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Approximation Logic and
Strong Bunge Algebra

MICHIRO KONDO

Abstract Inthis paper we give an axiom system of alogic which we call an
approximation logic (AL), whose Lindenbaum-Tarski algebraisastrong Bunge
algebra (or simply s-Bunge algebra), and show that

1. For every s-Bunge algebra B, aquotient algebra B* by amaximal filter is
isomorphic to the simplest nontrivial s-Bunge algebra 2 = {0, a, 1};

2. TheLindenbaum algebra of AL isan s-Bunge algebra;

3. AL iscomplete;

4. AL isdecidable.

1 Introduction Marquis 2] investigated the relation between approximations and
truth values. He considered Bunge algebras as representing approximations and tried
to axiomatize the corresponding logic to Bunge algebras. Unfortunately he did not
succeed. The following questions were left open:

Q1. Heintroduced a concept of an implication — to Bunge algebrasas x — y =
=X VY, but for this definition, he could not obtain the axiomatization of the
corresponding logic;

Q2. Thereareformulas A and B such that thetruth values v+ (A) and v (B) are not
equal even if they are equivalent in the logical system which he gives.

In this paper we give a different definition of an implication x — y axiomatically
and solve these gquestions. First of al, we shall define a strong Bunge algebra (or
simply s-Bunge algebra) which has a different implication operator “—" from that
of [2). Asspecial cases these algebras include Boolean and original Bunge algebras
in [2] but not Heyting ones. For if weinterpret Nx as a pseudo-complement element
of x in the Heyting algebra [0, 1], that is, Nx = x — 0, then 1/2 — 1/2 = 1 but
N(1/2) v 1/2 =1/2. Thismeansthat in general the condition (12) does not hold in
Heyting algebras.
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Moreover we give an axiomatization of the logic which we call an approxima-
tion logic, or simply AL, whose Lindenbaum-Tarski algebras are s-Bunge algebras.
We show the compl eteness theorem of the logic in terms of those algebras.

In the following we prove that

1. For every s-Bunge algebra B, a quotient algebra B* by amaximal filter isiso-
morphic to the simplest nontrivial s-Bunge algebra 2 = {0, a, 1};
2. The Lindenbaum algebra of AL isan s-Bunge algebra;

3. For every formula A, Aisprovablein AL if and only if 7(A) = 1 for any val-
uation function ;

4. AL isdecidable.

2 StrongBungealgebras Inthissection we define astrong Bunge algebra (simply
s-Bunge algebra) according to [2]. By an s-Bunge algebra, we mean the algebra B =
(B,A,v,—,N,0,1) of type (2, 2,2, 1, 0, 0) such that
1. (B, A,V,0,1)isabounded distributive lattice;
2. N: B — Bisamap satisfying the following conditions:
(N1) xv Nx=1,
(N2) xvy=1= Nx<y
(N3) N(xAy)=Nxv Ny
(N4) N(XxVy) = NxA Ny

3. theimplication — satisfies

(I11) xAy<z=y<x—>1z

(12) x> y<Nxvy

(I1I3) NXAN(X—>y)Ay=0

(14) XANX<Xx—>Yy

(15) XANYy<NX—y)Vvy

(16) (X—= ) ANX—Yy) <X

(I7) X=>2D)A(Yy—>2)=XVYy—Z

(I18) (z—=>X)A(Z—>Y)=Z—> XAY

The element Nx is regarded as a sup-complement of an element x in the Bunge

algebraasin [[2]. Bunge algebras without implication in [[2] are considered as the
same as our algebras satisfying only the conditions (1) and (2). For generality, we
shall take N as a sup-complement operator, that is, N isamap from an s-Bunge alge-
brato itself satisfying the conditions (N1) —(N4). Moreover we propose an implica

tion operator ‘ —' whichisdifferent fromthat of [[2]. It iseasy to show that, inthe case
of Boolean algebras, Nx isthe complement of X, Nx=Xx— 0,and X — y= NxVy.

