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MODEL PREDICTIVE CONTROL FOR RETINAL LASER

TREATMENT AT 1KHZ

MANUEL SCHALLER1, VIKTORIA KLEYMAN2, MARIO MORDMÜLLER3,
CHRISTIAN SCHMIDT3, MITSURU WILSON1, RALF BRINKMANN3,4, MATTHIAS A.

MÜLLER2 AND KARL WORTHMANN1

Abstract. Laser photocoagulation is a technique applied in the treatment of reti-
nal diseases. While this is often done manually or using simple control schemes, we
pursue an optimization-based approach, namely Model Predictive Control (MPC), to
enforce bounds on the peak temperature and, thus, safety during the medical treatment
procedure – despite the spot-dependent absorption of the tissue. To this end, a repeti-
tion rate of 1 kHz is desirable rendering the real-time requirements a major challenge.
We present a tailored MPC scheme using parametric model reduction, an extended
Kalman filter for the parameter and state estimation, and suitably constructed stage
costs and verify its applicability both in simulation and experiments with porcine eyes.
Moreover, we give some insight on the implementation specifically tailored for fast
numerical computations.

Keywords. Retinal photocoagulation, model predictive control, real-time control

1. Introduction

Laser photocoagulation is a treatment for a variety of retinal diseases. Until now, the
physician has to manually adjust the laser power from treatment spot to treatment spot.
As the absorption in the eye is highly spot-dependent, the information from previous
spots is used to determine the dosage. This might not be sufficient in order to ensure
both effectivity and safety of the treatment, that is, to guarantee a sufficient temperature
increase without taking the risk of overtreatment.

In order to enable non-invasive feedback control techniques, a possible route is to
measure pressure transients resulting from a temperature increase in the eye and to
compute an averaged depth-weighted volume temperature as suggested in [3]. After fo-
cusing a laser beam corresponding to a certain power onto the eye fundus, these pressure
transients are measured with a ring-shaped piezo-electric transducer inside the contact
lens, as depicted in Fig. 1. This pressure transient signal is then processed by means
of C/C++ data acquisition software and the corresponding volume temperature is com-
puted. Together with an appropriate model of the volume temperature by means of an
output of the system, we are able to design feedback control techniques that actuate
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the laser power that is applied in the next control loop. Again, the resulting pressure
transients are measured and the process is repeated. For further details considering the
experimental setup, we refer to our previous work [17].

Figure 1. Schematic sketch of the experimental setup, adapted from [14]

One key aspect in this medical application is that the peak temperature, that is, the
maximal temperature in the eye fundus, plays a predominant role w.r.t. coagulation
of the tissue. As this peak temperature is not measurable by means of non-invasive
methods, we propose a model-based approach using Model Predictive Control (MPC;
[8, 21]) in order to control this peak temperature to ensure a safe and effective treatment.
This approach is different to previous control strategies in [1, 11]. In these works, a
constant relation between the absorption coefficients is assumed to allow for an offline
approximation of a direct conversion between the measured volume temperature and
the corresponding control target, i.e., the peak temperature. Based on this conversion
between both temperatures an open-loop control was designed in [1] and a closed-loop
control in [11]. However, we found in our work [22], that the assumption of a constant
relation between both absorption coefficient does not hold in general.

Hence, in our approach presented here, we model the underlying absorption and heat
diffusion process in state space in order to enable peak temperature control as one
system-theoretic output of the system, while measuring the volume temperature as a
second output and without considering a direct conversion. The absorption of the laser
beam and the heat diffusion is governed by a parametric partial differential equation
(PDE) that depends on the (highly) patient and spot specific absorption coefficient.
Hence, after spatial discretization of this PDE, we obtain a high-dimensional parametric
control system [12], where the state is a discrete version of the temperature distribution
in the eye fundus.

In order to make this model accessible for real-time MPC, several components that
we addressed in previous publications are crucial. In [22], we tailored and compared
methods for parametric model reduction in the context of our application. Further, as
the model depends on the unknown state and absorption parameter of the tissue, we
consider in [14, 13] an extended Kalman filter (EKF) approach for joint state/parameter
estimation.
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In [17], we recently presented preliminary MPC closed-loop results at 250Hz in exper-
iments, using a reduced order model based on Taylor-approximation of the parametric
dependency as suggested earlier in [12]. Regarding the MPC stage-cost design, we con-
sidered quadratic penalization of the control size of the form |u|2. Here, we will consider
parametric model reduction approach which recently in [22] was found to be superior and
that is based on Discrete Empirical Interpolation ([4]; DEIM). Moreover, we will present
and evaluate different choices of the stage cost, including a non-autonomous state cost, a
control penalization by means of |u−uref|

2 with an adaptively chosen reference uref, and
a penalization for the control variation. Last, we will present also results for a higher
sampling rate of 1 kHz.

