
Communicated by Stephen Gallant

A ”Thermal” Perceptron Learning Rule

Marcus Frean
Physiological Laboratory, Downing Street,
Cambridge CB2 3EG, England

The thermal perceptron is a simple extension to Rosenblatt’s percep-
tron learning rule for training individual linear threshold units. It finds
stable weights for nonseparable problems as well as separable ones.
Experiments indicate that if a good initial setting for a temperature
parameter, To, has been found, then the thermal perceptron outper-
forms the Pocket algorithm and methods based on gradient descent.
The learning rule stabilizes the weights (learns) over a fixed training
period. For separable problems it finds separating weights much more
quickly than the usual rules.

1 Introduction

This paper is about a learning rule for a linear threshold unit, often
called a perceptron. This is a unit connected by variable weights to a set
of inputs across which patterns occur. In the following the ith element
of an input pattern (a binary or real number) is denoted by <;, and its
associated weight by W;. In response to a given pattern, a perceptron
goes into one of two output states given by

where
N

The extra input €0, taken to be 1 for every pattern, is commonly included
as it enables the zeroth weight to act as a bias. The learning task for
such units is to find weights such that the perceptron’s output o matches
a desired output t for each input pattern [.

On presentation of the lrth input pattern the perceptron learning rule
(Rosenblatt 19621, henceforth abbreviated to PLR, alters the weights in
the following way:

PLR : A Wr = o (t” - d‘))Ef

Neural Computation 4,946-957 (1992) @ 1992 Massachusetts Institute of Technology

“Thermal” Perceptron Learning Rule 947

where (I is a positive constant.’ For instance, if the output u elicited
by a given input pattern is 0 whereas t is 1, this rule alters weights
to increase the value of o. If repeated this would eventually result in
the output becoming 1. The perceptron convergence theorem (Block ct
al. 1962, Minsky and Papert 1969) states that if a set of weights exists
for which the perceptron makes no errors, the PLR will converge on a
(possibly different) set making no errors after only a finite number of
pattern presentations. Hence perceptrons can learn any classification for
which appropriate weights exist: such training sets are termed ”linearly
separable.”

A far more common, and in many ways more interesting, task is to
find a set of weights that gives a minimal number of errors in the case
where perfect weights do not exist. Clearly if the PLR is used in such
cases, the weights are never stable since they change every time an error
is made. Neither are they “good on average,” as will be seen in Section 4.
The task of finding stable weights that engender a small number of errors
in this ”nonseparable” case is addressed in this paper.

2 The Thermal Perceptron Rule

One rationale goes as follows: the trouble is that the PLR does the same
thing for every error made. Instead, the benefit from improving the value
of Q elicited by a given input pattern should be tempered by the possi-
bility that the new weights now misclassify patterns they previously got
right. Since the change in 0 due to the effect of the PLR is independent
of the value itself (other than its sign), an error with a large associated o
is less likely to be corrected in this step than an error where cl is small.
Conversely the weight changes that would be necessary to correct a large
error are themselves large, and hence much more likely to corrupt the
existing correct responses of the unit.

Ideally the weight changes made should be biased toward correcting
errors for which 0 is close to zero. A simple way to do this is to make the
weights changes given by Rosenblatt’s PLR tail off exponentially with lei:

The parameter T controls how strongly the changes are attenuated for
large lc /) l . T is somewhat analogous to a temperature: at high T the PLR
is recovered since the exponential becomes almost unity for any input,
whereas at low T there are no appreciable changes unless I’J is close to
zero. If T is very small the weights are frozen at their current values.

A natural extension is to anneal this effect by gradually reducing the
temperature from high T, where the usual PLR behavior is seen, toward

‘Note that if weights are initially all zero, then the magnitude of (I is irrelevant
because of the threshold function.

948 Marcus Frean

zero. This gradual freezing is particularly desirable because it stabilizes
the weights in a natural way over a finite learning period.

If T is held constant, convergence of the thermal PLR can be deduced
(Frean 1990b) from the perceptron convergence theorem. That is, Minsky
and Papert’s proof can be modified to hold where weight changes have
the correct sign and use a positive step size, ot, chosen arbitrarily between
bounds 0 < u 5 of 5 b.