Example2.1 Asmodelsof Bunge algebraswelist @ = {0, a, 1}, 2(4), and Q2(6).
Q isthe simplest nontrivial s-Bunge algebra.
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X—y
1 X\y|0 a 1
0 1 1 1
Q a Na=1 ala 11
1 |0 a1
0
Figure 1
1 xX\y| 0 a b 1
0|1 1 1 1
Q(4) a b Na=a al|lb 1 b1
Nb=b b |la a 1 1
0 1 |/0 a b 1
Figure 2
1 X\y| 0 a b c d 1
a 0|1 1 1 1 11
b Na=b a|d 1 b ab1
Q(6) c f Nb=c b |lc aloc a1l
Nc=b c|/b 1 b1 b1
0 Nd=1 d |lal1a1l1
1 |0 a b c d 1
Figure 3

Remark 2.2

1. By (1), wehavethat x > x=1, y<x— y,andx < yimpliesx > y=1
for every xand y.

2. Thetruth table of x — y are uniquely determined as above by our definitions
of implication.

3. In the s-Bunge algebra © = ({0, a, 1}, A, v, N, —, 0, 1), if we define x* =
X — Othenthestructure ({0, a, 1}, A, v, *, —, 0, 1) becomesthe Kleene alge-
bra3inKondo []. Conversely intheKleenealgebra3 = ({0, 1/2, 1}, A, V, *,
—, 0, 1) thedefinition Nx = x* — xyieldsthat ({0, 1/2, 1}, A, v, N, —,0,1)
isthe s-Bunge algebra.

Inthefollowing we shall provethe representation theorem of s-Bunge algebraswhich
is one of the main theorems of this paper: for every s-Bunge algebra B, the quotient
algebra B* by amaximal filter isisomorphic to the ssimplest s-Bunge algebra 2.

Let B beany s-Bunge algebra. A nonempty subset F of Biscalled afilter when
it satisfies the conditions:

(f1) x,ye Fimply xAye F;
(f2) xe Fandx<yimplyye F.

A filter F is called proper when it is a proper subset of B. We define two kinds of
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filters of B. By a maximal filter F, we mean the proper filter F such that F C G
implies F = G for any proper filter G. A proper filter F iscaled primeif xvye F
impliesxe Forye F forevery x,y € B.

It is easy to show that the next lemmas hold for any distributive lattice, so we
omit their proofs.

Lemma23 If x e Band x # 0, then there is a maximal filter M of B such that
xe M.

Lemma24 If Misamaximal filter of B, thenitisa primefilter.

Lemma25 If Misamaximal filter and x ¢ M, then thereis an element u ¢ M
such that x A u=0.

We note that x ¢ M implies Nx € M, provided that M is prime. In the following, let
M be amaximal filter of B.
Now we define arelation ~ asfollows: for x, y € B,

X~y <= thereexistsme M such that:
XAm=yAm, NxAm=NyAm, and
N?x Am= N2y Am.

Therelation ~ is obtained aternatively asfollows.

Lemma26 x~y iff XxXeM & yeM,
NxeM <« NyeM, and
N’xe M < N?ye M.

Lemma2.7 Therelation ~ isa congruence relation on B.
Proof: It sufficesto show that
1 Xx~pandy~qgimpliesxAny~ pAQ;
2. X~ pandy~qgimpliesxvy~ pvq;
3. X~ pimplies Nx ~ Np;
4, x~pandy~qgimpliesx -y~ p— (;
Itisclear by Lemmal2.6lthat the conditions (1) —(3) hold, so we consider the case of
(4.
Supposethat x ~ pand y ~ @. It is sufficient to show that
X—>yeM iff p—>qgeM,
Nx—y)eM iff N(p—q) eM, and
N’(x—>y)eM iff N2(p—q) e M.

We show only that the left-hand statement implies the right-hand one in each case.

Casel: x— ye€ M: Weneedtoshowthat p— qe M. Sincex — y < Nxvy
and M is maximal, we have two cases, Nxe M or y € M.
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SQubcasel: Nxe M (i.e, Np € M): There aretwo subcases, x e M or x ¢ M. If
xe M(i.e, pe M), thenwehave p— qe M by pA Np < p— q. Theother case,
x¢ M, yields p ¢ M. Thereisanelement u € M suchthat pA u=0 < q. It follows
thau<p—qe M.

Subcase2: ye M: Sinceqge Mandq< p— g,wehave p— qe M.
Thusx — y e M impliesp— qe& M.

