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ABSTRACT 

In this paper, we summarize the discussions of the panel on “Advances in Data Modeling 
Research,” held at the Americas Conference on Information Systems (AMCIS) in 2005. We focus 
on four primary areas where data modeling research offers rich opportunities: spatio-temporal 
semantics, genome research, ontological analysis and empirical evaluation of existing models. 
We highlight past work in each area and also discuss open questions, with a view to promoting 
future research in the overall data modeling area.  

I. INTRODUCTION 

Commercial database management systems (DBMS) have been available since the 1960s. 
Earlier models included the network and the hierarchical models (Bachman 1969; Tsichritzis et al. 
1976). In the 1970s, the relational model contributed to the separation of the logical 
representation of data (relations and tuples) from the physical implementation (files and access 
mechanisms) (Codd 1970). One of the shortcomings of the relational model was its limited ability 
to explicitly capture requirement semantics (Hull et al. 1987). Several semantic data models have 
been proposed in order to overcome this limitation. Examples include the Entity Relationship 
model (ERM) (Chen 1976), extended ERM (Smith et al. 1977), the NIAM model (Nijssen et al. 
1989; Verhijen et al. 1982), TAXIS (Mylopoulos et al. 1980), Semantic Data Model (SDM) 
(Hammer et al. 1981), and the Unified Semantic Model (USM) (Ram 1995). Semantic data 
models generally consist of richer concepts such as generalization, aggregation, classification, 
relationship representation, and in some cases, event modeling, in order to explicitly map to 
semantics in the requirements. While systems that support semantic model implementation have 
largely consisted of research prototypes, in many cases, semantic models have been utilized as 
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initial models in the systems analysis phase, for capturing user requirements, prior to creating a 
relational schema (Korth et al. 2005).  

Over the last decade, data modeling research has diversified into several subareas. First, several 
researchers have proposed new models or extensions to existing models, such as the relational 
model, that explicitly model temporal and spatial semantics in the requirements domain (spatio-
temporal data models). The goals here have ranged from providing assistance in modeling at the 
systems analysis level, all the way down to the more efficient implementations at the physical 
level.  

Second, several domains have arisen that require specialized modeling and retrieval. For 
example, in the area of genomic research, the semantics of the underlying data, as well as the 
processes used by researchers who utilize this data, can benefit from novel concepts at the data 
model level. Concepts that capture the underlying relationships between genes in a sequence, as 
well as the creation of query operators to specifically model the kind of queries bio-researchers 
most often formulate, can potentially improve both the underlying representation of genomic data 
as well as assist in the formulation and execution of queries. 

Third, there has been increasing incorporation of ontologies in the area of data model evaluation. 
Most commonly, the Bunge ontology (Wand et al. 1995) has been used in providing a set of 
philosophically robust concepts that were formulated for generalized descriptions of our world. 
These concepts have been utilized to evaluate the completeness, ambiguity and correctness of 
existing data models.  

Finally, there has been renewed interest in the empirical evaluation of data models in the area of 
systems analysis. Questions in this area include the development and testing of theories that 
potentially apply to systems analysts when they model requirements using data models, as well 
as prescriptions of new concepts that can enhance existing data models from a systems analysis 
perspective.  

The primary purpose of this work is to summarize the discussions of the panel on “Advances in 
Data Modeling Research” at the 2005 America’s Conference on Information Systems (AMCIS). 
The panel presented illustrative work in all four of these emerging areas and highlighted the 
research questions that remain unanswered.  

The rest of this paper is organized as follows. In Section 2, we discuss emerging work in the area 
of spatio-temporal data models. Section 3 describes the semantics that occur in genomic 
research, and provides examples of how semantic model concepts and query operators can be 
used to increase the efficiency of data modeling and retrieval for this important domain. Section 4 
describes recent and emerging work in the application of the Bunge ontology to data models. 
Section 5 describes opportunities for empirical work in the evaluation of data modeling. We 
conclude with a discussion and opportunities for future research in Section 6.  

