper bound is weakened tonc for any constantc.

The definition of a single-pass automaton is now made more precise. A (deter-
ministic) single-pass automaton Dconsists of a finite setQ of states, a finite
set of output actions, and a transition function. Each output action is a func-
tion α : {0, 1}∗ → {0, 1}∗ such that, for allu,w ∈ {0, 1}∗, if |u| = |w| then
|α(u)| = |α(w)|. Recall that the two input tapes are numbered 1 and 2. The tran-
sition function maps each “condition” to a “move”. A condition is of the form
(q, s1, s2) whereq ∈ Q ands1, s2 ∈ {0, 1, $}. This condition means that the au-
tomaton is in stateq, and the head on tapei is reading the symbolsi . The transition
function maps each such condition to a move of the form (q′, d1, d2, α) where
q′ ∈ Q, d1, d2 ∈ {0, 1}, andα is an output action. This move means to change the
state toq′, move the head on tapei one symbol to the right ifdi = 1 or leave it
stationary ifdi = 0, and issue the output actionα. (If a head is reading $, it must
remain stationary.) The set of states contains an initial state and a halting state. It is
technically convenient to assume that exactly one of the heads moves at each step,
unless both heads are reading $ and the step causes the machine to enter the halting
state without moving either head. It is easy to modify an automaton to one meeting
this restriction while tripling the number of states, that is, adding at most 2 bits
of memory (which can be absorbed in theO(logn) term): Whenever the original
automaton would move both heads at the same step, the modified automaton moves
the heads in two separate steps. Then steps that move neither of the heads can easily
be eliminated.

The automaton is started on inputsR,V with the input head on tape 1 (re-
spectively, tape 2) scanning the leftmost bit ofR (respectively,V), and with
the control in the initial state. Letα1, . . . ,αt be the sequence of output actions
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issued during the computation until the halting state is entered. The output,
denotedD(R,V), is αt (αt−1(· · ·α1(λ)) · · · ) whereλ is the empty string. (The
set of output actions can contain the identity function, which has the effect
of a null action, so the automaton can make moves without changing the out-
put string.)

Let n,m be positive integers. A single-pass automatonD is asingle-pass differ-
encing algorithm for n-bit strings with m bits of memoryif

(1) there is an encoding methodδ such thatD(R,V) ∈ δ(R,V) for all R,V ∈
{0, 1}n; equivalently, for allR,V,V ′ ∈ {0, 1}n, if V 6= V ′, thenD(R,V) 6=
D(R,V ′);

(2) D has 2m states; and
(3) for all R,V ∈ {0, 1}n, if α1, . . . , αt is the sequence of output actions issued in

the computation ofD on inputsR andV , then for alli with 1≤ i ≤ t , we have
|αi (αi−1(· · ·α1(λ)) · · · )| ≤ n.

The definitions of aprobabilistic single-pass automaton and differencing al-
gorithm are similar to those above. The difference in the definition of the au-
tomaton is that the transition function maps each condition to a probability dis-
tribution on the set of moves. It is useful to assume that all probabilities in these
distributions are rational. Whenever a certain condition holds, the next move is
chosen according to its associated probability distribution. Therefore,D(R,V)
is a random variable. The definition of a probabilistic single-pass differencing
algorithm is identical to the definition above for the deterministic case, except
that items (1) and (3) must hold with probability 1. For example, in item (1),
the algorithm might produce different outputs depending on what random
choices it makes, but every output that could possibly be produced must belong
to δ(R,V).

10.3. LOWERBOUNDS. We prove lower bounds on|D(XY,Y X)| for all single-
pass differencing algorithmsD having sufficiently small memory. To introduce
the proof method, a lower bound is first proved for the case that the algorithm is
deterministic, and the lower bound is shown to hold for some input of the form
R= XY andV =Y X whereX andY are both of lengthn/2. By modifications to
the first proof, we then prove a lower bound on the average length of the output
when X and Y are chosen randomly and independently from the set of strings
of lengthn/2, where the algorithm is still deterministic. This average-case result
for deterministic algorithms is then used to obtain a lower bound on the average
length of the output where the algorithm is probabilistic andX andY are chosen
at random.