The main contribution of this work is the combination of the above ingredients with
MPC in real-time experiments. We briefly summarize our approach in Fig. 2. We use
a parametric reduced order model (pROM) obtained in [22] in the EKF to allow for
joint state and parameter estimation as presented in [13], which subsequently enables
the computation of a laser power by means of an MPC feedback based on the current
estimate of absorption.

Initialize state
and absorption

coefficient

MPC: Solve
optimal control
problem to

obtain input u

EKF: Estimate
state x and
parameter α

Setup

x0, α0

u

u

measurement

x, α

Figure 2. Model-based control scheme for retinal laser treatment

This paper is organized as follows. In Section 2 we introduce the underlying partial
differential equation describing the absorption and heat diffusion and present the output
operators corresponding to the volume and the peak temperature. Further, we briefly
describe the corresponding discretization, the parametric model reduction and the joint
state/parameter estimation using an extended Kalman Filter that are used in the fol-
lowing. Then, in Section 3, we present a particularly tailored optimal control problem
that is used to compute the MPC feedback. In Section 4 we present MPC closed-loop
results both in simulation and in experiments using porcine eyes at a repetition rate of
250Hz. Subsequently, we provide results of closed-loop control in 1 kHz showing that
that a higher frequency is desirable. Last, in Section 6 we conclude by means of an
outlook with respect to future work.
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2. Modeling and joint state/parameter estimation

We briefly describe the PDE model, its discretization and the subsequent model re-
duction, as well as the state and parameter estimation technique we pursue. For more
details, the reader is referred to [12, 14].

The computational domain in the eye fundus, denoted by Ω ⊂ R
3, is depicted in

Fig. 3. We consider a cylinder with radius R that encloses a smaller cylinder with radius
RI describing the irradiated area. The absorption in the five different layers is modeled
by a piecewise constant function µ : R+ → R

+ which, due to radial symmetry, only
depends on the depth variable ω3.

Figure 3. Schematic illustration of computational domain. Fig.
adapted from [12].

Following the Lambert-Beer law describing the absorption of the laser light in the tissue,
the evolution of the temperature distribution x(t, ω) at time instance t ≥ 0 and spatial
coordinate ω ∈ R

3 can be described via the parabolic partial differential equation (PDE)
of heat diffusion

ρCp
∂x(t, ω)

∂t
− k∆x(t, ω) = u(t)

χI(ω)

πR2
I

µ(ω3)e
−

∫ ω3

0
µ(ζ)dζ ∀(t, ω) ∈ R

+ ×Ω

x(t, ω) = 0 ∀ (t, ω) ∈ R
+ × Γ,

x(0, ω) = 0 ∀ω ∈ Ω,

where ∆ = ∂2

∂2ω1
+ ∂2

∂2ω2
+ ∂2

∂2ω3
is the usual Laplace operator, Γ = Γ1 ∪ Γ2 ∪ Γ3 is the

spatial boundary of the domain Ω, cf. Fig. 3, and χI is the characteristic function of
the inner cylinder where the absorption takes place. Here, ρ = 993 kg/m3 is the density,
Cp = 4176 J/(kgK) the heat capacity and k = 0.627 W/mK) the thermal conductivity
of water, which composes the main component of the tissue, cf. [1].

Due to linearity of this equation in the state, we consider temperature increases rel-
ative to the ambient temperature and hence impose a homogeneous initial condition.
Further, the outer cylinder in Fig. 3 is chosen large enough such that we can safely
assume homogeneous Dirichlet boundary conditions.
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The volume temperature that can directly be computed from the measured pressure
transients, cf. Fig. 1, and the peak temperature that is central for control are defined
via

Cvol(µ)x =

∫ ze

zb

xmean(t, ω3)µ(ω3)e
∫ ω3

0
µ(ζ)dζ dω3,

Cpeakx = x(0, 0, zcenter),

where xmean(ω3) is the mean over the radial variable at depth ω3 and zcenter is the
midpoint of the RPE layer. The absorption coefficient is defined piecewise for each layer
in Fig. 3, i.e.,

µ(ω3) =











µRPE, if ω3 ∈ RPE,

µch, if ω3 ∈ choroid,

0, otherwise.