II. SPATIO-TEMPORAL DATA MODELS 

Most applications require some aspect of time in organizing their information, for example, 
healthcare (patient histories), insurance (claims and accident histories), reservation systems, and 
scientific applications.  Geospatial information has been applied to business applications such as 
facility management, market analysis, transportation, logistics, strategic planning, and decision-
making (Mennecke et al. 1996).  Underlying these applications are temporal and geospatial data, 
collectively referred to as geospatio-temporal data. 

In developing geospatio-temporal applications, there is a need to elicit the data semantics not 
only related to “what” is important for the application but also related to “when” and “where.” One 
of the problems with designing such applications is that there is “a gulf between the richness of 
knowledge structures in application domains and the relative simplicity of the data model in which 
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the structures can be expressed” (Worboys et al. 1990).  Conventional conceptual models (Chen 
1976; Elmasri et al. 1994) that provide a formalism to represent “what” is pertinent for an 
application are only partially useful for geospatio-temporal applications.  To help represent the 
geospatio-temporal data requirements, there is a need for geospatio-temporal conceptual 
models.   

CHARACTERIZING GEOSPATIO-TEMPORAL DATA SEMANTICS 

Prior research (Shoval et al. 1994) suggests that a conceptual model should be powerful in 
“semantic expressiveness,” where expressiveness refers to the availability of a large variety of 
concepts for a more comprehensive representation of the real world (Batini et al. 1992). A 
geospatio-temporal conceptual model needs to elicit data semantics related to time and space 
like event and state (Jensen et al. 1998), valid time and transaction time (Snodgrass et al. 1986), 
lifespan (or existence time) (Gregersen et al. 1998), temporal and geospatial granularities, along 
with indeterminacy (Khatri et al. 2002), and geometry and position (David et al. 1996).  We 
provide brief definitions of these terms below; for more details on the geospatio-temporal data 
semantics, the reader is referred elsewhere (Khatri et al. 2002; Khatri et al. 2004).  

An event occurs at a point in time, that is, it has no, or an extremely short, duration (for example, 
lightning hit the road at 2:03 PM), while a state has duration (for example, a storm occurred from 
5:07 PM to 5:46 PM).  While valid time denotes when the fact is true in the real world and implies 
the storage of histories related to facts, transaction time links an object to the time it is current in 
the database and implies the storage of versions of a database object.  Existence time, which 
applies to an object, is the valid time when the object exists.  Position in space is based on 
coordinates in a mathematically-defined reference system, for example, latitude and longitude. 
The shape of the object is represented by geometry, for example, point, line, and region.  
Granularities are intrinsic to geospatial and temporal data, and provide a mechanism to hide 
details that are not known or not pertinent for an application.  For example, in a cadastral 
application (Hermosilla 1994), mortgages can be associated with a temporal granularity of day, 
and the representation of long-term land-use changes may require a temporal granularity of 
year.  Day and year, or more accurately Gregorian day and Gregorian year, are 
examples of temporal granularities, which belong to the Gregorian calendar.   

Having briefly outlined the data semantics that need to be elicited using a geospatio-temporal 
conceptual model, we next describe the criteria for augmenting conventional conceptual models.  

CRITERIA FOR AUGMENTING CONVENTIONAL CONCEPTUAL MODELS 

Prior research (Böhlen et al. 1998) proposes requirements to ensure that legacy DBMS 
application code (along with the data) remain operational when migrated to geospatio-temporal 
DBMS. While the requirements—upward compatibility and snapshot reducibility—described in 
their paper refer to logical data model and query languages, the requirements are equally 
applicable to conceptual modeling. 