10.3.1. Worst-Case Bound for Deterministic Algorithms.

THEOREM 10.1. Let n,m be positive integers with n even, and let D be a
single-pass differencing algorithm for n-bit strings with m bits of memory. There
exist X,Y ∈ {0, 1}n/2 such that

|D(XY,Y X)| ≥ n

2
−m− 2 log n− 2.

PROOF. For each pair (X,Y) with X,Y ∈ {0, 1}n/2, perform the following
simulation. RunD on input (X,Y) but do not place end-of-string symbols at the
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ends of these strings. Continue the simulation until either (1) the head readingX
moves off the right end ofX, or (2) the head readingY moves off the right end
of Y. Exactly one of (1) or (2) must occur, because we have assumed that exactly
one head moves at each step, and ifD halts before either (1) or (2) occurs then
D(XW,Y W)= D(XW,Y W′) for all W,W′ ∈ {0, 1}n/2, contradicting thatD is a
differencing algorithm. LetF1 (respectively,F2) be the set of pairs (X,Y) such that
(1) occurs before (2) (respectively, (2) occurs before (1)). The proof has two cases
depending on whetherF1 or F2 contains at least half of the pairs. (There are a total
of 2n pairs.)

Case1. |F1| ≥ 2n−1.

For eachY, let

S(Y)={ X | (X,Y) ∈ F1 }.
Since there are 2n/2 differentY’s, there must be someY with |S(Y)| ≥ |F1|/2n/2 ≥
2n/2−1. For the remainder of this case, fixY to be some string with this property.
For eachX ∈ S(Y), let div(X) (for “dividing point”) be the step at which the head
readingX moves off the right end ofX in the simulation on input (X,Y). For each
X ∈ S(Y), definetype(X)= (q, i, j ) where, in the configuration of the automaton
just after stepdiv(X) in the simulation on input (X,Y), the state isq, the head on
tape 2 is reading thei th symbol ofY, and the length of the current output string
is j . Define an equivalence relation onS(Y) by X ≡ X′ iff type(X)= type(X′).
Because a type is specified by a triple (q, i, j ) where 1≤ i ≤ n/2 and 0≤ j ≤ n,
and because there are 2m statesq, an upper bound on the number of equivalence
classes is

k = 2m

(
n

2

)
(n+ 1). (4)

Note that ifX ≡ X′, then the behavior ofD on input (XY,Y X) after stepdiv(X)
is identical to the behavior ofD on input (X′Y,Y X) after stepdiv(X′), because
type(X) andtype(X′) are identical in their first component (the state), identical in
their second component (the position of the head on the second inputY X), and in
both cases the head on tape 1 is scanning the first bit ofY in the first input,XY or
X′Y. In particular, the two sequences of output actions are the same. Sincetype(X)
andtype(X′) are identical in their third component (the length of the current output
string) and since we have assumed that each output action maps strings of equal
length to strings of equal length, we have the key fact that

X ≡ X′ implies |D(XY,Y X)| = |D(X′Y,Y X)|. (5)

Because the equivalence classes partitionS(Y), a set of size at least 2n/2−1, there
is some equivalence classC such that

|C| ≥ 2n/2−1

k
. (6)

Fix an arbitraryX′ ∈ C. BecauseD is a differencing algorithm, we know that
D(X′Y,Y X1) 6= D(X′Y,Y X2) for all X1, X2 ∈ C with X1 6= X2. Therefore, as
X ranges overC, the outputD(X′Y,Y X) ranges over|C| different binary strings.
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So there is someX ∈ C with

|D(X′Y,Y X)| ≥ b log |C| c ≥ log |C| − 1. (7)

BecauseX ≡ X′, it follows from (5) that|D(XY,Y X)| = |D(X′Y,Y X)|. The lower
bound on|D(XY,Y X)| stated in the theorem now follows because

|D(X′Y,Y X)| ≥ log |C| − 1 by (7)
≥ n/2− logk− 2 by (6)
≥ n/2−m− 2 logn− 2 by (4).

