
Communications of the Association for Information Systems Communications of the Association for Information Systems

Volume 17 Paper

June 2006

What Can Be Learned from CMMi Failures? What Can Be Learned from CMMi Failures?

David Gefen
Drexel University, gefend@drexel.edu

Moshe Zviran
Tel Aviv University, zviran@tau.ac.il

Natalie Elman
Tel Aviv University

Follow this and additional works at: https://aisel.aisnet.org/cais

Recommended Citation Recommended Citation
Gefen, D., Zviran, M., & Elman, N. (2006). What Can Be Learned from CMMi Failures?. Communications of
the Association for Information Systems, 17, pp-pp. https://doi.org/10.17705/1CAIS.01736

This material is brought to you by the AIS Journals at AIS Electronic Library (AISeL). It has been accepted for
inclusion in Communications of the Association for Information Systems by an authorized administrator of AIS
Electronic Library (AISeL). For more information, please contact elibrary@aisnet.org.

https://aisel.aisnet.org/cais
https://aisel.aisnet.org/cais/vol17
https://aisel.aisnet.org/cais/vol17/iss1/36
https://aisel.aisnet.org/cais?utm_source=aisel.aisnet.org%2Fcais%2Fvol17%2Fiss1%2F36&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.17705/1CAIS.01736
mailto:elibrary@aisnet.org%3E

Communications of the Association for Information Systems (Volume 17, 2006), 801-817 801

What Can be Learned from CMMI Failures? by D. Gefen, M. Zviran, and N. Elman

WHAT CAN BE LEARNED FROM CMMI FAILURES?

David Gefen
LeBow College of Business,
Drexel University

Moshe Zviran
Natalie Elman
Faculty of Management,
Tel Aviv University
zviran@tau.ac.il

ABSTRACT

The software crisis has been around since 1968 when NATO first identified the problematic
nature of software development. In recognition of the need to manage the process of software
development many methodologies have been proposed over the years. A recent contribution to
this rich set of rigorous software development methodologies is the Software Engineering
Institute’s (SEI) Capability Maturity Model Integration (CMMi) methodology. While the minimal
previous research on CMMi has extolled it, learning how to implement CMMi successfully
requires leaning also from its failures. And yet, despite apparent anecdotes, little is known on this
topic possibly because of the reluctance of many companies to wash their dirty linen in public.

Based on a set of in-depth interviews accompanied with survey verification, this study examines
the assessed effectiveness and efficiency of CMMi as implemented in several projects in a large
high tech company in which only low levels of CMMi maturity were reached. In an exploratory
manner this study shows the need to differentiate between the quality of the software product
developed through CMMi and the quality of the process involved. The study also shows that
whether the product is an off the shelf product or a customized one has a direct bearing of the
quality of the product developed under CMMi methodology and the process itself. In particular,
we discuss why some projects reach only a low maturity level of CMMi even though the
organization as a whole might typically reach high maturity levels.

I. INTRODUCTION

CMMi is part of a general trend toward quality management in software development. Quality
management is a domain which is well developed within the manufacturing and the service
sectors because meeting customer needs and supplying excellent products can lead to
competitive advantage. Within the software quality control sector, however, these quality
concepts are still in the emerging stage, with several approaches and no agreement on a single
method. Nonetheless, some generic guidelines for achieving quality have been developed and
are widely acknowledged, including CMMi and the ISO 9000 group. These standards provide a

Communications of the Association for Information Systems (Volume 17, 2006), 801-817 802

What Can be Learned from CMMI Failures? by D. Gefen, M. Zviran, and N. Elman

framework for achieving high quality processes and, presumably through these, also high quality
products (Ethiraj, et al., 2005; Gibbs, 1994).

Quality control is necessary because building a new software system is a costly endeavor. In
part, this cost is due to the way the software development process is managed or mismanaged.
Addressing the obvious need to better manage the software development process in order to
reduce development costs and meet business objectives (Zviran, 1990), many methodologies
have been proposed since NATO first declared the software crisis in 1968 and proposed the
creation of the software engineering discipline as an answer to it (Gibbs, 1994; Niazi, et al., 2005;
Pitterman, 2000). A primary contributor to this process of developing rigorous software
development methodologies is CMMi (SEI, 2005), developed by SEI. SEI was created in 1984 by
the DoD in response to the software crisis and headed by Gibbs himself (Budgen and Tomayko,
2005).

CMMi is claimed to improve the software development process (SEI, 2005). This claim is
generally supported by a small number of industry anecdotes (Hoffman, 2004). Anecdotal
industry reports also suggest a 20% to 25% reduction in the need to correct software defects after
implementation (Anthes, 2004). Among the few companies that have reached level 5, only about
75 worldwide,1 there is a reported significant decrease in the number of software errors (King,
2003). Correcting software errors is a significant proportion of the overall cost spent on correcting
software errors. Estimates put the percentage of cost devoted to errors at between 35% and 50%
of the programmers' time (Dunn, 1984) and more than 50% of the total development cost, making
it the most expensive activity in software development (Capers, 1986). Software quality is
theorized to be directly related to the effort and time devoted to software development (Halstead,
1977). CMMi is also claimed to reduce as much as 60% of the effort in supporting operational
systems because of fewer emergency activities (Anthes, 2004).

While these claims intuitively make sense, there is practically no research on companies where
CMMi did not achieve these objectives. Understanding this topic remains therefore a needed
topic, as highlighted in a recent interview with 25 professionals about CMMi (Niazi, et al., 2005)
and is highlighted by the slowness in which the industry is in adopting CMMi.2

This paper discusses why some projects do not attain a high level of CMMi maturity, even though
the projects in their companies usually do attain a high level of maturity. Understanding why this
happens is especially important in the case of outsourcing projects because vendors need to
convince prospective clients of their capabilities (Ethiraj, et al., 2005) and their compliance with
internationally accepted quality control measures (Pries-Heje, et al., 2005).

