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Abstract

Recurrent neural networks (RNNs) are often used to model circuits in the brain,
and can solve a variety of difficult computational problems requiring memory,
error-correction, or selection [Hopfield, 1982, [Maass et al!, 12002, [Maass, 2011]].
However, fully-connected RNNs contrast structurally with their biological coun-
terparts, which are extremely sparse (~ 0.1%). Motivated by the neocortex, where
neural connectivity is constrained by physical distance along cortical sheets and
other synaptic wiring costs, we introduce locality masked RNNs (LM-RNNG) that
utilize task-agnostic predetermined graphs with sparsity as low as 4%. We study
LM-RNNSs in a multitask learning setting relevant to cognitive systems neuro-
science with a commonly used set of tasks, 20-Cog-tasks [Yang et all, [2019].
We show through reductio ad absurdum that 20-Cog-tasks can be solved by
a small pool of separated autapses that we can mechanistically analyze and un-
derstand. Thus, these tasks fall short of the goal of inducing complex recurrent
dynamics and modular structure in RNNs. We next contribute a new cognitive
multi-task battery, Mod-Cog, consisting of upto 132 tasks that expands by ~ 7-
fold the number of tasks and task-complexity of 20-Cog-tasks. Importantly,
while autapses can solve the simple 20-Cog-tasks, the expanded task-set re-
quires richer neural architectures and continuous attractor dynamics. On these
tasks, we show that LM-RNNs with an optimal sparsity result in faster training
and better data-efficiency than fully connected networks.

1 Introduction

Connectivity in biological neural networks are constrained by wiring-length costs, with a pref-
erence towards shorter synapses. The neocortex is effectively a two dimensional sheet which
geometrically restricts physical distances between neurons — correspondingly, the spatial extent
of connectivity in cortical circuits has been found to be significantly skewed towards shorter
connections[Ercsey-Ravasz et all, 2013, [Markov et all, 2013, [Theodoni et all, [2022] (in particular
connectivity extent appears to follow an exponential distribution).

Inspired by such biological constraints, we modify the architecture of a vanilla fully-connected RNN
in one particular fashion — we construct a fixed sparse graph chosen by allowing local connections
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among neurons laid on a two-dimensional sheet. We then use this sparse graph for the RNN, by only
training weights between nodes that correspond to edges on the graph, and setting all other weights
to zero. We refer to an RNN in this set up as a ‘Locality Masked RNN’ (LM-RNN). Another
motivation for our work comes from continuous attractor network models of grid cells [Khona et al.,
2022], where it was shown analytically that fixed and local topographic connectivity encouraged the
formation of discrete modules.

Exploiting such simple locality constraints in LM-RNNs, when applied to multitask regimes relevant
to cognitive systems neuroscience, results in distinct advantages: these networks require far fewer
parameters to train, there is no cost to performance relative to an unconstained network, and in fact
learning is more rapid, sample-efficient and can acheive higher asymptotic performance. In contrast
to other machine-learning approaches to network sparsification (see related work), we do not need
any sophisticated pruning methods, any algorithms to construct and modify sparse skeletons nor any
training data.

We focus our results on multitasking regimes for RNNs, by training them to simultaneously learn
many cognitive tasks. We expect our results on the improvements conferred by LM-RNNs to primar-
ily apply in this multitask learning setting, where the recognition of modular structure across tasks
is important for generalization and effective learning.

Our main contributions are summarized by:

¢ We show that LM-RNNs can perform as well or better than dense networks, when account-
ing for the total number of nodes or the total number of synapses. Locality masking is
thus an efficient prescription for choosing sparse subnetworks in a task agnostic and data
independent fashion while still achieving high performance.

* We show that LM-RNNs reach this high performance faster and with lesser training than
dense networks, indicating that sparse networks may be preferable to dense networks in
memory and data-limited regimes for learning multiple tasks.

* We show that the tasks defined in [Yang et all, [2019] (an increasingly commonly used set
of 20 tasks [Driscoll et al., 2022, Hummos, 2022, [Flesch et al., 2022, Marton et al., 2021},
Riveland and Pouget, 2022, [da Costa et all, 2019, [Duncker et all, 2020, Masse et al, 2022,
Kao et all, [2021] to study representations in networks performing many cognitive tasks)
can be solved by a small pool of unconnected autapses, which is essentially a feedforward
structure.