We consider the absorption coefficient in the choroid µch = 2662.2 m−1 to be identical
for each spot, cf. [22] for a thorough case study. Further, we parameterize the absorption
in the RPE with a scalar prefactor α > 0, i.e.,

µRPE(α) = αµ0
RPE,

where µ0
RPE = 120400m−1 is a reference value from the literature [3]. Thus, from now on

we will denote dependencies on the absorption coefficient µ using its parameterization
α.

Exploiting radial symmetry of the computational domain and applying finite differ-
ences in space, cf. our previous work [12], yields the high-dimensional state-space model

ẋ(t) = Afx(t) +Bf(α)u(t)

yvol(t) = Cf,vol(α)x(t)(1)

ypeak(t) = Cf,peakx(t)

with n ∈ N large (¿80000), Af ∈ R
n×n and Bf, Cf,vol : R→ R

n and Cf,peak ∈ R
n.

After parametric Model Order Reduction by means of a global basis approach [2, Sec-
tion 4.1] and discrete empirical interpolation [4] that we tailored to our application in [22],
and implicit Euler discretization with suitable stepsize, we obtain the low-dimensional
parametric surrogate model

xk+1 = Axk +B(α)uk

yvol,k = Cvol(α)xk(2)

ypeak,k = Cpeakxk.

for k ∈ N0, where all matrices are reduced to the state space dimension six. As step
sizes for time discretization we will either choose 0.004ms or 0.001ms corresponding
to the repetition rates of 250Hz and 1 kHz that we will consider in Sections 4 and 5,
respectively.

As a last component in order to enable model-based control via MPC, we have to
estimate the unknown spot-dependent absorption coefficient α and the current state x,
i.e., the temperature distribution, of the system. To this end, we employ an extended
Kalman filter (EKF) as a well known state estimator for nonlinear systems using a
successive linearization of a nonlinear model that is subject to uncorrelated and normally
distributed process noise and measurement noise at each time step , see e.g. [5]. In our
application, we utilize the EKF both for state and parameter estimation by extending
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the state variable x̄ = (x, α) and considering constant parameter dynamics, that is, we
apply the EKF to the nonlinear extended dynamics

x̄k+1 =

(

xk+1

αk+1

)

=

(

A 0
0 1

)

x̄k +

(

B(αk)
0

)

uk,

yk =
(

Cvol(αk) 0
)

x̄k

.

For more details regarding parameter and state estimation, we refer to our work [14, 13].

3. Model predictive control

After presenting all necessary ingredients to enable model-based control, we now
present the MPC controller as a last component of our scheme, cf. Fig. 2. Here, we
aim to increase the peak temperature to a reference peak temperature ypeak,ref (effectiv-
ity of the treatment) without exceeding a maximal peak temperature ypeak,max (safety of
the treatment) by means of MPC using a maximal laser power umax = 0.1W. We denote
by n ∈ N0 the iteration counter of the control loop depicted in Fig. 2. For the n-th
MPC step, we assume that we have an estimate for the absorption coefficient αn and
the current state xn by means of EKF as described in the previous section. Then, for a
prediction horizon N ∈ N, N ≥ 2 we consider the following optimal control problem:

min
u∈RN−1

Jn(x, u)

s.t. xk+1 = Axk +B(αn)uk k = 0, . . . , N − 2

x0 = xn(OCP(n))

0 ≤ uk ≤ umax k = 0, . . . , N − 2

Cpeakxk ≤ ypeak,max k = 0, . . . , N − 1.

The cost functional consists of several terms that are scaled via a possibly time-varying
state cost penalization R0 : N→ {0, 1} and two scalar control cost parameters R1, R2 >

0, i.e.,

Jn(x, u) =

N−1
∑

k=0

R0(n+ k)|Cpeakxk − ypeak,ref|
2

+R1|uk − uref,n|
2

+R2

(

N−1
∑

k=1

|uk − uk−1|
2 + |u0 − uprev,n|

2

)

.

(3)

The value uref,n is the steady-state control corresponding to the steady-state output
ypeak,ref computed by means of system inversion with the current estimate of the absorp-
tion coefficient αn, i.e.,

uref,n = (CpeakA
−1B(αn))−1yref.