This exploratory study steps into this void by analyzing a set of projects in a large high tech
company where CMMi was at a high implementation level and yet the technical staff of the
particular projects studied were not very pleased with it. In this set of interviews we studied why
only low levels of CMMi maturity were reached. The software developers’ assessments of how
CMMi affected the software development process was examined through interviews and then
supported by a survey. It is shown that CMMi effectiveness and efficiency of software
development were determined by the contribution CMMi made to the quality of the software
product, but surprisingly not by its contribution to the quality of the software development process

1 SEI publishes the appraisals of participating organizations at http://seir.sei.cmu.edu/
pars/pars_list_iframe.asp
2 The CMM, and later the CMMi, model proposed by SEI has 5 levels of maturity progress. In the
first level the process can best be described as chaotic with no planning. In the second level the
process is repeatable. In the third it is defined. In the fourth it is managed. And in the fifth it is
optimized. When CMM was first proposed 75% of the companies were at level 1 (Gibbs, 1994).
By 2004 34.9% of companies were still at level 1, 38.2 at level 2, 18.5 at level 3, 5.5 at level 4,
and only 2.9 at level 5 (Evans, 2004).

Communications of the Association for Information Systems (Volume 17, 2006), 801-817 803

What Can be Learned from CMMI Failures? by D. Gefen, M. Zviran, and N. Elman

itself. Whether the product was off the shelf or a customized project also contributed to the
perceived quality of the software development process and product.

II. LITERATURE REVIEW

WHAT IS CMMI

CMMi is a process improvement approach that provides organizations with the essential
elements of effective processes. It can be used to guide process improvement across a project, a
division, or an entire organization. CMMi also provides a point of reference for appraising current
processes (SEI, 2005). Adapted to software development, CMMi, and its previous version CMM,
deals with a key issue in software development projects, namely an often lacking well-established
management framework to handle the software project (Jiang, et al., 2004).
The CMMi model for Software Process Improvement (SPI) has been a significant part of an
increasing effort in the last two decades to develop and implement such software development
process strategies that can potentially reduce the risk of software development failure and
increase the quality of the developed software products. One of the first steps in this direction
was the development of the CMMi for Software methodology which provided software
organizations with guidance on how to control their software development and maintenance
processes (Paulk, et al., 1993). The CMMi methodology is based on four related streams of
knowledge which relate to software development: systems engineering, software engineering,
integrated product and process development, and supplier sourcing. The CMMi methodology
consists of a framework that generates multiple integrated models, training courses, and a
method of internal assessment and external evaluation termed "appraisal" (Rassa, et al., 2002).

The approach that has guided the development of the original CMM in the early 1990s was that
continued process improvement should be based on small evolutionary steps, rather than on the
introduction of revolutionary innovations (Paulk, et al., 1993). As a de-facto standard for process
assessment and improvement, CMMi is used to identify key elements of effective processes and
to evaluate the maturity of software processes in an organization. Accordingly, CMMi prescribes
an evolutionary move toward process improvement and organizes this wide range of activities
into a gradual progression through five steps of maturity levels: initial, repeatable, defined,
managed, and optimizing (Paulk, et al., 1993). These maturity levels represent an ordinal scale
that defines the maturity of an organization's software development process.

At the initial level of maturity, the software process is characterized as an ad hoc process which
may be chaotic. Few processes are defined at this stage and success depends mostly on
individual effort. There is no systematic management of the software development process at this
step and the transfer of experience from one project to another is haphazard. At the repeatable
level, there are rudimentary project management processes in place. Because these
methodologies call for a systematic approach to managing software development, the
organization is able to repeat previous successes with similar applications. At this level,
knowledge transfer and experience are transferable and so the organization can build on the
experience gained in previous projects toward making the next software development projects
more successful. In organizations that achieve the defined level, the software process is
standardized and documented, additionally all projects use an approved, tailored version of this
process. This more rigid application of methodology allows further knowledge and experience
transfer among software development projects by making the knowledge more specific to a
particular development methodology. The managed level involves, in addition to the steps taken
by the defined step, also the collection of detailed measures of the software process and product
quality, which in turn are quantitatively controlled. At the highest level of maturity, the optimizing
level continues process improvement made possible through quantitative feedback. Table 1
describes the maturity levels of CMMi.

Communications of the Association for Information Systems (Volume 17, 2006), 801-817 804

What Can be Learned from CMMI Failures? by D. Gefen, M. Zviran, and N. Elman

Table 1. CMMi Maturity Levels

Maturity Level Description

Initial • Achieving rudimentary predictability of schedules and costs
• Establishing process control, process improvement is not yet possible

Repeatable • Rigorous project management of costs, schedules, commitments, changes,
goals

Defined • Process documented and standardized
• Tailored standards for each process
• Advanced technology can be usefully introduced

Managed • Process understood, measured, controlled
• Comprehensive process measurements and analysis

Optimizing • Foundation achieved for optimization of the process
• Focus on rapid improvement and rapid technology updating

Adapted from Paulk et al. (1993)

Figure 1. The Structure of CMMi

The hierarchical structure of CMMi is shown in Figure 1. Each maturity level (except for Level 1)
can be decomposed into Key Process Areas (KPAs) which identify the areas that should be

Communications of the Association for Information Systems (Volume 17, 2006), 801-817 805

What Can be Learned from CMMI Failures? by D. Gefen, M. Zviran, and N. Elman

addressed in order for an organization to achieve a specific maturity level. Figure 2 depicts the
KPAs of each maturity level. Next, KPAs can be clustered by their common features, which
include (1) commitment to perform, (2) ability to perform, (3) activities performed, (4)
measurement and analysis, and (5) verifying implementation. Each common feature contains a
set of key practices that describe the policies, procedures, and activities that are important to the
effective implementation of a KPA. The key practices describe "what" is to be done rather than
"how" the objectives should be achieved. Those practices describe general principles that are
relevant for a wide range of organizations, projects, and applications. It is still the responsibility of
the implementing organization to formulate specific procedures and activities that best fit its
environment and characteristics.

Adapted from Paulk et al. (1993)

Figure 2. Key Process Areas by Maturity Level

Although developed as a standard for U.S. government funded software projects, CMMi has
become widely accepted in the commercial sector as well. CMMi is a well established standard
for software development control, improvement, and evaluation (Xu, et al., 2003). In the decade
since the formal introduction of CMMi, over 6000 companies and government organizations
worldwide successfully implemented this methodology (Rassa, et al., 2002). It has become "one
of the most popular means for improving software development" (Adler, et al., 2005, p. 215).