One picture of the way this rule works is given by considering the
patterns as points in a space in which each dimension corresponds to the
activity of a particular input line. Points in this space at which the per-
ceptron’s output changes define a decision surface that (from equation 1.1)
is a hyperplane perpendicular to the weights vector in this space. In the
usual PLR, this hyperplane moves by approximately the same amount
whenever there is an error, whereas in the thermal PLR it moves by an
amount that is appreciable only if the pattern causing the error is close
to the hyperplane (i.e., where 141 is small). As an approximation one
can imagine a zone immediately to either side of the hyperplane within
which an error will cause it to move. The perceptron will be stable if
there are no errors occurring in this zone. The annealing of the temper-
ature is then the gradual reduction of the extent of the ”sensitive” zone.
In the limit of T + 0 the zone disappears altogether and the perceptron
is stable.

As will be seen, best results are obtained if (t is reduced from 1 to 0
at the same time as T is. In terms of the simplified picture above, this
means that we reduce the amount the hyperplane moves in reaction to a
pattern within the zone near the hyperplane in proportion to the size of
the zone.

3 Other Methods

The two established ways of learning the weights for a threshold percep-
tron are reviewed here. In the next section the thermal rule is compared
with these methods.

3.1 The Pocket Algorithm. A simple extension of perceptron learn-
ing for nonseparable problems called the Pocket algorithm (Gallant 1986a)
suffices to make the PLR well behaved, in the sense that weights that
minimize the number of errors can be found. This method is currently
the preferred one for learning weights in threshold perceptrons, and is
used in a number of applications. The Pocket algorithm consists of apply-
ing the PLR with a randomly ordered presentation of patterns, but also
keeping a copy of a second set of weights ”in your pocket.” If the pat-
terns are presented in random order, good sets of weights have a lower
probability of being altered at each presentation, and therefore tend to
remain unchanged for a longer time than sets of weights that engender

”Thermal” Perceptron Learning Rule 949

more errors. Whenever a set of perceptron weights lasts longer than the
current longest run, they are copied into the pocket. As the training time
increases, the pocketed weights give the minimum possible number of
errors with a probability approaching unity. That is, if a solution giving
say p or fewer errors exists then the Pocket algorithm can, in theory, be
used to find it. Note that if the patterns are linearly separable, the al-
gorithm reduces to the usual PLR. Gallant (1986a) notes that the Pocket
algorithm outperforms a standard technique [Wilks’ method, in (SPSS-X
1984)l by about 20% for a set of 15 learning problems.

In this form the algorithm improves the pocketed weights in an en-
tirely stochastic fashion-there is nothing to prevent a good set of weights
being overwritten by an occasional long run of successes involving bad
weights. The ”ratchet” version of the Pocket algorithm (Gallant 1990) en-
sures that every time the pocket weights change, they actually improve
the number of errors made. Whenever a set of weights is about to be
copied into the pocket, the actual number of errors these weights engen-
der if every pattern in the training set were to be applied to the input
is compared with the same number for the existing pocket weights. The
weights in the pocket are replaced only if the actual number of errors is
lower.

The main strength of the Pocket algorithm is the fact that optimal
weights are found with probability approaching unity, given sufficient
training time. Unfortunately there is no bound known for the training
time actually required to achieve a given level of performance. Moreover,
in practice the weights do not improve much beyond the first few cycles
through the training set. Although the weights so obtained are better
than many other methods, they still tend to make many more errors
than an optimal set would make. To get better weights from the same
procedure the “ratchet” is required. A potential disadvantage of this is
that the computational cost is greatly increased in cases where there are
a lot of weight vectors that are almost as good as those in the pocket (i.e.,
where the ratchet is likely to be invoked frequently).