Case2: N(x— Yy) € M: We have to prove that N(p — g) € M. Since N(x —
y) < Ny, we obtain that Ny € M and Ng € M. Condition (12) yields N°p A Nq <
N(p — Q), so there are two subcases, N°p € M or N?p ¢ M.

Subcase 1:  From N?p € M it follows N(p — q) € M by Ng e M.

Subcase2: N2?p ¢ M: Since NpVv N2p =1 e M, we have Np € M and hence
Nx e M. By (I3)wehavey ¢ M (i.e,q¢ M). If pe Mthenwehave N(p— q) €
M. Incaseof p ¢ M (hence x ¢ M), thereexistsuin M suchthat xAu=0<y.
Thismeansthat x — y € M. It followsthat (x — y) A N(Xx — y) < x e M. But this
is a contradiction.

Thus N(x — y) € M impliesN(p — q) € M.

Case3: N2(x — y) € M: By (12) we get that N2(x — y) < Nx v N2y and that
Nx € M or N’y € M. Thecase of N’y € M yields N°q e M and N?(p — q) € M
by N?q < N?(p — @). Inthe case of Nx € M, we have Np € M and N?p ¢ M
by NpA N?p=0¢ M. Since N°pv N?(p— q) v Ng =1 € M, this means that
N?(p — q) € M or Ng e M. Itissufficient to consider the case of N € M (hence
Ny € M). Therearetwo subcases, pe M or p ¢ M.

Subcasel: Sincexe Mand xA Ny < N(X— y) vye M,itfollowsthat N(x —
y) € Morye M. But N2(x — y) € M yieldsthat y € M and hence g € M. Now,
the assumption Np, g € M and (13) imply that N(p — q) ¢ M. Therefore N?(p —
q) € M.

Subcase2: Since p ¢ M, wehave p— g e M. Itfollowsfrom (p— q) AN(p —
Q) <p¢Mtha N(p— q) ¢ Mand N>(p— q) € M.

Thus we can show that N2(x — y) € M implies N2(p — q) € M. Therefore the
relation ~ is a congruence relation on B, provided that M isamaximal filter. O

Let M beamaximal filter of Band [X] = {y € B | x ~ y} bethe equivalence class of
xand B/~ = {[X] | x € B} bethe set of all equivalence classes. The congruence of
the relation ~ entails that we can consistently define operations A, v,N, and — on
B/~ asfollows:

XA = [xay]

XVl = [xvy]
N[X] = [NX]

=[] = [x— .
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By simple calculation (cf. [[1]) an s-Bunge algebra B is the direct union of the follow-
ing three subsets Bj (j € €):

By = {xeB|x¢M,NxeM,N?x¢ M}
Ba = {xeB|xeM,NxeM,N?x¢ M}
Bi = {xeB|xeM,Nx¢M,N?xe M}.

Since M isamaximal filter, we can prove that the subset B equals some equivalence
class.

Theorem 2.8 XeBy < x~0
XeBy < Xx»0andNx~1
XeB << x~1

Proof: We show only the case of B,. If x € By, then we have x € M, Nx € M,
and N?x ¢ M. Since M is maximal, thereis uin M such that N?x A u = 0. We put
o = XA NXAue M. For that element « we obtain that

1. Nxha=a=1A«a;
2. N2XAa=0=N1lAq;
3. N3xAa=NxAa=a=N21Aq.

Thismeansthat Nx ~ 1.

If x ~ 0, thenthereisvin M suchthat XA v =0, NxAv=NOAv=v,and
N2x A v =0. Sincex € M, we get that x A v = 0 € M. But thisis a contradiction.
Thusx # 0.

Conversely, we suppose that x ¢ 0 and Nx ~ 1. By definition of ~, there exists
an element f € M such that

NXxA f = 1Af=f,
N°xA f = N1Af=0, and
N3xA f = N21Af=f

It followsthat Nx € M and hencethat N>x ¢ M by f < Nx. If x¢ M, thenxA g=0
forsomege M. Put 8= f A g(e M). For that element 8 we get that x ~ 0 by simple
calculation. This contradicts the assumption. Hence x € M. And so x € B,. O

The next theorem is afact of universal algebras.