Further, we denote by uprev the MPC feedback, that is, the first optimal control value
u0 of the preceding MPC iteration. For the first MPC iteration, i.e., n = 0, we set
α0 = 0.7363 and uprev,0 = uref,0, the former being the empirical mean of the absorption
coefficient in porcine eyes obtained from a thorough case study in [22]. A time-varying
penalization R0 that sets the state cost to zero for the first few time steps in order to
prevent aggressive controls will be defined and compared to the standard case R0 ≡ 1 in
Section 4. Further, whereas the parameter R1 directly penalizes the control size, resp.
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its deviation from the reference value uref,n, the parameter R2 can be understood as a
penalization of variations in the control signal in order to smoothen the control signal
to not overreact on inevitable errors in state and parameter estimation.

In this work, we inspect the MPC closed-loop performance without a prior phase
that is solely used for identification of the absorption coefficient, which for the sake of
safety will almost surely be present in the final medical product. Here, however, this
choice is motivated in order to evaluate MPC under demanding conditions as, at the
beginning of the treatment, we might still have possibly large errors in the parameter
estimation. An underestimation of the actual absorption parameter results in a high
laser power obtained as MPC feedback, which, when applied to the eye fundus enjoying
a higher absorption than expected might result in overshooting both the targeted peak
temperature and the peak temperature bounds. To prevent this, we present a suitable
scaling of the terms in the cost functional, i.e., R0, R1 and R2 in (3) both in simulation
and in experiments in Sec. 4.

The scheme in Fig. 2 can now be specified in Algorithm 1, where the initialization of
the absorption coefficient ᾱ = 0.7363 is the empirical mean.

Algorithm 1 Model-based retinal laser treatment.

1: Initialize x← 0, α← ᾱ, n← 0
2: while Treatment do:
3: Solve (OCP(n)) s.t. init. state xn and param. αn

4: Apply first optimal control signal u0
5: Measure resulting volume temperature yvol
6: (xn, αn)← EKF with output yvol.
7: uref,n ← (CpeakA

−1B(αn))−1yref.
8: n← n+ 1
9: end while

We briefly discuss particularities of the implementation that are crucial to render the
software capable of real-time control.
Implementation details. The optimal control problem in Line 3 of Algorithm 1 is
solved using the C++-library OSQP [23], a highly optimized solver for linear quadratic
problems with state and control constraints. Its implementation is particularly suited to
an MPC context, i.e., we use the optimal solution of the previous MPC step as an initial
guess (warm start) for the next OCP solve. Further, we do not assemble the OCP in
each iteration, but rather update only the relevant parts, that is, the initial value xn, the
input vector B(αn) and the reference control uref,n. This allows us to solve (OCP(n))
with very low computation times in an MPC context, cf. Table 1. The maximal time
always occurs in the first MPC-iteration, where no warm start is currently used. The
choice and evaluation of a suitable warm start is subject to future work.

N 2 5 10 15 20
avg. time (ms) 0.06 0.16 0.29 0.37 0.41
max. time (ms) 0.12 0.34 0.59 0.65 0.67

Table 1. Average and maximal computation time required for solving
(OCP(n)) in an MPC controller. Table taken from [22].
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4. Real-time MPC at 250 Hz

In this part, we present closed-loop MPC results, where the MPC feedback is computed
at a repetition rate of 250Hz. The corresponding results at the higher repetition rates
of 1 kHz are presented in the subsequent Section 5.

We introduced an appropriate cost functional for (OCP(n)) that ensures success of
the treatment, i.e., the temperature increase should be achieved sufficiently fast, and
safety of the treatment, i.e., the peak temperature does not overshoot the temperature
bounds. After identifying and comparing in Subsection 4.1 suitable configurations for
the penalization terms R0, R1 and R2, cf. the cost functional (3), we present results of
experiments with porcine eye explants in Subsection 4.2.

4.1. Tuning in simulation. In this part, we will consider two different simulation
plants. First, we will use the reduced order model (2) that is also considered in the
EKF and MPC, so that there is only a model mismatch due to the unknown absorption.
Second, we will also consider the full order model (1), leading to a further model-plant
mismatch in all components of the model, as the state space dimension is not reduced.
The resulting simulated volume temperature yvol is then augmented by noise of one em-
pirical standard deviation, estimated from measurements at the setup, of approximately
0.288K [13].

We will consider two different choices of absorption parameters in our plant:

• high absorption of the simulation plant: α = 1.1, i.e., the EKF initialized with
ᾱ = 0.7363 initially underestimates the parameter,
• low absorption of the simulation plant: α = 0.5, i.e., the EKF initialized with
ᾱ = 0.7363 initially overestimates the parameter.

In this part, we will, in addition to different control penalization terms, compare the
standard case of state penalization with R0 ≡ 1 with the case R0(n) = χ3(n), where

χ3(n) =

{

0, n = 1, 2, 3

1, else
.