Communications of the Association for Information Systems (Volume 17, 2006), 801-817 806

What Can be Learned from CMMI Failures? by D. Gefen, M. Zviran, and N. Elman

According to Adler et al. (2005) over 2000 organizations are using CMMi as of the end of 2003.
During 2003 alone, SEI conducted over 450 appraisals in companies to assess their CMMi level.

III. RESEARCH ON CMMI

Most of the research on CMMi, which is surprisingly limited compared to the wide implementation
of this model, has focused on the impact of CMMi on project and organizational performance
measures. Research shows that this methodology assists in producing high quality software and
increased productivity, while reducing the cost involved and the time invested (Niazi, et al., 2005).
This conclusion is supported by Adler et al. (2005) who examined a very large software services
firm at CMMi level 5. Adler et al. suggested that the potential of CMMi to improve development
performance in quality, cost, and timeliness depends on four key success factors: strategic
impetus, management commitment, broad participation, and organizational socialization.

In an attempt to empirically examine the effects of the CMMi maturity level on project
performance measures, Harter et al. (2000) found that higher levels of process maturity are
associated with significantly higher product quality, but also with increased cycle time and
development effort. However, the reductions in time and effort resulting from improved quality
outweighed the increases from attaining higher levels of process maturity. In another study,
Gopal et al. (2002), focusing on key process areas rather than on the maturity level, found that
quality-oriented processes significantly reduced rework and increased effort, while having an
insignificant impact on elapsed time. Technical processes reduced effort but increased the
elapsed time, probably due to the need for increased coordination between project members.
Jiang et al. (2004) confirmed that software process management maturity is positively associated
with project performance, both for software engineering issues of efficiency and effectiveness and
for organizational issues of control, communication, and organizational knowledge. Goldenson
and Gibson (2003), in a report prepared for the SEI, collected data from 11 organizations in
different locations, sizes, and sectors that implemented CMMi, supporting the proposed ability of
CMMi to positively impact performance measures relating to cost, schedule, quality, customer
satisfaction, and return on investment.

However, CMMi is not without criticism. The most common criticism is that the higher levels of
maturity require excessive documentation, which places a heavy burden on development efforts.
Under the standardization and formalism of CMMi, developers may lose their traditional
autonomy, which in turn may lead to a loss of motivation and creativity (Adler, et al., 2005).
Moreover, the implementation of CMMi may require a considerable amount of time and effort
(Jiang, et al., 2004). Herbsleb et al. (1997) found that the cost and time required for a SPI
program exceeded the expectations of most of their respondents. However, their results also
indicated an association between increased maturity level and improved performance.

IV. BUT WHAT HAPPENS WHEN CMMI IS NOT SO SUCCESSFUL?

What previous research shows then is a picture of a better software development process
achieved through CMMi, but at a cost. This bright picture stands in contrast to the relatively low
level of CMMi penetration. Moreover, the lack of previous research on relatively unsuccessful
implementations of CMMi leaves a gap in understanding how to better manage CMMi
implementation. This paper, in an exploratory manner, examines the case of one company that
while many of its projects where on a high level of CMMi maturity, others were not. We focused
on these low maturity level projects through interviews and corroborated these findings with
survey research among the interviewed. Understanding the reasons why in some projects high
CMMi maturity is not reached is necessary because the profit margin of many outsourcing
vendors depends on their ability to provide high quality software in a standardized manner
(Harding, 1993). CMMi provides one methodology for doing so.

To address this gap we obtained access to projects where CMMi was applied, but where the
effectiveness of its implementation was of questionable value to the software development team.

Communications of the Association for Information Systems (Volume 17, 2006), 801-817 807

What Can be Learned from CMMI Failures? by D. Gefen, M. Zviran, and N. Elman

These projects took place in a generally high CMMi maturity level company, which gave us
access to factors leading to unsuccessful CMMi application on a project-specific basis while being
able to exclude organizational polices which obviously favored high level CMMi maturity levels.
Moreover, the participants in these projects typically also participated in other projects most of
which were high CMMi maturity level projects, so it was not the lack of training of the personnel
which led to these results either. The interviewees, 30 in number, were the software project
managers in a leading high-tech company in Israel. This company is a large world leader in
software development with branches around the world and with this branch in charge of
developing high quality complex software. These low level CMMi projects were an exception to
the rule in this company.

The technology industry in Israel has been the driving force in Israel's economy, particularly in the
last two decades. Israeli high-tech companies have established a significant foundation in the
high-tech industries worldwide. As a case in point, Israel ranks among the leading countries
globally in the number NASDAQ-listed high-tech companies. Our exploratory study took place in
one of the major key players in the Israeli high-tech industry.

The projects were large multi-million dollars projects. The managers were interviewed regarding
the respective software projects each was currently managing. The average duration of each
interview was two hours. All 30 respondents had an academic degree, 73% were males and 27%
females; 3% were 20-30 years old, 24% were 31-40 years old, 36% were 41-50 years old; and
37% were above the age of 50. Having gained this qualitative understanding through exploratory
interviews, we augmented it with a survey so we could statistically assess the conclusions. The
insight gained from the interviews is discussed next. The quantitative questionnaire and its
analysis follow.

In assessing CMMi, the interviewees acknowledged the need for effective implementation of
CMMi in more than by name alone if its prescribed benefits were to be derived from it, but also
highlighted the need to distinguish between the types of software being developed when
assessing this impact. The need to achieve high level CMMi maturity levels was a declared
company policy. The interviewees also highlighted the need to distinguish between the quality of
the software and the quality of the software development process itself. The effective
implementation of CMMi, i.e. the effect it had on the organization, in their view had a direct effect
on creating a better software product, as well as on improving the quality of the development
process. This is to be expected as it is what CMMi is explicitly designed to achieve. The
interviewees also indicated that effective implementation should lead to an increased efficiency
and effectiveness of the development and testing phases in the software development process,
i.e. meeting budget and schedule targets. This effect was over and above the improvement in the
software development process itself. Possibly, this was because of the way CMMi creates a
different managerial mindset through its emphasis on quality and feedback loops. However, in
contrast to the implied benefits on CMMi (SEI, 2005), they did not think that the improved process
of developing the software in itself resulted in improved software quality in these specific projects.
Rather, it seems there were types of software development projects where, because of their
internal complexity and the associate need to improvise on the run, were better managed in a
more flexible development environment than is advocated by CMMi. These development
methodologies such as RAD and XP, which were used in these projects and which explain why in
this generally high maturity CMMi company these specific projects were relatively low on the
CMMi scale, might actually provide an advantage over the more constrictive CMMi model. RAD
and XP allow for better handling of contingencies and unexpected events which are typical when
handling complex algorithms and poorly defined requirements.3 The unleashing of productive