» Despite not have any lateral recurrent connections, the pool of autapses shows the existence
of cell clusters according to the nodal task variance metric used in [Yang et all,2019]. Thus,
our work reveals the limitations of using correlations or covariances between neurons to
study recurrent mechanisms of computation. The shared inputs and input weights are a
fundamental confound when using metrics such as nodal task variance used in [Yang et all,
2019]. We thus highlight the need for creation of better metrics.

* We mechanistically study how this pool of unconnected autapses solves 20-Cog-tasks.

* We then introduce Mod-Cog, a large battery consisting of upto 132 tasks inspired by cog-
nitive science problems such as interval estimation, mental navigation and sequence gen-
eration which provides a useful setting to examine multitask learning and representation
across tasks relevant to cognitive systems neuroscience.

1.1 Related work

Recent work has shown that effective pruning in recurrent networks can be done by biologically
pruning plausible algorithms based on noise correlations between the presynaptic and postsynaptic
neurons [Moore and Chaudhuri, 2020] that preserve the spectrum. In vision neuroscience, recent
works have studied cortical topography by using a pretrained vision frontend with a readout layer
with an additional spatial loss to encourage spatially nearby cells to have correlated receptive fields
[Finzi et al), 12022, [Lee et all, 20204, |Obeid and Konkle, 2021]]. Other work has studied representa-
tions in RNNS trained to do simple tasks that have been embedded in 3-dimensional space [].

Several works in the realm of machine learning have tried to operationalize the idea of sparsity.
These methods can be roughly categorized into 2 main classes:



Dense-to-sparse Ref. [Han et al), 2015] experimentally showed that training followed by prun-
ing and retraining can give sparse networks with no loss of accuracy and ignited an interest in
pruning methods. Following this work, the lottery ticket hypothesis states that dense, randomly-
initialized, feed-forward networks contain subnetworks (‘“winning tickets”) that — when trained
in isolation — reach test accuracy comparable to the original network in a similar number of it-
erations [Frankle and Carbin, [2018]. The best method to identify such winning tickets is Iterative
Magnitude-based Pruning (IMP) [Frankle and Carbin, [2018, [Frankle et all,[2019], which is compu-
tationally expensive and has to be run thoroughly for every different network. It has also been shown
that parameters of the sparse initialization distribution and sign of weights at initialization are im-
portant factors [Zhou et al!, 2019] which determine winning tickets. Overall, iterative pruning and
retraining methods involve 3 steps: (1) pre-training a dense all-to-all model, (2) pruning synapses
based on some criteria, and (3) re-training the pruned model to improve performance. This cycle
needs to be done atleast once and in many cases, multiple times, to get good performance. So this
procedure requires at least the same training cost as training a dense model and often even more than
that. In contrast, our proposed method for RNNs does not require seeing any data before pruning and
trains over only the sparse remaining synapses; thus we do not require multiple cycles of pruning
and training.

Other methods involving ways to encourage sparsity during the training process include L (Lasso)
regularization [Wen et all, 2018], L regularization [Louizos et all, 2017, [Savarese et al., 2020] and
pruning using dynamically varying thresholds [Narang et all, 2017, [Kusupati et all, 2020]. Unfor-
tunately, all of the aforementioned methods require training the original dense network, in varying
amounts, thus precluding the benefits that can be obtained by having a predetermined exact sparsity
on the computation during training.

A class of methods which do not involve training data like SynFlow [Tanaka et al, [2020], GraSP
[Wang et al., 2020], SNIP [Lee et al!, 2019, 2020b] and FORCE |[de Jorge et all, 2020] have been
studied for only feedforward networks, while we study RNNs.

Sparse-to-sparse Another line of work concerning sparse-to-sparse training is most relevant to our
study. This involves using a sparse interaction graph which is used to mask gradient updates. Older
works maintained a static graph [Mocanu et al!,|2016] and dealt only with feedforward networks but
newer methods such as dynamic sparse training (DST) [Evci et al), 2020, [Liu et al.,2021] have been
proposed for both feedforward networks and RNNs which dynamically improve the sparse graph
and provide better performance. These methods generally involve changing the topology of the
sparse graph during training. Ref. [Liu et all,[2021] considers static Erdos-Renyi (ER) type sparse
RNNS but for relatively denser values of sparsity (0.53 and 0.67) and more complex architectures
like stacked LSTMs and Recurrent Highway Networks [Zilly et all, [2017]. Here we explore more
extreme values of sparsity (~ 5% and below) and show that they are optimal in the context of
multitask learning regimes.