Upward compatibility (Böhlen et al. 2000; Snodgrass et al. 1997) implies the ability to render 
conventional conceptual schemas geospatio-temporal without affecting the legacy schemas. The 
objective of upward compatibility is to be able to develop geospatio-temporal schemas without 
invalidating the extant legacy schemas, thus, helping protect investments in existing schemas. It 
also implies that both the legacy schemas and the geospatio-temporal schemas can co-exist. 
Upward compatibility requires that the syntax and semantics of the traditional conceptual model 
(e.g., Chen 1976; Elmasri et al. 1994), remain unaltered. If the geospatio-temporal extension is a 
strict superset provided by adding non-mandatory semantics, it would ensure that the geospatio-
temporal extension is upwardly compatible with conventional conceptual models.  
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Snapshot reducibility (Böhlen et al. 2000; Snodgrass 1987) refers to “natural” generalization of 
the semantics of extant conventional conceptual models, e.g., for incorporating the geospatio-
temporal extension. Snapshot reducibility ensures that the semantics of a geospatio-temporal 
model are understandable in terms of the semantics of the conventional conceptual model. Here, 
the overall objective is to help ensure minimum additional investment in training (or retraining) a 
data analyst. 

We next describe a geospatio-temporal conceptual model that considers the requirements stated 
above. 

REPRESENTING GEOSPATIO-TEMPORAL DATA SEMANTICS 

Prior research (see, for example, Khatri et al. 2004; Snodgrass 1999) argues that, in order to 
simplify the complex task of representing geospatio-temporal data semantics, geospatio-temporal 
aspects should be the last consideration in conceptual design (see Figure 1).  As shown in Figure 
1, there are two levels of abstraction,1 one for “what” and the other for “when/where.”  Current 
thinking suggests employing a supplementary level of abstraction for representing the geospatio-
temporal data semantics; this supplementary level is typically provided via geospatio-temporal 
annotations (see, for example, Gregersen et al. 1998; Khatri et al. 2004; Parent et al. 1999; 
Tryfona et al. 1999).   

Non-Geospatio-Temporal
Data Semantics

Annotations

Conventional 
Conceptual Model

Approach for adding 
geospatio-temporal 

data semantics

Geospatio-Temporal
Data Semantics

Instantiating the 
approach

 

Figure 1:  Representing Geospatio-temporal Data Semantics 

 

To illustrate an annotation-based conceptual model that represents geospatio-temporal data 
semantics on the schema, we provide an example using ST (Spatio-Temporal) USM (Khatri et al. 
2004) (see Figure 2).  In a conventional conceptual model, a rectangle is used to represent entity 
types (Elmasri et al. 1994).  Figure 2, for example, denotes that “LAND PARCEL” is an entity type 
that is pertinent to a database application.  In this example, “LAND PARCEL” is represented as a 
region and has an associated lifespan (or existence time).  ST USM employs a textual string to 
denote existence time, which is represented as state (“S”); in Figure 2, the time periods have a 
temporal granularity of “day.” Additionally, “LAND PARCEL” is represented as a region (“R”) in the 
horizontal plane with a geospatial granularity of “deg” (i.e., degree).   

                                                      
1 An abstraction provides a mechanism for focusing on selected details while deliberately omitting 
others. 
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Figure 2: Capturing the Geospatio-Temporal Semantics using Annotations 

 

Note that ST USM is based on USM (Ram 1995), an extended ER Model (Chen 1976).  Similar to 
the entity type, other types of constructs (e.g., attribute, subclass, aggregate class) can also be 
annotated.  We present the explicit data semantics associated with these geospatio-temporal 
annotations elsewhere (Khatri et al. 2002; Khatri et al. 2004; Khatri et al. 2006).   

Annotated schemas do not invalidate legacy conceptual schemas as the syntax and semantics of 
conventional conceptual models is unaltered, i.e., annotated schemas are upwardly compatible. 
Upward compatibility implies that annotating the schema would induce the sequenced geospatio-
temporal semantics; on the other hand, removing the annotations would render the schema with 
the traditional (snapshot) semantics.  For example, in a conventional conceptual model, a key 
attribute (Elmasri et al. 1994) uniquely identifies an entity (at a point in time).  A temporal key 
(Snodgrass 1999) implies uniqueness at each point in time.  As may be evident, the semantics of 
a temporal key here are implied by the semantics of a key in a conventional conceptual model; 
thus, an annotated schema is snapshot reducible.  In summary, annotations provide a succinct 
way of representing the geospatio-temporal aspects that are important for temporal and 
geospatial applications.   