In the third inequality, we use that (n/2)(n+ 1)≤ n2 for all n ≥ 1.

Case2. |F2| > 2n−1.

This case is essentially symmetric to Case 1, interchanging the roles ofX and
Y. There is a small deviation from symmetry at the end of the argument, since the
differencing problem is not completely symmetric between the two input strings.

Symmetrically, we find anX such that|S(X)| ≥ 2n/2−1, whereS(X)={Y |
(X,Y) ∈ F2 }, and we define an equivalence relation onS(X) such thatY ≡ Y′
implies |D(XY,Y X)| = |D(XY,Y′X)|. Let C be an equivalence class satisfying
(6). Fix an arbitraryY ∈ C, and findY′ ∈ C such that|D(XY,Y′X)| ≥ b log |C| c.
The rest of the proof is the same as above.

If we assume only a polynomial upper boundnc on the length of the intermediate
output string at all steps, then the upper bound on the number of equivalence classes
becomesk= 2m(n/2)(nc + 1), and the term−2 logn in the lower bound becomes
−(c+ 1) logn as can be seen from the three-line calculation above.

The lower bound of Theorem 10.1 is optimal to within an additiveO(logn)
term, as we now show by describing a strict single pass differencing algorithm that
outputs an encoding of cost at mostn/2−m+ O(logn) whenR= XY, V =Y X,
|X| = |Y|, andm ≤ n/2. We assume that the algorithm knowsn andm; this is
allowed by our formal model and typically holds in practice. WriteR= R1R2 and
V =V1V2, where|R1| = |R2| and|V1| = |V2|. For a suitablej =m− O(logn), the
algorithm starts by moving theR-pointer forward, while remembering the firstj
bits of R1 and counting (using about logn bits of memory) to stop this pointer on
the first symbol ofR2. It then moves both theR-pointer and theV-pointer forward,
while comparing bits inV1 with those inR2. When the first mismatch is found,
it outputs a copy command for the longest prefix ofV1 that matches a prefix of
R2, and encodes the rest ofV1 with an add command. It then compares the firstj
bits of V2 with the (stored) firstj bits of R1, and encodesV2 similarly, except that
the prefix ofV2 that is encoded by a copy command can have length at mostj .
If R= XY, V =Y X, and|X| = |Y|, the algorithm outputs an encoding of cost at
mostn/2− j + O(logn)= n/2−m+ O(logn).

10.3.2.Average-Case Bound for Deterministic Algorithms.ForU a real-valued
random variable, letE(U ) denote its expected value.

THEOREM 10.2. Let n,m be positive integers with n even, and let D be a single-
pass differencing algorithm for n-bit strings with m bits of memory. If the random
variablesX andY are uniformly and independently distributed over{0, 1}n/2, then

E(|D(XY ,YX )|) ≥ n

2
−m− 2 log n− 4.
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PROOF. The proof is similar in many ways to the previous one, and we use the
notation defined there. One difference is the following. In the previous proof, we
used that ifI is a set oft distinct binary strings, then some string inI must have
length at leastblog tc. In the present proof, we need a lower bound on the sum of
the lengths of the strings inI . A lower bound is∑

w∈I

|w| ≥
t∑

i=1

blog i c ≥ log(t !) − t ≥ t(log t − 3).

(The inequalityt ! ≥ t t2−2t can be proved easily by induction ont .)
The other principal difference is the following. In the previous proof, we used

several times that if a numberN is partitioned intot parts, that is,N= p1+ p2+
· · · + pt , then some partpi must be at leastN/t . In the present proof, we use
the following lemma to argue that there is no loss of generality in choosingall
parts equalN/t . When we take the size of all parts to be the same, the algebraic
expressions look very much like the ones in the previous proof.