Lastly, static sparse networks have also found common usage in reservoir computing architectures,
where large sparse networks are preferred to fully-connected networks to increase heterogeneity
across nodes and allow for “richer” dynamics [Jaeger, 2001|, LukoSevicius and Jaegei, [2009].

2 Results

2.1 Locality masked RNNs (LM-RNNs)

We restrict ourselves to simple RNNs for interpretability in the context of systems neuroscience.
Our RNNs follow dynamics defined by:

hyy1 = ¢(Why + W, u; + b"),
0111 = Wouthiy1 + b7,

Corresponding to the biological arrangement on neurons on a two-dimensional cortical sheet, we
arrange the nodes of an RNN on the lattice points of a two-dimensional plane, as shown in Fig. [Th.
Then, we constrain the weights for recurrent connections within the nodes of the RNN to be always
zero for pairs nodes that lie at a Euclidean distance of larger than d. The training of the RNN then
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Figure 1: Local connectivity constraint (locality masking) and schematic of cognitive multitask-
ing RNN.(a) In LM-RNNs neurons are arranged on a two-dimensional sheet, with nonzero weights
permitted for nodes up to a distance < d apart. (b) Locality masking on a two-dimensional sheet
can be treated as a sparse mask on the hidden-to-hidden weights of an RNN (c) Schematic of the
RNN setup in the context of 20-Cog-tasks and Mod-Cog: the network receives inputs encoding
directions on two rings, a fixation signal and a rule input. The network is trained to output a fixation
signal and a direction on a ring of output nodes. (d) A battery of graph theoretic metric to distin-
guish the connectivity graph of LM-RNNs from a random sparse (Erdos-Renyi) graph (left to right):
Graph diameter, Clustering coefficient, Average path length.

proceeds in the usual fashion by using back propogation of the loss to update the unconstrained
weights. We refer to such an RNN as a Locality Masked RNN (LM-RNN).

This constraint on the weights of the RNN is implemented through a graph GG, whose nodes are the
units of the RNN, and edges correspond to pairs of units with unconstrained weights, determined by
the spatial distance d. Operationally, the adjacency matrix of the graph, G, is point-wise multiplied
with the interaction matrix W after each gradient step, effectively constraining which elements of
the interaction matrix can be learnt by gradient descent:

W+ GaW (1)

This graph adjacency matrix G is static and unchanged throughout training.

In effect, the two-dimensional LM-RNN consists of a sparse subgraph G of the fully connected
network, with each node connected to the ~ 7d? nearest nodes to it. We posit that this sparse
subgraph is like a “winning lottery ticket”, such that when trained in isolation the LM-RNN achieves
comparable performance to a fully recurrently trained network. Moreover, we will demonstrate that
these winning lottery tickets perform better in a more data-efficient manner than fully connected
counterparts with a similar number of nodes or a similar number of synapses. This approach can be
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Figure 2: LM-RNNs learn 20-Cog-tasks faster than fully connected networks with matched
neuron or synapse number: (a) LM-RNNs for all choices of locality mask sizes, d, perform better
than fully-connected RNNs with the same number of nodes. This includes d = 0, i.e., a disconnected
pool of autapses which also outperforms the fully-connected network. Inset: performance at 2 X
103 gradient steps across different values of d demonstrates a small optimal d that leads to the
best performance. (b) LM-RNNs also outperform fully-connected RNNs constructed with the same
number of synapses. RNN(IN = 196) and RNN(/V = 256) have 5.2 x 10* and 8.3 x 104 parameters
respectively; N = 625 autapses, LM-RNN(/N = 25 x 25, d = 2) and LM-RNN(N = 25 x 25,
d = 4) have 4.4 x 10, 5.2 x 10% and 7.4 x 10* parameters respectively

implemented easily in all training frameworks and is agnostic to the specific optimization algorithm
being used.

Constructing a sparse graph in this particular fashion is distinct from a sparse random graph. To
distinguish between our locality masks and sparse random graphs (Erd&s-Rényi networks) with the
same number of edges, we borrow several metrics from graph theory. In particular we examine
three metrics — the average length of the shortest path between nodes, the graph diameter (i.e.,
the longest shortest path between two nodes) and correlation coefficient which (i.e., the density of
mutually connected triplets of nodes)[Borner et all, 2007]. Notably, these metrics are properties
fundamental to the structure of the connectivity in a graph, and are invariant to re-lableing and
permutation of nodes in the graph. As can be seen in Figl[Il, there is a sharp contrast between the
graph of an LM-RNN when compared with a random sparse RNN, with LM-RNNs having longer
diameters and path lengths, but smaller clustering coefficients.