3 XP, or Extreme Programming, is a relatively new software development method which
empowers the developers to respond dynamically to customer requests, thereby circumventing a
lot of red tape which is prevalent in many other software development control methodologies. XP
emphasizes team work with integrated customer and developer teams. It emphasizes courage.
More details on XP are available at http://www.extremeprogramming.org/

Communications of the Association for Information Systems (Volume 17, 2006), 801-817 808

What Can be Learned from CMMI Failures? by D. Gefen, M. Zviran, and N. Elman

innovative minds through RAD and XP through the empowerment they give the developers
combined with the time and effort saved by not adhering to elaborate control mechanisms are at
the core of this phenomenon. In other words, it might be advantageous to apply CMMI in certain
types of projects while more advantageous to apply more iterative methodologies in others. CMMi
is based on cycles of improvement based on feedback. But what happens then when the project
in case is totally different from past organizational experience? In these cases breaking out of the
mold by the type of small scale iterative and incremental development activities which
characterize RAD and XP may be more advantageous.

The interviewees also made a distinction between the overall efficiency of CMMi in saving time
and money during development, and its effectiveness in changing the way the company
developed its software. The interviewees were mostly neutral about the efficiency of CMMi.
Applying CMMi did not add nor did it detract from meeting budget requirements and deadlines. In
contrast, the interviewees were mostly negative about the effectiveness of CMMi in being worth
its price through improving how the processes were done in these projects. This would
correspond to the observation about CMMi being an effective tool when developing the kind of
software the company is used to developing because of its ability to reuse learnt experiences and
lessons from previous projects, but being, as in the case of these projects, a liability to some
degree when these lessons are not really applicable to the specific type of software developed in
the project. This may explain why the projects investigated were mostly at a low level of CMMi
and their commitment to CMMi was rather low. Hence, many of the interviewees indicated CMMi
as a necessary burden, rather than as a prescribed panacea. Nonetheless, the interviewees
acknowledged the improved software quality and the improved quality of the software
development process itself brought about through the application of CMMi. This is interesting
because CMMi was viewed as a necessary nuisance probably because CMMi was not fully
embraced in these projects, but instead was regarded as another external quality requirement
forced on the development teams. In sum, it was the necessity of a dynamic iterative
development process, which was quite different from what the company usually did, which led to
the relatively low level of CMMi maturity in these projects in contrast to most other projects in the
company which were on a high CMMi maturity level being able to utilize knowledge acquired from
previous projects and programmer experiences.

It is interesting to note that in previous research, where CMMi was mostly regarded as an
excellent solution, its application was accompanied with a gradual cultural change in the
companies. In contrast, in the interviewed projects it was an external addition which was not
accompanied with any cultural change in these specific projects. It was applied because the
customer demanded it. The application was not accompanied with any major cultural shift.
Programmers and managers need to meet deadlines. If the methodology assists them in doing
so, then it will be used. If it hinders them, then it will be used but primarily because of customer
requirements. That nonetheless CMMi had the effects it had, despite the unfavorable impression
it made on the managers, actually supports previous research, as well as the recommendations
of SEI that implementing CMMi be accompanied with an appropriate cultural shift (SEI, 2005) and
shows how even in these cases it can have a positive impact on the quality of the software and its
development process.

Another topic which came up in these interviews was the need to distinguish among types of
software development projects. The interviewees indicated that CMMi was applied differently
depending on the whether the software was being written from scratch or being adapted. It was
apparently not a fit-all standardized solution. To begin with, software in general is not a uniform
product, and, therefore, neither is software development. Perhaps the most telling classification of
software is between off the shelf software, on the one hand, and customized software, on the
other. The elaborate control mechanisms which are an integral part of CMMi would seen on the
face of it to be most appropriate for building large customized software, while quite an excess of
controls when it comes to the much less demanding task of implementing off the shelf software
where the necessary development is mostly limited to setting parameters in an iterative manner
with the customers by and making minor adjustments to an existing and tested software package.
This distinction was not identified in previous research on CMMi and yet came up as an important

Communications of the Association for Information Systems (Volume 17, 2006), 801-817 809

What Can be Learned from CMMI Failures? by D. Gefen, M. Zviran, and N. Elman

aspect in the interviews. While not really a surprise, it does confirm the conclusion discussed
earlier. CMMi, as a methodology, requires a certain cultural attitude of ongoing improvement and
learning. When previous knowledge can contribute to the success of the software development
project, as was more the case with customized software, its advantages in terms of efficiency are
higher. And, when previous knowledge does not contribute appreciably to the success of the
software development project, as was more the case with off the shelf software, its advantages in
terms of efficiency are lower. Accordingly, the type of the software being developed also affects
how efficiently CMMi is being implemented to meet budget and time constraints.

V. QUALITATIVE VERIFICATION

In order to provide some statistical validity to these conclusions, we went back to the interviewees
and requested that they complete a questionnaire. The next section discusses this questionnaire
and the model it analyses which formalized the conclusions drawn above. Put formally, the
conclusions drawn based on the interviews suggested several hypotheses.

• H1: Installation effectiveness of CMMi should improve software quality.

• H2: Installation effectiveness of CMMi should improve the software development process.

• H3: Installation effectiveness of CMMi should improve CMMi efficiency.

• H4: Improved software development process through CMMi should improve software quality.

• H5: Improved software development process through CMMi should improve CMMi efficiency.

• H6: In projects where CMMi is implemented, software quality will be improved more in

projects with customized software.

• H7: In projects where CMMi is implemented, the software development process will be

improved more in projects with customized software.

• H8: In projects where CMMi is implemented, CMMi efficiency will be improved more in

projects with customized software.