Theorem 2.9 Let B bean s-Bungealgebra and M be a maximal filter of B. A quo-
tient algebra B/~ = (B/~, A, v, N, —,[0], [1]) by M isan s-Bunge algebra, and
it isisomorphic to the simplest nontrivial s-Bunge algebra 2.

Proof: Themap & : B/~ — Q defined by £([x]) = j when [X] € Bj givesthe
desired result. O

3 Approximation logic AL In this section we shall define an approximation logic
AL. The language of AL is a countable set of propositional variables p1, po, ...,
Pn, ..., propositional constant f, and logical symbols A, v, —, and —. We denote
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the set of propositiona variablesand f by IT, that is, IT = { f, p1, p2, ..., Pn, - - -}-
The formulas of AL are defined as usual. Let A, B, C, ... be arbitrary formulas of
AL. In thefollowing we list an axiom system of AL.

Axioms

Al AAB— A

A2 A— AV B

A3 AAB— BAA

A4 AVvB— BV A

A5 Av—A

A6 A— AAA

A7 —=AA-B— —=(Av B)

A8 -(AAB) - —-Av—-B

A9 (A— B)—- (AAC—- BAO)
Al10 (A—- B)— (AvC—=BVvCO)
All f— A

Al2 (A—- B - (B—-C — (A—0))
Al3 A— (B— A

Al4 (A—- (B—-C)—> (B—> (A—>0C))
Al5 AA(BVvC)— (AAB)V(AAC)
Al6 (AVB)A(AVC)— Av(BAC)
Al7 (AAB— f)— (A= (B—> 1))
Al18 (A— B) — (—AVv B)

A19 -=AA—=(A— B)AB— f

A20 AA—=A— (A— B)

A2l AA—-B— —-(A—-> B)VvB

A22 (A— f)vB— (A— B)

A23 (A— B)A—=(A— B)— A

Rules of inference

R1 Bisdeduced from A and A — B (modus ponens, MP);
R2 —-B — —Aisdeduced from A — B;
R3 —A — Bisdeduced from Av B.

Let Abeaformulaof AL. By ;. A we mean that there is a sequence of formulas
A1, Ay, ..., A, of AL such that:

1. A=A,
2. Forevery A, itisanaxiomor itisdeduced from Aj and Ay (j, k < i) by rules
of inference.

We say that A is provablein AL when 4. A. If no confusion arises, we denote it
simply by - A.
It is easy to show the next lemmas, so we omit their proofs.

Lemma3l (1)If- A— Band+ B — C,thenwehave A — C.
(2) For every formula A of AL, we havethat A — (f — f)and- f — A
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Wedenote f — f byt. Afunctionz: [T — Q suchthat t(f) = Oiscalled avalua
tion function. The domain of the valuation function can be extended uniquely to the
set @ of all formulas of AL asfollows:

t(AAB) = t(A)A1(B)
t(AvB) = t(A)v1(B)
(—mA) = Nz(A)
t(A— B) = 1(A) — t(B).

Henceforth we use the same symbol t for the extended valuation function.
We can show that the approximation logic AL is sound for the Bunge algebra €2,
that is, if 5. Athen t(A) = 1 for any valuation function .

Theorem 3.2 Let Abean arbitrary formula of AL. If 5 Athen t(A) = 1 for
every valuation function .

Proof: By induction ontheconstruction of aproof. It sufficesto showthat 7(X) =1
for every axiom X and that the rules of inference preserve validity. We show only
that the axiom (A18) (A — B) — —A v Bisvadid. If itisnot valid, then thereisa
valuation function T such that t(A— B) =1and t(—-AvB)=0, t1(A— B)=1
andt(—Av B)=a,ort(A— B)=aand t(—Av B) = 0by Figure 1in Section 2.
We shall show that in each case thereisacontradiction. For the sake of simplicity we
consider only thecaseof t(A— B) =aandt(—Av B) =0. Sincet(—Av B) =0,
we have t(—A) = 1(B) = 0and so 7(A) = 1. Thismeansthat t(A— B) =1 —
0= 0+ a. Thisisacontradiction. The other cases are proved similarly. Thus the
axiom (A18) isvalid. O

As corollaries to the theorem we have following.
Corollary 3.3 AL isconsistent.

Proof: Since r(f) = 0, theformula f isnot provable in AL. Thus the approxima-
tion logic is consistent. O

Corollary 3.4 Theapproximation logicisdifferent fromtheclassical propositional
logic (CPL) and the intuitionistic propositional logic (1PL).