2.2 LM-RNNs learn the ‘20-Cog-tasks’ more rapidly than fully-connected RNNs

We apply LM-RNNSs to a dataset used commonly in systems neuroscience, a set of 20 cognitive
tasks introduced in [[Yang et al!,2019], which we henceforth refer to as the 20-Cog-tasks. Each of
these 20 tasks are constructed on the same input stimulus modalities — two rings of input units are
used that each support a single activity bump, encoding a one-dimensional circular variable (which
could represent direction of motion, for example), which we represent with vectors u}"¢' () and

u;"#(6,). Along with the two rings, the input into the RNN also comprises two additional inputs:
first, a one-hot encoded rule input vector, indicating which task is to be performed, which we denote
u'skrule a5k name™); and second, a fixation input, a decrease of which is treated a ‘go’ signal for
the RNN to provide the appropriate output, which we denote u!*.

The expected output for each task is a response direction, which is again encoded in a ring of output
units (which could represent, for example, a reach or saccade direction). These networks are trained
using supervised learning with a cross entropy loss where the supervised target is a one-hot vector y
representing the required location of the bump on the ring, and the model’s output probabilities are
constructed through a soft-max of the outputs, o;.
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A schematic of the setup of the RNN is shown in Fig. [Ik. For each trial of each task, the inputs are
constructed as a gaussian bump on each of the two rings whose mean is drawn independently from
a uniform distribution on the rings.



We compare LM-RNNs with different values of d against fully-connected RNNs with the same
number of neurons (and hence many more parameters; cf. Fig. Ph) and fully-connected RNNs of a
smaller size but with the same number of parameters (cf. Fig. Zb). In all cases, LM-RNNS for any
value of d are far more sample-efficient and learn the tasks with same asymptotic performance as
compared to the fully-connected counterparts. We also compare the performance of these models
at the same fixed number of gradient steps early in training to show sample efficiency differences
(Fig. [Bh, inset). We hypothesize that this increased efficiency for LM-RNNs may be due to the
ability to use a high-dimensional computational space, while having a significantly smaller number
of parameters to be learned, resulting in the faster training observed at a similar level of performance.

2.3 ‘20-Cog-tasks’ are rapidly learned with simple autapse networks

While we demonstrated that LM-RNNs at all d perform better than fully-connected networks, we
particularly note that d = 0, (i.e., a ‘network’ where each node is only connected to itself; in this case
the network is simply a pool of disconnected autapses, and G is an identity matrix) also performs
better than a fully-connected network in terms of learning speed while reaching the same asymptotic
performance as a larger fully connected network. Remarkably, as seen in Fig. B this pool of au-
tapses continues to show ‘modularity’ in the network through the nodal-task-variance based metrics
similar to the results of fully connected RNNs in [[Yang et all, 2019] — however this apparent mod-
ularity clearly cannot be a result of any modular structures in the network due to the absence of any
inter-node network connections. The autapse networks have no lateral connectivity and thus no way
to share and reuse subtask structure across neurons. This suggests that such a task variance metric
may simply be reflecting correlations between common inputs and similar input weights to hidden
neurons. We verify this hypothesis in Fig. Bk where we plot the correlation between projection
of the rule inputs to the hidden nodes, i.e., b®*™¢(“task name”) = Wask-ruleggaskerule (a5 name”)
where Wkl jg the submatrix of input weights formed by the rule-input appropriate columns of
W.,.. Since the u®*™ js presented as simply one-hot encoded vectors, the correlation of the rule
inputs is simply [Waskrule]Tyytasknle “Wwe observe that this correlation matrix of input projections
in itself appears to cluster corresponding to the common subtask structure of 20-Cog-tasks.

We thus hope that our results motivate the study of better metrics and techniques to inspect functional
modularity in RNNs, which we leave for future work.

While these results are in themselves indicative of the advantages conferred by LM-RNNs, we note
that the 20-Cog-tasks are evidently too simplistic to make any strong claims, since they do not
even require a network of connected neurons to accomplish the task. We present here first a sim-
plified analysis demonstrating how a pool of disconnected autapses can solve 20-Cog-tasks, and
thereafter present a more rigorous battery of cognitive tasks to more robustly demonstrate the utility
of LM-RNN:Ss.