In retrospect H1 through H5 can be explained on a rational basis. The criteria for CMMi
installation effectiveness was the assessment of the project managers that CMMi was worth its
cost and did not hinder other needed activities by needlessly utilizing resources. Recall, in these
projects previous knowledge was less applicable than in many other projects where overall the
CMMi maturity level was high. This was because CMMi is intended to improve the process of
software development and make it more efficient by learning from the past (SEI, 2005).

H6 through H8 can also be viewed as a rational response. If CMMi improves the process of
software development and the software product itself, then it should do so more frequently and
efficiently in those projects where there is more software development. To be precise in this case,
CMMi should have more of an impact in the case of customized software than off the shelf
software because there is more development in customized software.

The questionnaire items are shown in Appendix 1. The PPV and PSQ items were on a five point
scale anchored at Very Good, Good, No Difference, Bad, and Very Bad. The PEFCT and PEFNC
items were on a five point scale anchored at Strongly Agree, Agree, No Difference, Disagree, and
Strongly Disagree. The questionnaire was pre-tested before it was administered. The
respondents were also asked to state if the project was a custom built IT or an adapted off the
shelf one. The mean and standard deviation of each item are also shown in Appendix 1. Item
PEFCT3 was reverse coded before the mean and standard deviation of the PEFCT construct
were calculated.

Communications of the Association for Information Systems (Volume 17, 2006), 801-817 810

What Can be Learned from CMMI Failures? by D. Gefen, M. Zviran, and N. Elman

VI. QUALITATIVE DATA ANALYSIS

The data were analyzed with PLS Graph Version 3.0 Build 1126. PLS is especially suited for this
type of analysis because it can handle small samples and is aimed at exploratory research (Chin,
1998). The factorial validity of the data were established by showing that the correlation among
each pair of constructs is smaller than the square root of the Average Variance Extracted, shown
in Appendix 2, and by showing the loading of each item on its assigned construct is much higher
than on any other construct, Appendix 3 (Gefen and Straub, 2005). The factor validity was
revalidated with a Principal Components factor Analysis, Appendix 4. The research model is
shown in Figure 3. The path coefficients and explained variance are shown in Table 2. PLS item
Loadings are shown in Appendix 1. A single asterisk in Table 2 means significance at the .05
level and double asterisks means significance at the .01 level.

Figure 3: Research Model

Table 2. Path Coefficients and Explained Variance

 From
To

Explained
Variance

Perceived
Installation
Effectiveness
(negatively
worded)

Product Type
Customized or Off
the Shelf

Perceived Process
Value Gained
Through CMMi

Perceived
Software
Quality Value
Gained
Through CMMi

31% H1 -.37** H6 .30* H4 n.s.

Perceived Process
Value Gained
Through CMMi

18% H2 -.30* H7 .26*

Perceived
Efficiency
(negatively
worded)

33% H3 .42** H8 -.36* H5 n.s.

 n.s. = not significant

Communications of the Association for Information Systems (Volume 17, 2006), 801-817 811

What Can be Learned from CMMI Failures? by D. Gefen, M. Zviran, and N. Elman

The model was also rerun as a saturated model in which all the other paths were included. No
other path was significant. Especially noteworthy, Product Type had no effect on CMMi
Effectiveness.

VII. DISCUSSION AND CONCLUSION

Software development companies compete for lucrative, job-creating contracts on the basis of
industry maturity, labor skills, technology infrastructure, and government support (Pries-Heje, et
al., 2005). The acceptance of software process standards and methodologies are key
determinants of competitiveness in this market, which is why methodologies such as CMMi are
spreading rapidly among software developers worldwide. The benefits of these techniques are
well known and provide a credible explanation for why this rapid diffusion is occurring (Ethiraj, et
al., 2005; Niazi, et al., 2005). And yet, as Brooks famously put it in his seminal paper (Brooks,
1987), there is no silver bullet in software development. Both the process and the product are
complex beyond simple solutions. As previous research has shown, CMMi is in some cases a
good methodology for improving the software development process and through it also the quality
of the software product itself, although SEI has published case studies on failing projects
(Hissam, 1997).

As in many other proposed solutions, CMMi is not a standalone solution. It is part and parcel of a
culture of how software should be developed, and as such its impact will depend on the
appropriateness of the methodology and the culture it creates to the task. At the core of CMMi is
a continuous learning process, presumably assuming that what applied in the past can apply in
the present. This is typically true in software development processes and, hence, the quality
control and improved practices CMMi brings about are generally beneficial. But, occasionally, as
was the case with the 30 projects studied here, this is not the case. Sometimes, the task at hand
is either too different from past projects or too simple as not to be worth the overhead that
applying lessons and quality control practices learnt in the past entail. This was the case in these
30 projects. Their low maturity level of CMMi in these projects, as opposed to the generally high
maturity level in most other projects is indicative, not of failure, but of resourcefulness.
Methodologies are only tools. They should not be applied blindly. Sometimes software
development is a straightforward process which, by resembling past projects, can benefit from
learning from past applications and applying ever increasing quality and quality control
accordingly. But not all software development projects are of this nature. Knowing when to apply
a methodology and when not to, is a sign of good management. This is what we saw in this
company, contrary to what may otherwise have seemed the case.

The interviews suggested, and the data supported, the need to consider the type of software
when assessing the impact of CMMi. Methodologies are born within a context. CMMi was created
for complex software development processes. But CMMi is no panacea. When it is applied to the
simple task of adapting off the shelf software, then its effect was significantly weaker.

LIMITATIONS

Obtaining data on what seems to be failed projects is problematic. Companies typically prefer to
keep their dirty linen private. Bearing this in mind, the rather small sample size, while a statistical
limitation, is actually quite large considering how practically difficult it is to come by such data.
Nonetheless, from a statistical point of view, there is a need to replicate this study with a larger
sample to give statistical credence to the conclusions. Having said this, however, the statistics
are in place primarily to lend support to the insights gained through the interviews.