This choice serves to mimick a short identification phase, preventing overly aggressive
controls that aim for a fast temperature increase before having a reliable parameter
estimation.

We consider a prediction horizon of N = 5 and compare the following four different
choices of the cost functional:

a) time invariant state cost, penalization of control offset: (R0, R1, R2) = (1, 5e4, 0).
b) time variant state cost, penalization of control offset: (R0, R1, R2) = (χ3, 5e1, 0).
c) time invariant state cost, penalization of control variations: (R0, R1, R2) =

(1, 0, 5e4).
d) time variant state cost, penalization of control variations: (R0, R1, R2) = (χ3, 0, 5e1).

These values were found by simulations in 250Hz with the full order model (1) as plant.
They lead to a good performance by means of fast convergence and constraint satisfaction
(of the closed-loop peak temperature) despite the model mismatch due to parameter
estimation and model reduction.

We evaluate these different cost functionals for two different scenarios in Fig. 4: First,
the case of initial underestimation (left), i.e., the initial absorption parameter value for
the EKF is smaller than the plant absorption parameter and initial over estimation
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(right) of the actual parameter, i.e., the initial parameter value is higher than the plant
absorption parameter.

We observe that the time-invariant versions (R0 = 1) lead to a faster convergence
without significant overshoot in the case of high absorption. The controllers are tuned
more aggressively in the first few MPC steps as can be seen in the higher control input ucl
in Fig. 4. This is due to the fact that the state cost has a strong influence especially in the
first time steps where the difference between the peak temperature and the desired peak
temperature is the largest. It follows that R1 and R2, respectively, need to have a higher
weight (in comparison to R0 = χ3) to prevent constraint violation. On the right hand
side of Fig. 4, the closed-loop simulations with a low absorption coefficient are shown.
The relation of the control inputs is similar to the high absorption coefficient. However,
the time-invariant version with R1 converges slower to the desired peak temperature
than both time-varying state costs due to the low absorption and the overestimation at
the beginning. This leads to a smaller reference control value uref and therefore to a less
aggressive controller.
In Fig. 5, we compare different horizon lengths N for the time-invariant state cost. The
case N = 15 and N = 20 are almost identical to the case of N = 10, which is why we
do not depict them here. We observe that a horizon length of N = 5 is suitable for
both penalization of the control offset and penalization of the control variations. Higher
horizon lengths do not lead to a better performance. Therefore, we choose N = 5 for
the real-time experiments.

4.2. Real-time experiments with porcine eyes. In this part, we show results by
means of experiments with porcine eye explants. As there was no clear advantage of using
the non-autonomous cost, we implemented the MPC controller using the autonomous
cost functionals with either control or control variation penalization, i.e., R0 ≡ 1 in the
experimental setup, cf. Fig. 1. The non-autonomous case, where R0 = χ3 in particular
in combination with a higher sampling rate of 1 kHz will be subject to future research.
We compare the resulting closed-loop behaviour for the autonomous cost functionals of
the previous section, i.e., (R0, R1, R2) = (1, 5e4, 0) and (R0, R1, R2) = (1, 0, 5e4) for two
different scenarios. We emphasize, that our control objective is the peak temperature
ypeak which we can only estimate, whereas the volume temperature yvol is measured and
used for state/parameter estimation.

First, in order to compare the MPC closed-loop performance for different cost func-
tionals at the same spot, we consider a low temperature increase ypeak,ref = 10K with a
maximal temperature increase ypeak,max = 12K. This choice prevents from coagulation
such that after applying Algorithm 1 with one cost functional choice, we can redo the
experiment at the very same spot after changing the cost. In Fig. 6, we present results
for this low target temperature. The peak temperatures behave similarly and do not
exhibit significant overshoot for either choice of the cost functional at the considered
treatment spot. The control variation via penalization via R2 slightly overshoots the
target temperature of 10K, but does not exceed the peak temperature bound of 12K.
The reason for the overshoot of the peak temperature could be the undershoot in the
parameter estimation which leads to a more aggressive control strategy. There is no
overshoot with the penalization of control offset (R1) as the controller is less aggressive
for low parameter values than the one with penalization of the control variations (cf.
Fig. 4). The MPC closed-loop controls and the identified absorption coefficient are very
similar for either of the cost functionals at each spot.
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Figure 4. Closed-loop comparison in simulation with full-model plant
for α = 1.1 (left) and α = 0.5 (right). The dotted line corresponds to
R0 = χ3, the solid line corresponds to R0 ≡ 1.