2.4 Mechanistic analysis of the pool of autapses: A game of vector addition

For mechanistic interpretability, we first examine the dynamics of a single linear autapse in the
presence of an input by = W, uy,

hit1 = Why + by 3)
This gives
t
he=W'ho+ Y  W'™"b,. “
n=0

For a constant input, and for 0 < W < 1 this can be simplified to give

b . b
hy = [ho—l_W]W + T

Hence, we see that the autapse weight I/ defines an effective timescale for the autapse dynamics.
Over the weight-dependent timescale 7 = —ﬁ the autapse relaxes to a fixed point given by
h* = ﬁ. Thus, autapses with low weight (W ~ 0) very quickly converge to their associated bias
dependent fixed point given by h* ~ b while autapses with high weight (W = 1) effectively function
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Figure 3: A suite of 20 cognitive tasks induces apparent modularity but is equally well-learned
by a network of autapses (extreme spatial masking). (a) An autapse network from Fig[Tl trained
on the original 20-Cog-tasks showing the formation of 12 specialized clusters; (b) The weights
of model including the diagonal hidden to hidden matrix which clearly show the existence of no
modular structure. (¢) Normalized rule-input weight correlations show block structure that is con-
sistent with the 20-Cog-tasks family structure. (d) Rule input weights are orthogonal to fixation
input weights (e) Rule input weights are orthogonal to stimulus input weights and (inset) stimulus
input weight correlations show a circulant structure. (f) A histogram of autapse weights shows the
existence of 2 clusters of autapses, those with autapse weight close to 1 and those with autapse
weight close to 0. (g) Ablating the small weight autapses results in no loss of task performance
while ablating the high weight autapses reduces all task performances to random chance, apart from
the 2 reaction-time tasks rt-go and rt-anti which do not need memory. (h) Explicitly adding
the appropriate input vectors is sufficient to solve the tasks without the need for dynamics: (left) for
task go and (right) for task anti. (i) A pool of frozen autapses can learn the 20-Cog-tasks faster
than a pool of autapses and reach the same asymptotic performance.



as perfect memory, retaining their initial state h and perform addition of the network inputs as they
are received:

t
he=ho+ ) by )
n=0

Examining the weights of autapses in the trained autapse pool reveals that the weights appear to be
seprable into two classes that correspond to the described above (Fig. Bff) — those with weights
close to zero, that would be expected to rapidly approach a fixed point; and those with weights close
to one, that would be expected to perform vector addition. We also observe that the rule inputs are
approximately orthogonal to the fixation and ring inputs, Fig[3l,e, suggesting that the dynamics due
to the rule inputs act in a subspace that is independent from the fixation and input stimuli.

We hypothesized that performing vector addition would be sufficient to be able to solve the
20-Cog-tasks. We verified this in two ways: firstly, we found that ablating autapses with lower
weights resulted in no loss in performance, whereas ablating the larger weight synapses lead to sig-
nificant performance deficits reducing the performance on almost all tasks to chance [, Fig. B;
secondly, we found that explicit addition of the b®*™¢(“task rule”) vectors to the inputs from the
other modalities was sufficient to generate outputs that performed the task, Fig. 3h.

2.4.1 A frozen pool of autapses

Motivated by these ablation studies, we trained an autapse pool with untrainable fixed autapse
weights set to 1. We refer to this pool as the “frozen autapse pool". This setup also learns all
20 tasks notably faster than a regular autapse pool, Fig. Bi. In this case the autapses are effectively
“copy gates", storing perfect memory of their previous input and adding them to the input vector
currently being received (cf. equation[3)).

2.5 Mod-Cog: An expanded battery of cognitive tasks

The reason the 20-Cog-tasks were trivially solved by a pool of (frozen) autapses is that the tasks
were static, involving memory and fixed points but no dynamical computation like integration and
sequence generation. These computations involve the manipulation of the information held in work-
ing memory. A circuit with integration properties is able in principle to powerfully generalize across
tasks in a way that networks that exhibit the same set of states only as stable fixed points are not able
to [Klukas et al., 2020, IKhona and Fiete, 2022] . To perform a more robust demonstration of the
utility of LM-RNNS, we construct a battery of new tasks based on the principle of integration, and
related to cognitive science problems such as interval estimation, physical and mental navigation,
and sequence generation. We build a set of modular and compositionally constructed tasks, using
the neurogym framework [Molano-Mazon et al.,2022], which in turn was built on the Al opengym
environment.

In particular, we build extensions, that incorporate additional complexity in two main forms: inte-
gration and sequence generation.