Further work would be useful in several areas. It would be helpful to explore how ST USM can be 
used as a canonical model for information integration of distributed geospatio-temporal data. The 
annotations should be extended to incorporate schema versioning as well as to provide a 
mechanism for modeling geospatio-temporal constraints in a conceptual schema, such as lifetime 
constraints and topological constraints.  

III. MODELING THE SEMANTICS OF BIOLOGICAL SEQUENCES 

As genomic research is becoming mature, large amounts of sequence data—including DNA 
(Nucleotide) sequence and primary protein sequences—are being generated and stored in 
various sequence databases. A sequence by itself is not informative; it must be analyzed by 
comparing against existing databases to develop hypotheses concerning relationships and 
functions. Currently, a substantial portion of a biological researcher’s daily routine is spent in 
analyzing sequence data. For example: An abundant message in a cancer cell line may bear 
similarity to protein phosphatase genes. This relationship would prompt experimental scientists to 
investigate the role of phosphorylation and dephosphorylation in the regulation of cellular 
transformation. Meanwhile, the exponential growth in biological data in the past few decades has 
added a predictive element to research in this field. Biological data and events can be explained 
and analyzed using basic physical and chemical laws. These kinds of analyses will facilitate the 
discovery of new biological trends and laws crucial to our understanding of these complex 
systems.  

Computational tools and databases are essential to the management and identification of subtle 
similarities and patterns found in the exponentially growing volume of biological sequence data. 
Two major components of this data are DNA sequences and protein primary structure data. Two 
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of the most well-known and reliable biological sequence data repositories are: The National 
Center for Biotechnology Information (NCBI) in the United States (Woodsmall et al. 1993) and the 
European Bioinformatics Institute (EBI) (Emmert et al. 1994) in England. The sequence data 
stored at these two places adopt somewhat similar formats (Benson et al. 2000)—the sequence 
data itself is stored as string-like text attribute for each sequence entity together with other 
biological information concerning the sequence. The semantics of the sequence data is not 
explicitly expressed, and this prevents researchers from directly running queries to analyze the 
data. To search, compare, and analyze the sequences, a general approach involves the use of a 
set of algorithms such as BLAST (Basic Local Alignment Search Tool) (Altschul et al. 1990), 
which was developed in 1990. Multiple programs have been implemented using BLAST or 
modified BLAST algorithms (Altschul et al. 1997) which allow  users to compare a DNA  or protein 
sequence with all sequences in a specified database. Comparisons are made in a pair-wise 
fashion. Each comparison is given a score reflecting the degree of similarity between the 
sequences being compared. The higher the score, the greater is the degree of similarity. Many 
researchers have worked to improve the performance of sequence comparison. Much of this 
research has focused on algorithm development or application software development. Sequence 
comparison algorithm development has concentrated on improving the sensitivity of detecting 
remote sequence homologous relationships. Sequence comparison application software 
development has concentrated on improving the throughput of sequence comparison tasks and 
user exploration of sequence comparison results.  

Despite all the progress from this stream of research, sequence search and comparisons are still 
very time-consuming and labor-intensive.  Consider a user who wants to run the BLAST algorithm 
for a batch of sequences against a large set of target sequences. First, the researcher has to 
choose a program, usually a derivative of BLAST, and a database to search. Then the sequences 
for comparison have to be converted into the required format from a text file and loaded into the 
program. During the process of alignment, the BLAST program has to be executed iteratively for 
each comparison. The results are then combined into a report for the users. Finally, any valuable 
findings have to be loaded back to the databases for future reference. All of these steps are very 
time consuming, and one of the biggest challenges with current systems is the difficulty in 
performing analyses and queries directly on the stored sequence data. The most important 
reason for this challenge is that the semantics of the sequence data are not captured explicitly in 
the database. Semantics of sequential data have been researched in other fields or domains 
(Curtis et al. 1992; Segev et al. 1987; Seshadri et al. 1995), including business processes and 
temporal databases, in which the data appear to be similar to biological sequence data. Several 
data models and query languages have been developed to deal with these types of data 
(Seshadri et al. 1995). However, they are not adequate to represent the semantics of biological 
sequences nor are their operators sufficient to manipulate biological sequences. We believe it is 
important to focus on developing operators to query biological data based on a model that can 
explicitly represent the semantics of biological sequences including DNA and protein sequences. 
We believe that by explicitly expressing the meaning of the data stored in biological databases, it 
will become easier to develop new operators to query this data directly in ways that support the 
needs of biosequence researchers (Ram et al. 2003; Ram et al. 2004). Such semantics should 
explicitly represent the structure of sequences including the elements of the sequence, the 
position of each element, the relationships between various subsegments of each sequence and 
the biological functions of different segments of a sequence as well as of the complete sequence. 
Further, some types of sequences such as proteins are not merely linear—they fold into various 
kinds of three dimensional structures. The type of 3D folding then determines their biological 
properties and functions.  We need new constructs to represent the semantics of these types of 
3D sequences (Ram et al. 2004). Such semantics will allow us to define new operators to 
manipulate biological sequence data. These operators will allow users to ask and get answers 
easily for meaningful questions. The operators can be implemented directly in a relational DBMS 
so that users are able to query the data more easily, resulting in a significant savings of end user 
time and other resources.  