Proof. If wethink of avaluation function r suchthat t(p) = afor any propositional
variable p, then we havethat 1(p — =——p)=a— N(Na)=a— 0=a# 1, and
hencethat theformula p — ——pisnot provablein AL. Thusthe approximation logic
isdifferent from CPL. Next, theformula——A — Aisnot provablein IPL ingeneral,
but it isprovablein AL. ThusIPL isnot equal to AL. O

4 Completenesstheorem  In this section we shall establish the compl eteness theo-
rem of the approximation logic AL, and it isthe main theorem of this paper. The com-
pleteness theorem of AL meansthat aformula A is provablein AL if T(A) = 1 for
any valuation function z. In order to show the theorem, we consider the Lindenbaum-
Tarski algebra of AL and investigate the property of that algebra.

We introduce the relation = on @ asfollows. For A, B € @,

A= Biff FaL A— B and FaL B— A
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Lemma4.l Therelation = isa congruencerelationon &.

Proof: Weshow only that therelation = satisfiesthefollowing conditions: if A= X
and B =Y, then

@ AAB=XAY
(b) AvB=XVY
(c) ~A=-B

(d A-B=X->Y

It is evident that conditions (a), (b), and (c) hold from axioms (A9), (A10), and the
inference rule (R2). We prove that the condition (d) holds. Supposethat A= X and
B =Y. For condition (d), since- (B— Y) - ((A— B) - (A—Y)) by (A12),
(Al14), and (MP), we havet- (A — B) — (A — Y) by assumption B — Y. Sim-
ilarly it followsthat = (A — Y) - (X = A) — (X = Y)). Thus, we obtain that
F(A— B) —> (X —Y). A similar argument yields the converse (X — Y) —
(A— B).

Hence the relation = is the congruence relation. O

We definethe quatient set L* of ® by the congruencerelation=. Thatis, weset L* =
{[A] | Aec @}, where[A] = {X € ® | A= X]}. Weintroduce an order relation C on
L* asfollows: for any [A], [B] € L*,

[A] C [B]iff Fa. A— B.

Sincetherelation = iscongruent, it isclear that the definition of = iswell-defined and
that therelation C isapartial order. Concerning to this order we have the following.

Lemma4.2 inf{[A],[B]} =[AA B], sup{[A],[B]} =[AV B]

Proof: We shall show thefirst case for the sake of simplicity. The second case can
be proved analogously.

Since- AAB— Aand+ AA B— B,weobtain[AA B] C [A], [B]. For any
[C] suchthat [C] E[A], [B], since- C — Aand+ C — B, itfollowsthat- CA B —
AABbyr (C— A)— ((CAB)— (AAB)). Thusitmeans- BAC — AA B.
On the other hand, - (C — B) - ((CAC) - (BAC)) and C — Byidd
CAC—> BAC. Sowehave- C — BAC. Thesemeanthat - C - AA Band
hencethat [C] T [A A B]. Thuswe haveinf{[A],[B]} = [AA B]. O

By the lemma we can define the operations m and LI respectively by

[Aln[B] =inf{[A]l.[B]} =[AA B]

[Alu[B] = sup{[Al], [B]} =[AV B].
It is easy to show that the structure (L*, 1, L) isalattice. Moreover, if we put [t] =
1,[f] =0, N[A] =[—A],and[A] = [B] =[A — B], thentheaxiomsof AL assures

that the structure (L*, r, u, N, =, 0, 1) isan s-Bunge agebra. Thestructureiscalled
a Lindenbaum-Tarski algebra of AL. Hence we have the following theorem.

Theorem 4.3  The Lindenbaum-Tarski algebra L* of the approximation logic AL
isan s-Bunge algebra.