LEMMA 10.3. Let N, t be positive integers and let p1, . . . , pt be positive real
numbers such that p1+ · · · + pt = N. Then

t∑
i = 1

pi log pi ≥ N log(N/t).

PROOF. Becausex logx is convex in (0,∞) (which is true because its second
derivative exists and is nonnegative in (0,∞)), the lemma follows easily from
the basic fact that ifφ is convex then (

∑t
i = 1φ(pi ))/t ≥ φ((

∑t
i = 1 pi )/t) (see,

e.g., Hardy et al. [1964, Sect. 3.6]). By viewing eachpi /N as a probability, it also
follows easily from the fundamental fact of information theory that the entropy of
a discrete probability space havingt sample points is at most logt [Gallager 1968,
Theorem 2.3.1].

Let P = { (X,Y) | X,Y ∈ {0, 1}n/2 }. The quantity of interest is

E(|D(XY ,YX )|) = 2−n ·
∑

(X,Y)∈P

|D(XY,Y X)|. (8)

To place a lower bound on the sum (8), the sum is broken into pieces. At the
highest level,P is broken intoF1 and F2. Consider the part of the sum that is
over (X,Y) ∈ F1. For eachY, define S(Y)={ X | (X,Y) ∈ F1 } as before,
and eachS(Y) is divided into equivalence classes as before. We restrict atten-
tion to thoseY’s such thatS(Y) is nonempty. LetE(Y) be the set of equivalence
classes into whichS(Y) is divided. For eachY and eachC ∈ E(Y), let X′YC be
some (arbitrary) member ofC. As in the previous proof (see (5)), ifX ∈ C, then
|D(XY,Y X)| = |D(X′YCY,Y X)|. The part of the summation in (8) over (X,Y) ∈ F1
equals (where the first summation is over thoseY such thatS(Y) is nonempty)∑

Y

∑
C∈E(Y)

∑
X∈C

|D(XY,Y X)| =
∑

Y

∑
C∈E(Y)

∑
X∈C

|D(X′YCY,Y X)|

≥
∑

Y

∑
C∈E(Y)

|C|(log |C| − 3) . (9)
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The inequality follows from the bound (shown above) on the sum of the lengths of
|C|distinct binary strings, since the stringsD(X′YCY,Y X) for X ∈ C are distinct. As
before, an upper bound on the number of equivalence classes isk= 2m(n/2)(n+1).
It is an easy fact that the sum of|C|overC ∈ E(Y) equals|S(Y)|. Using Lemma 10.3,
a lower bound on (9) is obtained by setting|C| to |S(Y)|/k for all C ∈ E(Y), giving
the lower bound

∑
Y

|S(Y)|
(

log

( |S(Y)|
k

)
− 3

)
. (10)

The sum of|S(Y)| overY ∈ {0, 1}n/2 equals|F1|, and there are at most 2n/2 sets
S(Y). Again using Lemma 10.3, a lower bound on (10) is obtained by setting|S(Y)|
to |F1|/2n/2 for all Y, giving the lower bound

|F1|
(

log

( |F1|
k2n/2

)
− 3

)
. (11)

A symmetric argument is used forF2, giving a lower bound (11) withF1 replaced
by F2. Therefore,

E(|D(XY ,YX )|) ≥ 2−n

(
2∑

i=1

|Fi |
(

log

( |Fi |
k2n/2

)
− 3

))
. (12)

Finally, again using Lemma 10.3, a lower bound onE(|D(XY,Y X)|) is obtained
by setting|Fi | =2n−1 (i = 1, 2) in (12).

10.3.3. Average-Case Bound for Probabilistic Algorithms.The lower bound
for probabilistic algorithms follows from the average-case lower bound of Theo-
rem 10.2, using a method of Yao [1977]. To use Theorem 10.2, which was proved
only for deterministic algorithms, a probabilistic algorithm is viewed as random
choice of a deterministic algorithm.