3.2 Methods Based on Gradient Descent. Another way to generate
weights for a threshold perceptron is to learn them by a gradient descent
procedure. To do this requires adopting some differentiable function
such as the ”sigmoid” or “logistic” function, which approximates the
perceptron’s output function:

y = 1/(1 + e-”)

Gradient descent attempts to minimize the total error attributable to the
unit:

950 Marcus Frean

where E P is some measure of how well ylL matches the desired output
f” for the pth input pattern. This error is reduced by moving down an
estimate of the gradient of the error (namely that of E P rather than E)
with respect to W:

This approximates true gradient descent of E provided cr is very small
(typically N 0.001). One common form used for EL‘ is the squared error

from classical statistics, giving rise to delta rule or “least-mean-squared”
(L M S) methods (Widrow and Hoff 1960). This gives the following rule:

LMS: A” W; = Q (t” - y”)yLL(1 - I$’) [r
Another form is the cross-entropy error measure

from information theory. Gradient descent of this measure gives rise to
a different rule (Hinton 1989):

Cross-entropy: A” W, = cy (t” - y”) [:

which is just the PLR except that the sigmoid y” replaces the threshold 0”.

4 Simulations

Simulations were performed comparing the thermal PLR, Pocket algo-
rithm, LMS, and cross-entropy on four classification tasks. The training
sets in these tasks vary from being highly nonseparable to linearly sep-
arable.

For the thermal rule both T and cr are reduced linearly from their
starting values (To and 1, respectively) to zero over the stated training
time, measured in epochs. One epoch consists of the presentation of P
patterns chosen at random (with replacement) from a training set of size
P. The simulations also show the other three combinations of annealing
T and N. For the purposes of comparison, the optimal value of N for LMS
and cross-entropy was found by exhaustive search for each task. This
optimal value is used to compare these methods with the thermal rule.

A notable advantage of the Pocket algorithm is that it requires no such
tuning of parameters. For a given type of problem, finding a good value
of To for the thermal rule can take considerable time. The same is true of Q

in the LMS and cross-entropy rules, although the exact choice is typically
less crucial for these rules. It is important to note that improvements in
performance are obtained at the cost of this preliminary parameter search.

”Thermal” Perceptron Learning Rule 951

Regarding actual computational speeds, all the algorithms discussed
here have similar run times except for the ratchet version of the Pocket
algorithm. The Pocket algorithm has the advantage that it requires only
integer operations whereas the other methods must calculate exponen-
tials in order to alter the weights. On the other hand it must occasionally
copy weights to the pocket as well as change those actually in use. In
these simulations, run times2 of the thermal rule and the Pocket algo-
rithm (without ratchet) never differ by more than 10%. Also note that the
Pocket algorithm and thermal PLR calculate and make weight changes
only if there is an error, whereas the rules based on gradient descent
do this for every pattern presentation. This effect shows up particularly
for ”easy” problems, where the Pocket algorithm and thermal rule alter
their weights relatively infrequently. At most this resulted in a 50% slow-
ing of the gradient descent rules relative to the others, for the problems
reported here.

4.1 Randomly Targeted Binary Patterns. In this task all 1024 of the
binary patterns across 10 inputs are used, and each is assigned a target
0 or 1 with equal probability. Clearly this problem is highly nonsepa-
rable. Figures 1 and 2 show the performance of the various rules on
this problem versus the initial temperature, To, used in the thermal PLR.
Each trial consists of generating a random training set and, starting with
zero weights, training a perceptron for 100 epochs. The performance is
simply the proportion of patterns classified correctly to the total number
of patterns. For the gradient descent methods the optimal value of (P for
this problem and this training period is The ratchet version of the
Pocket algorithm takes on average 6 times longer for this problem. Stan-
dard deviations are of the order of 0.02 for all points and all algorithms.
Note that the PLR corresponds to the ”no annealing” curve at high To,
which shows poor performance.

4.2 Discriminating Two Overlapping Gaussian Clusters. In this ex-
periment the training sets consist of 100 real-valued patterns across 10
inputs. To generate a training set, two points inside the unit hypercube
were chosen at random, and rescaled to be a unit distance apart. These
were taken to be the centers of two gaussian probability distributions of
variance 2. 50 patterns whose target output is 1 were generated at ran-
dom from the first such distribution, and 50 patterns with target 0 from
the second. For LMS and cross-entropy the optimal value of f t was found
to be 0.5 and 0.001 respectively. Figure 3 shows the performance of each
method on this task. Both LMS and the thermal PLR do much better
than the Pocket algorithm. The ratchet slows down the Pocket algorithm
by three times for this problem but significantly improves performance.