Advances in Data Modeling Research by G. Allen, A. Bajaj, V. Khatri, S. Ram & K. Siau 



Communications of the Association for Information Systems (Volume 17, 2006), 677-692 683 

IV. ONTOLOGICAL RESEARCH IN DATA MODELING 

One recent advance in data modeling research is the application of Ontology (the branch of 
philosophy that deals with the description of existence).  By far, the philosopher most cited in 
such works in information system literature is Bunge (1977).  Bunge's work is very attractive to 
information systems researchers because it is, unlike the ontological works of many other 
philosophers, built on a firmly scientific foundation.  Moreover, elements of Bunge's work 
correspond very nicely to basic constructs used in conceptual modeling for decades. 

Bunge's intent was to develop a formalization that could be used to describe the existence of the 
universe and all components that comprise it.  As such, he focuses on things and their states as 
the building blocks for his ontology.  Because the processes that cause change in natural 
systems are often ill-understood, his approach is particularly well-suited to natural systems 
because it focuses on states and changes of states as they are observed.  Accordingly, his 
ontology lacks constructs to represent the rules that govern how state changes from one point in 
time to another in response to some occurrence happening in the world.  In fact, it lacks 
constructs to represent the occurrences themselves.  This does not mean that Bunge's ontology 
is deficient in any regard, only that, like many ontologies, its scope is limited to the description of 
the current and past states of things.   

Such a conceptualization works well for the description of natural systems.  Natural systems are 
comprised of material (physical) things.  Material things have properties that can, in principle, be 
observed.  This category of things need not exist in nature per se, that is, it also includes things 
created by human intention—as long as such artifacts are material.  The defining characteristic of 
natural systems is that things change states in accordance with natural laws.  It is the goal of 
many areas of natural science to understand the natural laws that govern the state changes of 
things in natural systems.  For example, early in the study of classical mechanics, Newton 
proposed three laws of motion (dealing with inertia, momentum, and action/reaction) and proved 
that these laws governed the motion of both everyday and celestial objects.  These laws predict 
how the state of a thing (i.e. its velocity) will change when known forces are applied to it.  

Artificial systems are fundamentally different from natural systems because they are largely 
concerned with attributes that are ascribed to things rather than with properties, which are 
inherent to things.  To illustrate the difference, consider the height and the name of a person.  
Height is a property.  It is intrinsic to the individual.  Although it can be expressed in different 
scales, it can be measured.  Conversely, name is an attribute—it is a value that is "attributed" to a 
person.  It cannot be measured because it is not intrinsic to the individual.  The value of the name 
attribute for an individual is generally set shortly after birth, and may, like height, change during 
the life of the individual.  However, the value of the individual's height property changes according 
to natural laws, while the value of the name attribute changes according to socially constructed 
rules.  Often the value of the name attribute changes when an individual marries, but the rules 
that govern how the value will change are artificial.  Artificial rules are constructed by human 
intentionality, vary from society to society, and are categorically defined in relationship to some 
set of causal occurrences or events. 