Second, we consider a targeted temperature increase of ypeak,ref = 30K, with a maximal
temperature of ypeak,max = 32K. As in this case, the tissue is coagulated after one
experiment at the same spot, we have to change the treatment spot and thus obtain only
one closed-loop trajectory per spot. We note that, here, we obtain the first measurement
after applying a constant control of 20mW for one time step. In Fig. 7, we consider the
target temperature ypeak,ref = 30K. Again, we observe an undershoot in the parameter
estimation. This undershoot does not affect the closed-loop behaviour when using a
direct control penalization by means of R1. Moreover, opposed to the temperature
increase of 10K in Fig. 6, we see that for this target temperature of 30K, the applied
laser power obtained as MPC feedback reaches its bound of 0.1W. In case of control
variation penalization by means of R2, which is not depicted here, the closed-loop peak
temperature violated the temperature bounds by approximately 2K. After increasing
the penalization parameter, the choice R2 = 8e5 guaranteed constraint satisfaction in
closed-loop with results looking similar as the closed-loop behavior in Fig. 7.
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Figure 5. Peak temperature in MPC closed-loop depending on the hori-
zon length for the case α = 0.5.

5. Real-time MPC at 1kHz

In this section, we consider the higher sampling rate of 1 kHz. At this higher sampling
rate, a particular effort has to be made in order to render the complex control software
with all its necessary components, i.e., data acquisition, data processing, state and pa-
rameter estimation and model predictive control, real-time capable. As we will see in
the following, this higher sampling rate enjoys favorable properties, such that it is highly
advantageous in terms of state/parameter estimation and feedback-control.

5.1. Tuning in simulation. In Fig. 8, closed-loop results for an initial underestimation
and initial overestimation of the parameter are shown to illustrate differences between
the results in 1 kHz to 250Hz. We observe that due to the higher sampling rate, even in
the absence of control penalization, i.e., R1 = R2 = 0, the closed-loop trajectory does not
exceed the temperature bounds. This choice not penalizing the controls is also justified
in view of our application any used laser power necessary for treatment is satisfactory,
as long as it satisfies the bounds umax. Hence, we do not consider penalization terms
here. Further, we can see that input constraints are active, which is to be expected as
the controller is most aggressive due to R1 = R2 = 0.
Similar to the case of 250Hz, we see in Fig. 9 that the closed-loop performance is mostly
independent of the choice of the horizon. We note that here, a low horizon of N = 2
is sufficient, as the cost functional term only consists of the state cost, which motivates,
independent of the horizon length, a temperature increase whenever the target peak
temperature is not yet attained.

5.2. Real-time experiments with porcine eyes. In Fig. 10, we depict the closed-
loop behavior for a sampling rate of 1 kHz for four different spots. In all cases, we
observe a convergence to the desired peak temperature increase of 30K, without any
visible overshoot. At all spots, the laser power constraint of 0.1W is active at the
beginning of the treatment. For a higher absorption coefficient, the temperature rises
faster and, therefore, the laser power constraint is inactive earlier.
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Figure 6. Closed-loop comparison in experiments at the same spot with
low treatment temperature.

6. Conclusion and Outlook

We presented an approach for real-time retinal laser treatment by means of Model
Predictive Control. In this context, we designed an appropriate stage cost, for which we
evaluated the resulting closed-loop behavior w.r.t. convergence properties and constraint
satisfaction by means of simulation and experimental data in 250Hz and 1 kHz. We
obtained several configurations of the penalization parameters that result in the desired
temperature increase and illustrated that a higher sampling rate leads to better control
results with less tuning effort.

Future research considers robust MPC schemes with respect to, e.g., the MOR error,
cf. [15, 16].

For even faster measurements, e.g., in 10 kHz, multi-step MPC schemes [10, 9] might
be an option. Here, the optimal control problem might be solved in 2 kHz, but with
variation of the control signal adapted to 10 kHz, see, e.g., [25]. Then, the interaction of
open- and closed-loop control has to be taken into account [24], which might be addressed
– if needed – by [7, 20] or real-time iteration schemes in control [6] and estimation [26], see
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Figure 7. Closed-loop comparison in experiments at different spots with
high treatment temperature.

also the recently-proposed advanced step variants of the real-time iteration [18] (and [19]
for an analysis of its convergence properties).
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Figure 10. Closed-loop comparison in experiments at different spots
with high treatment temperature at 1 kHz.
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