We have an important lemma concerning the algebra L*.
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Lemma4.4 For every formula A, a Aiff [A] =1inL*,

Proof: Supposethat A. Since A— (t — A) isprovablein AL, wegetthat-t —
A, thatis, [A] = 1. Conversely if we assume that [A] = 1 then it followsHt — A
by definition. Thuswe havet Aby t. O

Now we shall prove the completenesstheorem of AL. In order to show that, it suffices
to indicate the existence of avaluation function r such that t(A) # 1if Aisnot prov-
ablein AL. Supposethat aformula Aisnot provablein AL. Inthe Lindenbaum-Tarski
algebra L* of AL, wehave[A] # 1 by thelemmaabove. It meansthat N[ A] # 0. By
Lemmal.3] thereisamaximal filter M* in L* such that N[A] € M*. Using thefilter
M* we define a valuation function z. For any propositional variable p, we put

1 if[p] € M*, N[p] ¢ M*, and N?[p] € M*
t(p) =1 a if[p] € M*, N[p] € M*, and N?[p] ¢ M*
0 if[p] ¢ M*, N[p] € M*, and N?[p] ¢ M*.

Asto that function =, we can show the following lemma.
Lemmad4.5 For anyformula X € @,

a if[X] € M*, N[X] € M*, and N?[X] ¢ M*

1 if[X] € M*, N[X] ¢ M*, and Nq[X] € M*
‘L'(X) =
0 if[X] ¢ M*, N[X] € M*, and N2[X] ¢ M*.

Proof: It sufficesto show that ¢ satisfiesthefollowing: for arbitrary formulas X and
Y,

t([X] ALYD = =([XD A =([YD

t([X] v YD = =([XD v =([YD

t(N[X]) = Nz([X])

t([X] = [YD = «([XD — =([YD

For the sake of simplicity, we show only cases (3) and (4). Let x=[X] and y =[Y].
Case3: 1([X]) = a: It sufficesto show that 7(N[X]) = 1, that is, Nx € B;. By
assumption we have x ¢ M*, Nx € M*, and N?x ¢ M*. Clearly we get that Nx €

M*, N2x ¢ M*, and N3x = Nx € M*. Thismeansthat Nx € B;. Th other cases are
proved similarly.

Case 4.

Subcasel: 1([X]) = a, t([Y]) = O: Itissufficient to prove that x — y € By, that
isx = y,N(x = y) € M*, and N?>(x — y) ¢ M*. By assumption we have x €
M*, Nx e M*, N>x ¢ M*, y¢ M*, Ny e M*, and N’y ¢ M*. We then have x —
y € M*, because x and Nx arein M* and x A Nx < x — y. From x A Ny < N(x —
y) Vy, wegetthat N(x — y) € M*ory e M*. Sincey ¢ M*, it followsthat N(x —
y) € M*. Hence N?(x — y) ¢ M*. These entail that X — y € Ba.

pPwWDPE

SQubcase2: t([X]) = a, t([Y]) = & Inthis case we have x, Nx, y, Ny € M* and
N2x, N2y ¢ M* by definition. We can conclude that x — y, N>(x — y) € M* and
N(X— y) ¢ M* becauseit isevident that x -~ y € M* by y < x — y. And because
NXANX— y)Ay=0¢ M* thefact that Nx and y are in M* implies N(x —
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y) ¢ M* and hence N2(x — y) € M*. Thisyieldsthat x — y € B;. Thuswe have
t([X] > [YD=1

Subcase 3. ([X]) = 1, t([Y]) = a: It sufficesto indicate that X — y € By, that
is, X = ye M* N(x = y) € M*, and N?>(x — y) ¢ M*. By definition, we have
x, N?x, y, Ny € M* and Nx, N°y ¢ M*. Sincey € M* and y < X — Yy, we get that
X — y e M*. Theconditionx — y < NxV yimpliesN2x A Ny < N(x — y). There-
forewe also have N(x — y) € M* by assumption. It followsthat N?(x — y) ¢ M*.
Thuswe obtain x — y € B,.

The other cases are proved similarly.
This completes the proof of the lemma. O

Since N[ A] € M*, it follows that t(A) # 1 by the lemma. Hence we have the com-
pleteness theorem of AL.

Theorem 4.6  For any formula A, = Aiff T(A) = 1 for every valuation function t.

It turns out from thetheorem that it is sufficient to calcul ate the value of 7( A) whether
theformula Aisprovable or not in AL. Since any formula has at most finite numbers
of propositional variables, say n, the possiblevaluesof the n-tuple of the propositional
variablesin that formula are finite (at most 3"). Thus we can establish the following.

Theorem 4.7 The approximation logic AL is decidable.
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