To a large degree, business systems are artificial systems.  They are not concerned with 
measurement of intrinsic properties; rather, they seek to record how values in the domain of 
discourse change as a result of occurrences that pertain to the business.  For example, a 
business information system may need to report the value of the "revenue" attribute for a 
company during a given period.  Revenue cannot be directly observed or measured because, like 
the "name" attribute, its value is defined by accepted societal rules that map a set of causal 
events to the attribute's value.  In this case, the events that determine the attribute's value are 
"sale" events or "receive payment" events depending on whether the revenue attribute is to be 
calculated on the cash basis or on the accrual basis.  Of course, the revenue attribute is not 
alone.  Virtually all of the values reported on standard financial statements are attributes and 
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cannot be observed.  Rather, they must be inferred by applying a set of rules to the set of 
relevant occurrences that have take place.   

The very reason that information systems record transactions is to store information about the 
events that must be summarized to infer the values of attributes that cannot be measured, or are 
difficult to measure.  Clearly, the financial position of a business is not the only example.  All 
systems that track ownership of assets must also record how events affect the socially 
constructed attribute of ownership.  Judicial systems need to record various events about 
individuals to be able to apply rules for the sentencing of convicts.  Even when asserting state is 
not the primary function of an information system, there may be valid reasons to conceptualize it 
as an event tracking mechanism.  In healthcare systems, quite apart from the need to generate 
bills, physicians need access to treatment histories to be able to make informed diagnoses and 
prognoses as well as to recommend effective treatment.       

The role of ontology in data modeling is to guide the modeling process with a particularly 
philosophy of how to describe things and their interactions.  For example, Bunge's ontology 
asserts that things either have an attribute with a value or they do not have that attribute.  That is, 
the ontology does not allow a thing to have an attribute with a null value (Gemino et al. 2005). 
When constructing a data model informed by this ontology, a modeler would choose to represent 
similar things with different attributes in a class hierarchy rather than in a single class with 
attributes which may or may not have a value for individual members of the class.   

When an ontology lacks the expressiveness to describe the rules that govern socially constructed 
attributes, it must treat attributes and properties uniformly.  This means that the same state-
tracking approach that is appropriate for recording the values of properties without reference to 
the natural laws that govern their changes must also be used for recording the values of 
attributes—even though rules that determine the value of the attributes are central to the system 
that must be developed.  The result is to design the data structure that will support the information 
system without referencing the events that are essential to the application of the rules that ascribe 
values to attributes.  This does not mean that ultimately the system will not be able to produce the 
values of the required attributes, only that the events that cause the attributes to take on certain 
values will not be recorded as a part of the information system's data. 

When the only goal of an information system is to report on the most current state (the most 
recent value of each attribute in the system), this distinction is of little importance; however, when 
the system also needs to report states for arbitrary points in history, the distinction is 
monumental.  When a system records the most recent state for a property, the property is 
measured and the value is recorded.  When an attribute is treated like a property, an event is 
observed, a rule is applied to determine the new value, which is then recorded.   In this sense, 
things have attributes and properties, which are treated uniformly, and only their most recent 
value is accessible.  However, when past states must be accessible in addition to current state, 
the distinction becomes clear.  For a property, the system has only had access to its vector of 
values over time, so there is no option other than to record that set of values as a state history.  
Clearly, for attributes calculated by the system, the system has access to the same vector and 
can also record a simple state history; however, the system also has access to the events that 
cause state to change as well as to the rule that governs the state change.  To record only the 
state history is to lose the causal record of why the attribute achieved different values at different 
times.  With a property, cause is unknown, so recording only the state history does not result in 
data loss; however, with an attribute that has its value determined by the system, not only is 
causality known, it is already implemented somewhere in system logic.  Accordingly, when its 
value over time is recorded as a state history, information about causation is needlessly 
discarded. 