Related to this need for additional research, is the need to redefine what is meant by
unsuccessful software development projects. On the face of it, these applications of CMMi might
have been considered a failure when examined against the CMMi maturity level scale. But when
examined considering the applicability of the methodology to the specific tasks, these 30 projects
might actually not even be considered failures. Not adhering too closely to CMMi directives, and

Communications of the Association for Information Systems (Volume 17, 2006), 801-817 812

What Can be Learned from CMMI Failures? by D. Gefen, M. Zviran, and N. Elman

thus achieving only small benefits from it, may actually have been the right decision to make in
these cases.

IMPLICATIONS

Analyses, surveys, and case histories of CMMi implementations reveal some common mistakes
made by organizations in planning and executing process improvement programs. Some of these
mistakes are due to lack of experience or knowledge; some are the result of cultural "blind spots",
a lack of discipline, or optimistically wishing the world didn't work the way it actually does (Hefner
and Tauser, 2001). But, sometimes, these methodologies simply do not fit the task and are forced
on the software development process by customers.

While any implications drawn on a small sample, whether in interviews or survey data, should be
taken with a measure of salt, some conclusions in this exploratory study do stand out and are
worthy of additional research and consideration when managing projects with CMMi. First, the
findings confirm that CMMi is not a miracle solution, if only because other factors, such as the
type of the software being developed, also contribute to the success of both the software
development process and the resulting product. Second, nonetheless, installing CMMi
successfully is crucial as it directly affects the quality of the software and its development
process, at least as it is judged by the project managers who developed it. Third, and this is
perhaps somewhat surprising as the other two conclusions could have been derived from
previous research and SEI papers, improving the software development process does not seem
to automatically have a significant effect on the quality of the software itself. At least in the case of
these 30 projects this seems to have been because the application of CMMi, while beneficial in
other projects, did not provide enough benefit to justify its cost in terms of additional time and
managerial activities.

Also worth noting, product type, as shown in Appendix 2, is highly correlated with the efficacy of
CMMi, which is not surprising considering CMMi is designed for complex projects and so, in the
case of off the shelf software, it has less of an impact. On the other hand, product type, as shown
in Appendix 2, is not significantly correlated with the effectiveness of CMMi installation. This may
be the result of the alternative project management methodologies that the project managers had
and the way these contributed to the overall successful software development process.

Along the same lines, outsourcing companies should, as many do, require quality control from
their vendor. CMMi is a leading methodology in achieving such quality control. But, like other
tools, it is important to know when to apply it and when not to apply it. Blindly requiring the vendor
to adhere to CMMi when the nature of the software does not justify it, may actually add an
unnecessary burden, and throw a wrench in the software development process as evidenced in
these projects. Improving software development is not a matter of methodology alone. It is a
matter of matching culture with task.

CONCLUSION

CMMi is a good methodology, but it is not a silver bullet. CMMi as described by previous research
is an excellent methodology when applied correctly. As this study tentatively shows, even when
CMMi is implemented in a less than perfect manner, the quality of this implementation is still of
significant impact on several crucial aspects of successful software development projects.

Communications of the Association for Information Systems (Volume 17, 2006), 801-817 813

What Can be Learned from CMMI Failures? by D. Gefen, M. Zviran, and N. Elman

EDITOR’S NOTE: The following reference list contains the address of World Wide Web pages.
Readers who can access the Web directly from their computer or are reading the paper on the
Web, can gain direct access to these references. Readers are warned, however, that

1. these links existed as of the date of publication but are not guaranteed to be
working thereafter.

2. the contents of Web pages may change over time. Where version information
is provided in the References, different versions may not contain the information
or the conclusions referenced.

3. the authors of the Web pages, not CAIS, are responsible for the accuracy of
their content.

4. the author of this article, not CAIS, is responsible for the accuracy of the URL
and version information.

REFERENCES

Adler, P.S., F.E. McGarry, W.B. Irion-Talbot, and D.J. Binney. "Enabling Process Discipline:
Lessons from the Journey to CMM Level 5," MIS Quarterly Executive (4:1), 2005, pp. 215-
227.

Anthes, G.H. "Model Mania," Computerworld (38:10), 2004, pp. 41-45.

Brooks, F.F. "No Silver Bullet; Essence and Accidents of Software Engineering," Computer
(20:4), 1987, pp. 10-19.

Budgen, D., and J.E. Tomayko. "The SEI Curriculum Modules and their Influence: Norm Gibbs'
Legacy to Software Engineering Education," Journal of Systems and Software (75:1-2), 2005,
pp. 55-62.

Capers, J. Programming Productivity, McGraw Hill Book Company, New York, NY, 1986.

Chin, W.W. "The Partial Least Squares Approach to Structural Equation Modeling," In Modern
Methods for Business Research, G. A. Marcoulides (ed.) London, 1998, pp. 295-336.

Dunn, R.H. Software Defect Removal, McGraw Hill Book Company, New York, NY, 1984.

Ethiraj, S.K., P. Kale, M.S. Krishnan, and J.V. Singh. "Where Do Capabilities Come From and
How do They Matter? A Study in the Software Services Industry," Strategic Management
Journal (26:1), 2005, pp. 25-45.

Evans, M.W. "SPMN Director Identifies 16 Critical Software Practices,"
www.iceincusa.com/CrossTalk_Mar01.htm, 2004.

Gefen, D., and D.W. Straub. "A Practical Guide to Factorial Validity Using PLS-Graph: Tutorial
and Annotated Example," Communications of the Association for Information Systems (16:5),
2005, pp. 91-109.

Gibbs, W.W. "Software Chronic Crisis," Scientific American (77:September), 1994, pp. 86-95.

Goldenson, D.R., and D.L. Gibson. "Demonstrating the Impact and Benefits of CMMI: An Update
and Preliminary Results," 2003.

Gopal, A., T. Mukhopadhyay, and M.S. Krishnan. "The Role of Software Processes and
Communication in Offshore Software Development," Communication of the ACM (45:4),
2002, pp. 193-200.

Communications of the Association for Information Systems (Volume 17, 2006), 801-817 814

What Can be Learned from CMMI Failures? by D. Gefen, M. Zviran, and N. Elman

Halstead, M.H. Elements of Software Science, Elsevier Scientific Publishing Company, New
York, NY, 1977.

Harding, E.U. "IS explores multisourcing: trend toward selective use of third parties - MIS -
includes related article on temporary outsourcing partnerships - Field Report," Software
Magazine, http://www.findarticles.com/p/articles/mi_m0SMG/is_n9_v13/ai_13922287, 1993.