*Note however that some implementations may exploit the advantages of integer
arithmetic available to the Pocket algorithm to a greater extent than that used here.

952 Marcus Frean

Figure 1: Performance on the random targets problem versus starting tempera-
ture. Half the patterns are target 1, so a unit with zero valued weights gets 50%
of the patterns correct by default. Each point is the mean of 1000 independent
trials, each on a different training set. The levels attained by gradient descent
methods and the Pocket algorithm are indicated by the shaded regions. The
two gradient descent rules achieve virtually the same performance.

4.3 Convergence Time for Separable Training Sets. Where the train-
ing set is linearly separable the question is how quickly a set of separating
weights can be found. Again all 1024 binary patterns across 10 inputs
were included. The targets are then defined by inventing a perceptron
with random weights, and adjusting its bias so that exactly half the total
number of patterns are ON. Figure 4 shows how many trials out of 100
converged, where each algorithm was run for the indicated number of
iterations. To for the thermal rule is set at 1.5 here, but values very much
higher (e.g., TO = 100) are equally good. The value of a used for LMS
and cross-entropy is 0.1 which is the optimal value for LMS. If a is very
much larger than this, the cross-entropy rule effectively approaches the
PLR. This is because the weights are correspondingly large, so the sig-
moid is almost always in its ”saturated” range, mimicking a threshold
unit.

If there is no annealing, the thermal and Rosenblatt’s PLR (and hence
the Pocket algorithm) have very similar performance. Annealing results
in a striking improvement (an order of magnitude) in the speed of con-
vergence over the other methods.

"Thermal" Perceptron Learning Rule 953

W thermal PLR
0 anneal alpha only
0 anneal T only
A no annealing

6
%
2 0.58

0 .s 0.56 C .-
2 u -
0 0.54
C
0 r 8 0.52

a

.-

e
0.50

0.0 0.5 1 .o 1.5 2.0 2.5

To, starting temperature

Figure 2: Performance on the random targets problem, for the various combi-
nations of annealing, versus starting temperature.

4.4 Nearly Separable Training Sets: Dealing with Outliers. In many
problems of interest, the patterns would be linearly separable were it not
for a smalI number of outliers that prevent the PLR from converging.
In such cases we want to ignore the outliers and find the weights that
would correctly classify the linearly separable patterns.

Training sets for this example were generated in the following way:
first, a linearly separable training set is produced as above. Then some
small number n of the patterns are chosen at random and their targets
flipped from 1 to 0 or vice versa. Hence the problem would be linearly
separable were it not for these patterns; and a good learning rule should
produce units giving at most n errors. Parameter values are the same as
in the separable case above. Results are shown in Figure 5. Inclusion
of the ratchet slows the Pocket algorithm by an average 300 times (for
n = l), indicating that a great many long runs with suboptimal weights
are occurring. Note that the thermal rule performs slightly better than
the level attainable by ignoring the flipped patterns, indicating that it
occasionally finds a better set of weights than those originally used to
generate the patterns. Although To is 1.5 here, virtually the same perfor-
mance is obtained for starting temperatures up to To = 30.

31f 11 is small the problem may still be linearly separable: such cases were rejected.

954 Marcus Frean

Figure 3: Performance on the overlapping gaussians problem versus starting
temperature. Performance is the proportion of the training set correctly clas-
sified after 100 epochs. Each point is an average over 1000 trials. Standard
deviations are of the order of 0.04 for all points. The mean performance of the
PLR on this problem is 0.588.

5 Discussion

The thermal PLR, which is closely related to the classical PLR, outper-
forms both the Pocket algorithm and methods based on gradient descent
in terms of efficiently generating weights that give a small number of
errors in a threshold perceptron. If the patterns are linearly separable,
perfect weights are located quickly. In addition it produces stable weights
in a given training time.