Consider a system that maintains the current credit limit for customers.  Over time, various events 
occur that cause the limit for a given customer to change.  The events are governed by rules.  For 
example, a rule might state that if a customer requests a credit limit and her limit has not changed 
for 12 months and her current balance is currently zero, a five percent increase in credit limit 
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occurs.  Another rule might indicate that when a sales person requests a credit limit increase on 
behalf of a customer, any amount between zero and ten percent can be processed as long as no 
change has happened for the prior six months.  If a five percent increase in a customer's credit 
limit is recorded, and that customer had no change in credit limit for twelve months or more, 
recording only the historical values of the attribute leaves no way of knowing whether the cause 
of the increase was a customer initiated request or a salesperson initiated request.  

Whether the data model directly represents the events that cause the state of attributes to 
change, or merely represents changes in attribute values using a state-history structure, depends 
largely on how the modeler conceptualizes the interaction among things in the world.  The role of 
ontology in information systems is to formalize rules about how the interaction of things in the 
world should be conceptualized.  As such, the application of ontology can have a significant 
influence on how information systems are ultimately implemented. 

Largely, research in data modeling regarding ontology can be classified into three broad 
categories.  These are: 

• research that describes an ontology-enlightened data modeling approach (e.g., Wand et 
al. 1995),  

• research that evaluates different aspects of traditional data modeling in light of 
ontological perspectives (e.g., Burton-Jones et al. 1999; Wand et al. 1993), and  

• empirical evaluations of user performance with artifacts developed under different 
ontological assumptions (e.g., Allen et al. 2006; Bodart et al. 2001).   

What our field is missing is the development of an ontology that is uniquely fitted to the demands 
of artificial systems.  For research in ontology to meet its potential in informing the task of data 
modeling, we must develop, perhaps in cooperation with the field of philosophy, an ontology that 
addresses the unique problems posed by the conceptualization of artificial systems. 

V. EMPIRICAL WORK IN DATA MODEL EVALUATION 

A survey of the literature on the evaluation of modeling methods reveals several desirable 
attributes for conceptual modeling methods, which have been used as dependent variables in 
past empirical studies. These include  

a) the adequacy or completeness of the modeling method in being able to represent the 
underlying reality (Amberg 1996; Bajaj et al. 1996; Brosey et al. 1978; Kramer et al. 1991; 
Mantha 1987; Moynihan 1996; Siau 2004),  

b) the readability of the modeling method’s schemas (Hardgrave et al. 1995; Shoval et al. 
1987; Siau et al. 1997), and  

c) how easy it is to use the modeling method to represent requirements (Bock et al. 1993; 
Kim et al. 1995; Kramer et al. 1991; Shoval et al. 1987; Siau et al. 2005). 

Batra et al. (1992) present an excellent summary of the early work in the area. More recently, 
Wand et al. (2002) and Gemino et al. (2001) have highlighted the several dimensions along which 
empirical work can be pursued in the area, while Topi et al. (2002) present a summary of recent 
empirical studies.  

As an example dependent variable, the readability of a modeling method essentially indicates 
how easy it is to read a model schema and reconstruct the underlying domain reality from the 
schema. Readability is desirable in situations where the model schemas are created by one team 
of analysts and then need to be read and interpreted by other analysts, system developers or 
maintenance administrators during the course of the system’s lifecycle. For example, if a new 
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database administrator requires an understanding of the schemas of existing database 
applications in the organization, then the readability of the model schemas that were created 
during the earlier analysis phases of the projects becomes important. Next, we examine the 
independent variables that have been considered in earlier work.  

The first independent variable is the level of experience and familiarity of the subjects with the 
conceptual model used. Readers who are more experienced in the underlying conceptual model 
are thought to perform better at interpreting the schemas as well. In most studies (Brosey et al. 
1978; Hardgrave et al. 1995; Palvia et al. 1992; Peleg et al. 2000), this variable has been 
controlled, by using subjects with similar backgrounds for all treatment levels. Second, past 
studies have attempted to control for the level of familiarity with the domain by utilizing domains 
that are reasonably familiar to all subjects, and further by randomly allocating subjects across 
treatment levels. A random allocation reduces the likelihood of small differences in domain 
familiarity between subjects in different treatment levels. A third variable is the underlying 
complexity of the requirements for a particular situation, where a more complex set of 
requirements is harder to reconstruct than a simpler set. This is controlled by utilizing the same 
requirements case across treatments (Juhn et al. 1985; Kim et al. 1995; Peleg et al. 2000).  