 Harter, D.E., M.S. Krishnan, and S.A. Slaughter. "Effects of Process Maturity on Quality, Cycle
Time, and Effort in Software Product Development," Management Science (46:4), 2000, pp.
451-466.

Hefner, R., and J. Tauser. "Things They Never Taught You in CMM School," The 26th Annual
NASA Goddard Software Engineering Workshop, 2001, pp. 91-95.

Herbsleb, J., D. Zubrow, D. Goldenson, W. Hayes, and M. Paulk. "Software Quality and the
Capability Maturity Model," Communications of the ACM (40:6), 1997, pp. 30-40.

Hissam, S. "Case Study: Correcting System Failure in a COTS Information System," SEI COTS,
http://www.sei.cmu.edu/cbs/monographs/case-study-correcting/case.study.correcting.pdf,
1997, pp. 1-14.

Hoffman, T. "Checking Out CMM," Computerworld, http://www.computerworld.
com/managementtopics/management/project/story/0,10801,95457,00.html, 2004.

Jiang, J.J., G. Klein, H-G. Hwang, J. Huang, and S.-Y. Hung. "An Exploration of the Relationship
between Software Development Process Maturity and Project Performance," Information &
Management (41:3), 2004, pp. 279-288.

King, J. "The Pros & Cons of CMM, http://www.computerworld.com/
managementtopics/management/project/story/0,10801,87882,00.html," Computerworld,
2003, pp. 50.

Niazi, M., D. Wilson, and D. Zowghi. "A Maturity Model for the Implementation of Software
Process Improvement: An Empirical Study," The Journal of Systems and Software (74),
2005, pp. 155–172.

Paulk, M.C., B. Curtis, M.B. Chrissis, and C. V. Weber. "Capability Maturity Model for Software,
Version 1.1. CMU/SEI-93-TR-24," 1993.

Pitterman, B. "Telcordia Technologies: The Journey to High Maturity," IEEE Software (17:July–
August), 2000, pp. 89–96.

Pries-Heje, J., R. Baskerville, and G. Hansen. "Strategy Models for Enabling Offshore
Outsourcing: Russian Short-cycle-time Software Development," Information Technology for
Development (11:1), 2005, pp. 5-30.

Rassa, R.C., V. Garber, and D. Etter. "Capability Maturity Model Integration (CMMI): A View from
the Sponsors," Systems Engineering (5:1), 2002, pp. 3-6.

SEI "Welcome to the CMMI® Web Site," CMMi, http://www.sei.cmu.edu/cmmi/, 2005.

 Xu, Y., Z. Lin, and W. Foster. "Agile Methodology in CMM Framework: An Approach to Success
for Software Companies in China," Proceedings of the GITM, Calgary, Canada, 2003.

Zviran, M. "Relationships between Organizational and Information Systems Objectives: Some
Empirical Evidence," Journal of Management Information Systems (7:1), 1990, pp. 65-84.

Communications of the Association for Information Systems (Volume 17, 2006), 801-817 815

What Can be Learned from CMMI Failures? by D. Gefen, M. Zviran, and N. Elman

APPENDIX I. QUESTIONNAIRE ITEMS

Code Item Mean
(Std)

PLS Item
Loadings

PLS
Composite
Reliability

 Please state how the value was on
each of the following
characteristics after applying the
CMMi?

Perceived Process
Value

 3.67 (.64) .95

PPV1 Meeting project timetable 3.83 (.81) 0.980
PPV2 Meeting project budget constraints 3.52 (.63) 0.930
Perceived Software
Quality

 3.62 (.52) .92

PSQ1 Functionality 3.73 (.58) 0.887
PSQ2 Reliability 3.63 (.56) 0.932
PSQ3 Maintainability 3.50 (.63) 0.845

 How would you characterize the

progress of process improvement
since the adoption of CMMi?

Perceived
Installation
Effectiveness
(negatively worded)

 2.10 (.80) .88

PEFCT1 The CMMi was well worth the money
and effort we spent, it had a major
positive effect on the organization.

3.97 (.77) -0.840

PEFCT2 Because of the CMMi we have
neglected other important issues
facing the organization.

2.37
(1.129)

0.780

PEFCT3 Nothing much has changed since the
CMMi adoption.

1.90 (.96) 0.887

Perceived Efficiency
(negatively worded)

 3.10 (1.12) .93

PEFNC1 Process Improvement is taking longer
than we expected.

3.23 (1.19) 0.965

PEFNC2 Process Improvement is costing more
than we expected.

2.97 (1.13) 0.958

APPENDIX II. CORRELATION WITH THE SQUARE ROOT OF THE AVERAGE VARIANCE
EXTRACTED IN THE DIAGONAL

 PEFCT PEFNC ProductType PQS PPV

PEFCT 0.842
PEFNC 0.441 0.962
ProductType -0.073 -0.394 1.000
PQS -0.403 -0.554 0.407 0.889
PPV -0.332 -0.276 0.291 0.274 0.955

Communications of the Association for Information Systems (Volume 17, 2006), 801-817 816

What Can be Learned from CMMI Failures? by D. Gefen, M. Zviran, and N. Elman

APPENDIX III. PLS CONFIRMATORY FACTOR ANALYSIS

PEFCT PEFNC

Customized
or Off the

Shelf
Software

PQS PPV

PEFCT1 -0.84 -0.48 0.31 0.42 0.21
PEFCT2 0.80 0.33 0.21 -0.20 -0.39
PEFCT3 0.89 0.30 -0.04 -0.37 -0.27
PEFNC1 0.46 0.97 -0.37 -0.56 -0.32
PEFNC2 0.38 0.96 -0.39 -0.51 -0.20
Product Type -0.07 -0.39 1.00 0.41 0.29
PQS1 -0.35 -0.54 0.46 0.89 0.40
PQS2 -0.32 -0.44 0.43 0.93 0.19
PQS3 -0.41 -0.49 0.16 0.84 0.11
PPV1 -0.45 -0.41 0.31 0.54 0.96
PPV2 -0.25 -0.16 0.03 0.14 0.81