It is interesting to compare the rationale behind the thermal rule with
that of the LMS procedures. In the case of the thermal rule, it is argued

"Thermal" Perceptron Learning Rule 955

-& 100

P 90

8 80

2 70

C

Y

thermal PLR
0 thermal PLR, no annealing
A PI R - . -
0 LMS Y

h

o 60 A Cross-entropy - 50
0

5 40
a 5 30
z

20

10

0

2
v

0 200 400 600 800 1000
Training time in epochs

Figure 4: The graph shows how many out of 100 independent trials (each on a
different training set) converged to zero errors after the training time denoted
by the abscissa. For example, after 200 epochs 60% of runs using the PLR had
converged.

that large errors (in 4) should be penalized lightly, since endeavoring to
correct these errors means corrupting existing weights to a large degree.
In LMS, large errors are penalized more heavily than small ones, since
these large errors contribute proportionally more to the quantity being
minimized (the sum of squared errors). Hence these two approaches
have opposite motivations.

The twin constraints of stability and optimality of weights are of par-
ticular significance for coizstructive algorithms, in which perceptrons are
added one at a time, enabling eventual convergence of the whole net-
work to zero errors. At present the Pocket algorithm is the procedure
of choice for most methods of this type (e.g., Gallant 1986b; Mezard and
Nadal 1989; Nadal 1989; Golea and Marchand 1990). The thermal rule
has been applied to this type of algorithm (Frean 1990a; Burgess et al.
1991; Martinez and Esteve 19921, and can dramatically reduce the size
of the networks so produced (by between 2 and 5 times for a range
of problems), resulting in better generalization and computational effi-
ciency (Frean 1990b). In addition more difficult problems may now be
successfully tackled with the same constructive algorithms.

956 Marcus Frean

Figure 5: The number of errors made after 100 epochs is plotted against the
number of patterns whose targets were flipped from an initially separable train-
ing set. For instance, if a single target is flipped the thermal PLR always makes
one error whereas the other methods make - 8 errors. In the shaded region the
number of errors is less than the number of outliers. Each point is the average
of 200 trials, each on a different training set. Where not shown the error bars
are smaller than the points.

Acknowledgments

The author would like to thank Peter Dayan, David Willshaw, and Jay
Buckingham for their helpful advice in the preparation of this paper.

References

Block, H. D., Knight, B. W. Jr, and Rosenblatt, F. 1962. Analysis of a four-layer
series-coupled perceptron (11). Rev. Modern Phys. 34(1), 135-142.

Burgess, N., Granieri, M. N., and Patarnello, S. 1991. 3-D object classification:
Application of a constructor algorithm. Int. J. Neural Syst. 2(4), 275-282.

Frean, M. R. 1990a. The upstart algorithm: A method for constructing and
training feedforward neural networks. Neural Comp. 2(2), 198-209.

Frean, M. R. 1990b. Small nets and short paths: Optimising neural computation.
Ph.D. thesis, University of Edinburgh.

"Thermal" Perceptron Learning Rule 957

Gallant, S. I. 1986a. Optimal linear discriminants. IEEE Proc. 8th Coitf. Pattern

Gallant, S. I. 1986b. Three constructive algorithms for network learning. Proc.

Gallant, S. I. 1990. Perceptron-based learning algorithms. E E E Transact. Neural

Golea, M., and Marchand, M. 1990. A growth algorithm for neural network

Hinton, G. E. 1989. Connectionist learning procedures. Artificinl Intelligence 40,

Martinez, D., and Esteve, D. 1992. The offset algorithm: Building and learning
method for multilayer neural networks. Europhysics Lett. 18(2), 95-100.

Mezard, M., and Nadal, J-P. 1989. Learning in feedforward layered networks:
The tiling algorithm. 1. Pltys. A, 22(12), 2191-2203.

Minsky, M., and Papert, S. 1969. Perceptrons. The MIT Press, Cambridge, MA.
Nadal, J-P. 1989. Study of a growth algorithm for neural networks. I n t . 1. Neural

Rosenblatt, F. 1962. Principles of Neurodynamics. Spartan Books, New York.
Widrow, B., and Hoff, M. E. 1960. Adaptive switching circuits. IRE WESCON

Recognition, Paris.

8th Annual Conf. Cognitive Sci. SOC.

Networks 1(2), 179-192.

decision trees. Europhys. Lett. 12(3), 205-210.

185-234.

Syst. 1(1), 55-59.

Convention Record, New York: IRE, 96-104.

Received 12 August 1991; accepted 24 April 1992