In the case of integration, we consider the set of ‘delay’ based tasks in the 20-Cog-tasks. In
the 20-Cog-tasks, 12 out of 20 tasks involve a delay period in the presented input, wherein the
network is expected to persistently hold the input presented in an internal memory before performing
a task-relevant computation. To incorporate interval estimation in these tasks, we require the output
to be discplaced with respect to the orignally expected output by a magnitude dependent on the
length of the delay period. To this end, we choose the delay length randomly from a uniform
distribution (as opposed to the fixed delay length considered in 20-Cog-tasks). As representative
examples, in Fig. dh,b we show the inputs and expected outputs for two different delay period
lengths in the D1yGo_IntL task, constructed as an interval estimation extension to the D1yGo task
from 20-Cog-tasks. For each of the 12 tasks, the interval-dependent-discplacement may be either
of clockwise or anti-clockwise, resulting in the introduction of 24 new tasks.

'The chance performance for the delay match to sample family of tasks dms ,dnms , dmc , dnmc is 50% due
to the way samples are drawn: half of the trials are matching and the other half are non-matching, refer to
methods of [Yang et all, 2019]. The performance of reaction-time tasks rt-go and rt-anti is not affected
since they do not require memory.
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Figure 4: Mod-Cog: A more-complex suite of upto 132 cognitive tasks. Schematic of the tasks
in Mod-Cog, that extend the 20-Cog-tasks. (a,b) Tasks D1yGo_IntL and D1yGo_IntL as interval
estimation extensions to the D1yGo task from 20-Cog-tasks for two different lengths of delay
periods. (c,d) Tasks Go_SeqR and Go_SeqL as sequence generation extensions to the Go task from
20-Cog-tasks. (e) The compositional extension D1yGo_IntL_SeqR that combines both interval
estimation as well as sequence generation. (f) Mod-Cog introduces significantly more complex tasks
as compared to 20-Cog-tasks, which can no longer be solved by a pool of autapses, regardless of

their number.

In the case of sequence generation, the output of each task is modified to not be a single static direc-
tion, but instead a time-varying output corresponding to a drifting direction starting at a particular
point (dependent on the particular task). The direction of drift can be changed dependent on the
particular task. As representative examples, in Fig. [dt.d we show the inputs and expected outputs
for the Go_SeqL and Go_SeqR tasks, constructed as an sequence generation extensions to the Go
task from 20-Cog-tasks. This introduces 40 new tasks based on the earlier set of 20 tasks, with

the output of each task drifting either clockwise or anti-clockwise.

This completes the construction of the 64 new tasks that we use in conjunction with the original 20
tasks as the tasks used for our main set of results hereafter in this paper. We refer to this set of 84
tasks as Mod-Cog. We note however that our modifications to the tasks are modular in nature (which
is similar in spirit to the already existing modular subtask structure in the 20-Cog-tasks). This
allows for an additional extension of 48 more tasks that may be generated by a composition of the
sequence generation and interval estimation extensions (such as the D1yGo_IntL_SeqR task shown
in Fig. Bk). For simplicity, we do not use these additional 48 tasks in our main results; however
they are included in the repository of tasks that we provide at github link (will be inserted upon

acceptance; provided as .zip file in supplementary material).

The rule input used for Mod-Cog is encoded as a one-hot vector, similar to the setup used in
[Yang et all, 2019]. This ensures that, by construction, the rule input cannot be directly used as

a signal to help decompose tasks into having common subtasks.

To demonstrate that Mod-Cog is significantly harder than 20-Cog-tasks, we demonstrate in Fig.
M that a pool of autapses is incapable of acheiving significant performance levels, in sharp contrast
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Figure 5: Faster learning and better asymptotic performance of LM-RNNs and sparse RNNs
on Mod-Cog (a) LM-RNN:Ss for all values of d perform equally well or better than a fully-connected
network with the same number of nodes. This improvement takes the form of faster learning as
well as better asymptotic performance. (b) Network performance at 10* gradient steps for different
values of d and networks of size 50 x 50, demonstrating an optimal locality size that leads to the
fastest learning. (c) LM-RNN performance for varying system size for a fixed network sparsity of
~4%, as compared with fixed random sparse networks with the same sparsity. Performance for
sparse RNNss is similar to or only slightly worse than LM-RNNs with the same sparsity (d) Network
performance as a function of system size (N2 = System Size) and sparsity of the locality mask (i.e.,
the fraction of nonzero entries in the hidden-to-hidden weight matrix). At larger system sizes, the
optimal sparsity for best performance is lower. (d) (e)

with the 20-Cog-tasks. Moreover, this is independent of the number of autapses — even pools that
are ~ 6 times larger than those necessary for solving 20-Cog-tasks are unable to produce larger
than 50% performance accuracy.