APPENDIX IV. PRINCIPAL COMPONENTS FACTOR ANALYSIS WITH OBLIMIN ROTATION

Component

 1 2 3 4 Communalities
PQS2 .986 .046 .089 .058 .945
PQS1 .852 .026 -.075 -.155 .825
PQS3 .714 -.163 -.012 -.110 .700
PEFCT2 .201 .902 .011 .092 .788
PEFCT3 -.173 .864 -.089 -.182 .814
PEFCT1 .131 -.681 -.027 -.185 .669
PPV2 -.141 .017 .976 -.031 .906
PPV1 .337 -.091 .704 -.055 .823
PEFNC2 -.011 -.015 -.042 .947 .912
PEFNC1 -.083 .049 -.026 .898 .929
Eigenvalue 3.517 2.949 2.027 3.028

ABOUT THE AUTHORS

David Gefen is Associate Professor of MIS at Drexel University, where he teaches Strategic
Management of IT, Database, and VB.NET. He received his Ph.D. from GSU and a Masters from
Tel-Aviv University. His research focuses on psychological and rational processes in ERP, CMC,
and e-commerce implementation. David’s interests stem from 12 years developing and managing
large IT. His research findings have been published in MISQ, ISR, IEEE TEM, JMIS, JSIS,
DATABASE, Omega, JAIS, CAIS, and JEUC.

Moshe Zviran is Associate Professor of Information Systems in the Faculty of Management, The
Leon Recanati Graduate School of Business Administration, Tel Aviv University. He received his
B.Sc. degree in mathematics and computer science and the M.Sc. and Ph.D. degrees in
Information Systems from Tel Aviv University, Israel, in 1979, 1982, and 1988. He held academic
positions at the Claremont Graduate University, California, the Naval Postgraduate School,
California, and Ben-Gurion University, Israel. His research interests focus on the management of
the information resource and information systems security. Prof. Zviran’s research has been

Communications of the Association for Information Systems (Volume 17, 2006), 801-817 817

What Can be Learned from CMMI Failures? by D. Gefen, M. Zviran, and N. Elman

published in: MIS Quarterly, Communications of the ACM, Journal of Management Information
Systems, Communications of the AIS, IEEE Transactions on Engineering Management,
Information and Management, Omega, The Computer Journal and other journals. He is also co-
author (with N. Ahituv and S. Neumann) of Information Systems for Management (Tel-Aviv,
Dyonon, 1996) and Information Systems – from Theory to Practice (Tel-Aviv, Dyonon, 2001).

Natalie Elman was a M.Sc. student at the Information Systems Department, Faculty of
Management, Tel-Aviv University.

Copyright © 2006 by the Association for Information Systems. Permission to make digital or hard

copies of all or part of this work for personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies bear this notice and full citation
on the first page. Copyright for components of this work owned by others than the Association for
Information Systems must be honored. Abstracting with credit is permitted. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or fee. Request permission
to publish from: AIS Administrative Office, P.O. Box 2712 Atlanta, GA, 30301-2712 Attn: Reprints or via e-
mail from ais@aisnet.org

 .

ISSN: 1529-3181
EDITOR-IN-CHIEF

Joey F. George
Florida State University

AIS SENIOR EDITORIAL BOARD
Jane Webster
Vice President Publications
Queen’s University

Joey F. George
Editor, CAIS
Florida State University

Kalle Lyytinen
Editor, JAIS
Case Western Reserve University

Edward A. Stohr
Editor-at-Large
Stevens Inst. of Technology

Blake Ives
Editor, Electronic Publications
University of Houston

Paul Gray
Founding Editor, CAIS
Claremont Graduate University

CAIS ADVISORY BOARD
Gordon Davis
University of Minnesota

 Ken Kraemer
Univ. of Calif. at Irvine

M. Lynne Markus
Bentley College

Richard Mason
Southern Methodist Univ.

Jay Nunamaker
University of Arizona

Henk Sol
Delft University

Ralph Sprague
University of Hawaii

Hugh J. Watson
University of Georgia

CAIS SENIOR EDITORS
Steve Alter
U. of San Francisco

Chris Holland
Manchester Bus. School

Jerry Luftman
Stevens Inst.of Technology

CAIS EDITORIAL BOARD
Erran Carmel
American University

Fred Davis
Uof Arkansas, Fayetteville

Gurpreet Dhillon
Virginia Commonwealth U

Evan Duggan
U of Alabama

Ali Farhoomand
University of Hong Kong

Jane Fedorowicz
Bentley College

 Robert L. Glass
Computing Trends

Sy Goodman
Ga. Inst. of Technology

Ake Gronlund
University of Umea

Ruth Guthrie
California State Univ.

Alan Hevner
Univ. of South Florida

Juhani Iivari
Univ. of Oulu

K.D. Joshi
Washington St Univ.

Michel Kalika
U. of Paris Dauphine

Jae-Nam Lee
Korea University

Claudia Loebbecke
University of Cologne

Sal March
Vanderbilt University

Don McCubbrey
University of Denver

Michael Myers
University of Auckland

Dan Power
University of No. Iowa

Kelley Rainer
Auburn University

Paul Tallon
Boston College

Thompson Teo
Natl. U. of Singapore

Craig Tyran
W Washington Univ.

Upkar Varshney
Georgia State Univ.

Chelley Vician
Michigan Tech Univ.

Doug Vogel
City Univ. of Hong Kong

Rolf Wigand
U. Arkansas, Little Rock

Vance Wilson
U. Wisconsin, Milwaukee

Peter Wolcott
U. of Nebraska-Omaha

Ping Zhang
Syracuse University

DEPARTMENTS
Global Diffusion of the Internet.
Editors: Peter Wolcott and Sy Goodman

Information Technology and Systems.
Editors: Alan Hevner and Sal March

Papers in French
Editor: Michel Kalika

Information Systems and Healthcare
Editor: Vance Wilson

ADMINISTRATIVE PERSONNEL
Eph McLean
AIS, Executive Director
Georgia State University

Reagan Ramsower
Publisher, CAIS
Baylor University

Chris Furner
CAIS Managing Editor
Florida State Univ.

Cheri Paradice
CAIS Copyeditor
Tallahassee, FL

	What Can Be Learned from CMMi Failures?
	Recommended Citation

	Microsoft Word - Journal.doc