A fourth independent variable whose effect has been studied is the modeling method itself, with 
the variables discussed earlier being controlled. While the results of earlier empirical studies have 
shown if one model’s schema is more readable or more conducive to schema creations than that 
of another model, there has been very little attempt to explain why any differences were 
observed. There has been a lack of a theoretical basis for the hypotheses that were examined in 
empirical work, and for explaining findings. For example, finding that the extended ERM (EER) 
schema is more or less readable than the object–oriented (OO) model (Booch 1994) schema for 
a case does not indicate why this was observed. The problem is that existing models view reality 
in differing ways and hence differ from each other along several dimensions. Hence, it is difficult 
to isolate what aspect of a model may cause more or less readability.  

One possible solution is to identify a set of universal attributes of all models, and then consider 
treatments that differ along one of these universal attributes. One step in this direction is the 
ontological framework called the Bunge Wand Weber framework (BWW) (Wand et al. 1995). The 
BWW framework utilizes an underlying ontology for all information systems. It then compares 
existing information system models on the basis of the degree to which concepts (or constructs) 
in the model and the ontology match. For example, a model that does not contain sufficient 
concepts to capture all of the underlying reality is termed to have construct deficit. Another 
approach is to map IS models to a meta-model. For example, the ER, OR (object relational) and 
UML (unified modeling language) models are compared in Halpin (2004). 

A complementary approach for identifying a set of universal attributes is to consider measurable 
properties that can be applied to all models. The most obvious example of this kind of universal 
attribute is the number of concepts in a model: a property which is common to all models and 
easily measured (Bajaj 2004).  

Finally, an alternative approach is to use cognitive theories (Bajaj et al. 2004; Siau 1999) to 
provide a guidance for empirical work in the area. Thus, cognitive theories such as the theory of 
short-term memory, pattern recognition and learning theory can be used to formulate hypotheses 
that guide the conduct of empirical studies and to explain the results.  

VI. DISCUSSION AND CONCLUSION 

In this paper, we have summarized the discussions of the AMCIS 2005 panel on advances in 
data modeling, sponsored by the Special Interest Group on Systems Analysis and Design 
(SIGSAND). While data modeling is a very well established area of research, the panel’s 
discussions illustrated that there are still many rich opportunities for research in data modeling. 
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New areas that require data modeling research are continuously emerging and include spatio-
temporal modeling, genomic research and agile modeling.  

In the area of spatio-temporal representation, the issues include how to represent time and space 
abstractions in the data model in a generalizable sense that is applicable across application 
domains. A guiding constraint of the research in this area is upward compatibility of the legacy 
conceptual domain schema with any new spatio-temporal schema that may replace it.  

In biological sequence modeling, one of the key challenges highlighted at the panel was the 
development of a framework to a) capture the semantics of genomic sequence data, and b) query 
datasets of genome sequences with special query-language operators that build on these 
semantics.  

In the ontology area, one key challenge remains the extension of existing ontologies, that deal 
largely with inherent attributes in natural systems, so that these ontologies can explicitly represent 
non-intrinsic attributes and the rules that can change them. This will allow the onotology to depict 
not only the structure but also the process-logic of the artificial system.  

Empirical work in data model evaluation has been largely observational in nature, and has only 
recently started trying to address why differences in modeling performance or comprehension are 
observed. The panel discussion highlighted possible approaches such as the BWW framework, 
cognitive theories and universal shared attributes that can be used to guide hypothesis 
formulation and explain findings from future empirical studies. Techniques such as cognitive 
mapping, action research and other non-laboratory methods can complement the controlled 
experiments that form the bulk of the existing work in the area.  

We would like to emphasize that the list is by no means comprehensive and there are other 
emerging areas such as multimedia data and semi-structured data that provide data modeling 
opportunities as well. In each of the areas discussed by the panel, we attempted to provide a 
flavor for questions that remain unanswered. It is our hope that this work will serve as an impetus 
in the area of data modeling research in the IS community.  
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