2.6 RNN and LM-RNN performance on Mod-Cog

As earlier, we examine the performance of LM-RNNs with varying d on Mod-Cog, and compare
them with fully-connected RNNs as a function of the number of gradient steps in training (cf. Fig.
[Bh). Here again we see that LM-RNNS, for appropriately chosen values of d train significantly
more rapidly as compared to fully connected networks. Due to the increased task complexity (as
evidenced by Fig. ), locality masks corresponding to very small values of d result in suboptimal
performance (which is nonetheless similar to the d — oo corresponding to the fully connected
network). Instead, intermediate small values d outperform all other values of d, as shown in Fig.
[Bb, indicating an optimal nontrivial locality mask d. For smaller networks, the optimal value of
d corresponds to increasingly larger fractions of all edges in the network (cf. Fig. [Bld), indicating
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Performance at No. of nonzero No. of nonzero
10k gradient steps weights hidden-to-hidden weights

LM-RNN(N = 50 x 50,d = 6) 0.799 + 0.007 6.17 x 10° 2.82 x 10°
LM-RNN(N = 50 x 50,d = 10) 0.815+ 0.005 1.13 x 108 7.92 x 10°
RNN(N = 676) 0.69 + 0.01 5.47 x 103 4.57 x 10°
RNN(N = 2500) 0.71 +0.02 6.58 x 108 6.25 x 108
Li RNN(N = 2500), A = 1074 0.59 4+ 0.02 4.00 x 10° 6.51 x 10*
L1 RNN(N = 2500), A = 1075 0.72 £ 0.01 5.16 x 10° 1.81 x 10°
Li RNN(N = 2500), A = 1076 0.73 +£0.02 1.02 x 106 6.87 x 10°
Ly RNN(N = 2500), A = 1077 0.71 +£0.01 1.86 x 106 1.52 x 106

Table 1: Comparison across networks with similar number of trainable parameters and

nonzero weights. ; RNNs are fully-connected RNNs with an L; regularization to promote sparse
solutions. In this case, the number of nonzero weights is counted as the number of weights above a
small threshold in the trained RNN. See Appendix Figlél for learning curves

that the optimal may depend more directly on the complexity of the tasks to be solved, rather than
scaling with the number of nodes in the network.

For most LM-RNNSs, a random sparse graph with the same number of incoming edges from each
node performs almost as well as the graph chosen through locality masking, as shown in Fig. Bk.
Nevertheless, in each case the locality mask performs as well as or slightly better than the random
sparse graph, while performing significantly better than dense fully-connected networks. For the
case of small values of d, we hypothesize that the slight improvement of locality masks may arise
from the presence of disconnected components in random sparse graphs in networks with low de-
grees. For clustering visualizations based on nodal task variance [Yang et al, [2019], see Appendix
Figs. and

We also examined small-world networks[Watts and Strogatz, [1998] as graphs that interpolate be-
tween random sparse graphs and the locality masks of LM-RNNs. In particular, we considered
graphs with a fixed number of total synapses corresponding to an LM-RNN with d = 8. Small-
world graphs were constructed with this number of synapses: connections were formed between
nodes within a ‘local radius’ distance of each other, and random sparse connections were added
until the target total number of synapses. A local radius of zero then corresponds to a completely
random sparse graph, and a local radius of 8 corresponds to the LM-RNN that we have been consid-
ering thus far. We observed that there was no significant variation of performance across different
local radi at 103 gradient steps, however, at 2 x 103 gradient steps the LM-RNN appears to perform
slightly better than any small world network, Fig. [Bf (left).

2.7 Controls — comparisons with various baselines for sparsity

We perform comparisons across 3 baselines. First, fully-connected networks with the same number
of nodes; second, fully-connected networks with the same number of synapses; and third, fully-
connected networks with the same number of nodes, but with an additional L; regularization term
in the loss function to promote the discovery of sparse solutions through training. As we demon-
strate in Table [, LM-RNNs reach a higher performance earlier than all other comparable models.
While sparse networks acheived through L, regularized models perform better than fully-connected
models at some choices of regularization strengths, they acheive this better performance slower than
LM-RNNSs with static sparsity. Thus while sparsity is clearly benefecial to improved performance in
the multitask setting of Mod-Cog, choosing this sparsity in a fixed, task-independent fashion at the
start of training results in faster training.