LEMMA 10.4. Let n,m be positive integers, and let P be a probabilistic single-
pass differencing algorithm for n-bit strings with m bits of memory. There is a
set{D1, D2, . . . , Dz} such that each Di is a deterministic single-pass differencing
algorithm for n-bit strings with m+ dlog(n+ 1)e + 1 bits of memory, and for all
R,V ∈ {0, 1}n, the random variable P(R,V) is identical to the random variable
Di (R,V) where i is chosen uniformly at random from{1, . . . , z}.

PROOF. Because we have assumed that exactly one of the heads advances by
one at each step, except possibly the last step, it follows thatP halts after taking
at mostT = 2n + 1 steps. We have defined a probabilistic single-pass automaton
to have only rational transition probabilities. LetL be the least common multiple
of the denominators of all the transition probabilities ofP. It is useful to imagine
that each deterministic algorithm in the set{D1, . . . , Dz} is named by a sequence of
T integers where each integer in the sequence lies between 1 andL. Soz= LT . Fix-
ing some such sequenceσ = (r0, . . . , rT−1), we describe the algorithmDσ named by
it. The states ofDσ are of the form (q, t) whereq is a state ofP and 0≤ t ≤ T . SoDσ

has 2m(2n+2) states. The second componentt indicates how many steps have been
taken in the computation. The algorithmDσ usesrt to determine its transitions from
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states (q, t). For example, suppose that when seeing condition (q, s1, s2), algorithm
P takes move (q′, d′1, d

′
2, α
′) with probability 1/4, or takes move (q′′, d′′1 , d

′′
2 , α

′′)
with probability 3/4. Then when seeing condition ((q, t), s1, s2), algorithmDσ takes
move ((q′, t+1), d′1, d

′
2, α
′) if 1 ≤ rt ≤ L/4, or takes move ((q′′, t+1), d′′1 , d

′′
2 , α

′′)
if L/4< rt ≤ L.

The next theorem follows easily from Theorem 10.2 and Lemma 10.4.

THEOREM 10.5. Let n,m be positive integers with n even, and let P be a prob-
abilistic single-pass differencing algorithm for n-bit strings with m bits of memory.
If the random variablesX andY are uniformly and independently distributed over
{0, 1}n/2, then

E(|P(XY ,YX )|) ≥ n

2
−m− 3 log n− 6

where the expected value is with respect toX, Y, and the random choices made
by P.

PROOF. Given P, find {D1, D2, . . . , Dz} from Lemma 10.4. Because Theo-
rem 10.2 applies to eachDi , and eachDi hasm+dlog(n+1)e+1≤ m+ logn+2
bits of memory, it follows that for alli ,

E(|Di (XY ,YX )|) ≥ n

2
−m− 3 log n− 6.

The lower bound onE(|P(XY ,YX )|) is now immediate, becauseE(|P(XY ,YX )|)
equals the average ofE(|Di (XY ,YX )|) over all i .

11. Conclusions and Further Directions

In Sections 4 through 8, we presented new algorithms and new techniques for
the differencing problem. The new algorithms are the one-pass, correcting one-
pass, and correcting 1.5-pass algorithms. The new techniques are correction and
checkpointing. The main goal in these sections was to present algorithms that
(i) operate at fine granularity and make no assumptions about the internal structure,
such as alignment, of the data; (ii) scale well to large inputs; and (iii) give good
compression in practice. All of these algorithms use constant space, and the one-
pass algorithm uses linear time in the worst case. In experiments using actual
versioned data, these new algorithms run in linear time and have compression
performance that is close to optimal. In Section 10, we showed that strict single-pass
algorithms with limited memory must have very poor compression performance on
transposed data.