3 Discussion

Through our results, we have demonstrated that a simple fixed sparse graph can provide a large in-
crease in the sample-efficiency of the training process in single-layer recurrent networks. These re-
sults could in principle be extended to other architectures and tasks but we restricted our experiments
to simple RNNs and cognitive tasks for their relevance to systems and computational neuroscience.
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As RNNs trained on multitask learning problems become more popular as models of PFC and
other associated brain regions [Driscoll et all, 2022, |[Hummos, 2022, Riveland and Pouget, 2022,
da Costa et al.,[2019, Duncker et al., 2020, Masse et al., 2022, [Kao et al.,[2021], we need to be more
cognizant about how the computational complexity of the task set used affects learnt representations.
By demonstrating that a pool of unconnected autapses can solve the 20-Cog-tasks [Yang et all,
2019], we have shown that this apparently complex set of tasks can be solved without any com-
munication between neurons. This raises the hypothesis that appropriately tuned input weights
corresponding to the “rule inputs" along with static memory are enough to solve many tasks. Here
we constructed Mod-Cog as a set of tasks with increased complexity by adding more modular sub-
components that require the RNN to perform non-trivial computations. Thus we provide a more
reasonable multitask setting that leads to richer solutions and may be a better testbed for exploring
shared motifs and representations across modular subtasks. Another possible direction for future
study to increase task complexity for 20-Cog-tasks has been to eliminate rule inputs and force the
network to infer the task needed to be solved. This would likely involve some flavor of predictive
coding. A recent work|[Hummos [2022] makes progress in this direction.

We have found that given a certain amount of task complexity and network size, there is an optimal
amount of locality masking that provides the most benefit to learning, both in terms of sample effi-
ciency and asymptotic performance. While we have shown this result for recurrent networks, quali-
tatively similar results on an optimal value of sparsity have been derived analytically for cerebellum-
like feedforward architectures [Litwin-Kumar et al!, 2017]. It remains an open question to theoreti-
cally investigate the relationship between task complexity and the amount of sparsity that is needed:
if the network is too sparse, it will not have enough expressivity to perform well on the dataset, while
if the network is too dense, the benefits provided by sparsity will not be exploited.

Although our matrices are extremely sparse and would be well suited to sparse matrix representa-
tions, we still maintain dense matrix dataypes for all of the training and evaluation processes since
standard libraries like PyTorch do not have native support for these data structures. As sparse matri-
ces get more common and their usefulness more apparent, as has been pointed out before [Liu et all,
2021], it will be very useful for native deep learning software and hardware implementations on
GPUs to exploit the potential efficiencies of very sparse matrix structures.
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Figure 6: Performance curves of models trained with varying values of sparsity (L1) regularization
showing that a fixed local mask (of similar sparsity, cf. Table[T) is better.

A Methods and Hyperparameters

PyTorch was used for all simulations. All networks were trained with supervised learning using a
cross entropy loss. The optimizer used was Adam [Kingma and Ba, [2014] with a learning rate of
1073, Each trial was drawn randomly and independently and the tasks were randomly interleaved.
The Neurogym [Molano-Mazon et all, 2022] environment was used to create tasks and the training
data for the model.

For every performance curve, we trained 15 RNNs with different random seeds and used the aver-
aged curve for plotting and computing the optimal locality mask sizes.

An expanded description of the Mod-Cog tasks and how to create them will be made available at the
Github repository after acceptance.

To measure the number of clusters that the hidden nodes of the RNN partition into to solve a task,
we use first use agglomerative hierarchical clustering |1 to obtain a linkage tree for the variance of
each node across different inputs for a given task. Then, the silhouette score [Rousseeuw, [1987] is
evaluated for each possible linkage-based cluster partition and the partition with the highest score is
selected to represent the clustering of the RNN.

Graph theoretic measures shown in Fig. [Id were computed using the Python package ‘networkx’
version 2.8.4.

“https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage html
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Figure 8: An LM-RNN(N=20x20,d=6) trained on 84 Mod-Cog tasks showing the formation of clus-
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Figure 9: An RNN(N=400) trained on 84 Mod-Cog tasks showing the formation of clusters
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Figure 10: 24 Clusters formed in an LM-RNN(N = 50 x 50, d = 10) trained on 84 Mod-Cog tasks.
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previous figure where the number of clusters is smaller.
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