A basic theoretical question is the time-space complexity of perfect differencing,
that is, the problem of finding a delta encoding (consisting of copy and add com-
mands) of optimally small cost. For definiteness, and to make the question more
tractable, say that the cost is given by the simple cost measure (Section 3). It is
known that perfect differencing can be solved in timeO(n2) and spaceO(1) si-
multaneously (by the simple constant-space implementation of the greedy method
(Section 3.2)), and in timeO(n) and spaceO(n) simultaneously (by the suffix-tree
implementation of the greedy method). This suggests that a time–space trade-off
might hold. As a step toward establishing a trade-off, one could try to show that
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perfect differencing cannot be solved in timeO(n) and spaceo(n) simultaneously.
The theorems of Section 10 imply that no strict single-pass (necessarily linear-time)
algorithm witho(n) memory can do perfect differencing. It would be interesting to
show that no linear-time algorithm operating on a random-access register machine
with o(n) memory can do perfect differencing. Ajtai [1999] has recently proved
results of this type for other problems.

Appendix

We describe the method used to encode a sequence of add and copy commands as a
sequence of bytes. We use the termcodewordfor a sequence of bytes that describes
a command; these codewords are variable length, and they are uniquely decodable
(in fact, they form a prefix code). We separate codewords into three types: copy and
add codewords, corresponding to copy and add commands, and the end codeword,
which is a signal to stop reconstruction. The first byte of a codeword specifies the
type of the command, and the rest contain the data need to complete that command.
In some cases, the type also specifies the number and meaning of the remain-
ing bytes in the codeword. A type has one of 256 values; these are summarized
in Figure 12.

An add codewordcontains an add type that, in some cases, specifies the length
of the substring to be added. For types 247 and 248, the add type is followed by 16
and 32 bits, respectively, specifying the length of data in the added substring. The
following bytes of the add codeword, up to the length specified, are interpreted as
the substring that the add encodes.

A copy codewordcontains a copy type, which specifies the number and form of
the extra bytes used to describe the offset and length of the substring in the reference

END: k= 0. No more input.
ADD: k ∈ [1, 248]

k ∈ [1, 246]: The followingk bytes are the bytes of a substring to be added at this point to the
reconstructed string.
k ∈ [247, 248]: If k= 247 (resp.,k= 248), the next 2 bytes (resp., 4 bytes) are an unsigned 16
bit short integer (an unsigned 32 bit integer) that specifies the number of following bytes that are
the bytes of the substring to be added.

COPY: k ∈ [249, 255]. Copy codewords use unsigned bytes, shorts (2 bytes), integers (4 bytes)
and longs (8 bytes) to represent the copy offset and length. A copy codeword indicates that the
substring of the given length starting at the given offset in the reference string is to be copied to the
reconstructed string.

k offset length
249 short byte
250 short short
251 short int
252 int byte
253 int short
254 int int
255 long int

FIG. 12. The codeword typek specifies a codeword as anadd, copyor endcodeword. For copy and
add codewords, the type specifies the number and meaning of the extension bytes that follow.
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string that should be copied to the reconstructed string. A copy codeword requires
no additional data, because the substring is contained within the reference string.

Theend codewordis simply the end type 0; it has no additional data. It is basically
a “halt” command to the reconstruction algorithm.

Let us provide a simple example. Assume that a delta string contains the bytes

3, 100, 101, 102, 250, 3, 120, 1, 232, 0.

The algorithm that reconstructs from this string will parse it as three codewords,
namely

{3, 100, 101, 102}, {250, 3, 120, 1, 232}, {0}:
an add codeword of type 3, a copy codeword of type 250 that follows this add, and
the end codeword that terminates the string. The add codeword specifies that the first
three bytes of the reconstructed string consist of the substring 100, 101, 102. The
copy codeword (type 250) specifies the use of 2 bytes to specify the offset (3, 120),
and 2 bytes for the length (1, 232). It states that the next bytes in the reconstructed
string are the same as the substring starting at offset 888 (= 3 · 256+ 120) with
length 488 (= 1 · 256+ 232) bytes in the reference string. The end codeword 0
halts the reconstruction.
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