Related Questions Detection Model 1in Stack
Overflow based on Semantic Matching

Shizhao HuangT,Yimin Wuté, Jinwei Lut, Chao Deng§
School of Software Engineering, South China University of Technology, Guangzhou, China
fSchool of Computer Science and Engineering, South China University of Technology, Guangzhou, China
§School of Computer Science and Engineering, Guangdong Ocean University at yangjiang, Yangjiang, China
se_hsz@mail.scut.edu.cn, csymwu@scut.edu.cn,
cskilljl@mail.scut.edu.cn, dengchao@gdou.edu.cn

Abstract—Stack Overflow is a widely-used community Q&A
website for programming-related queries. In such a platform,
providing related questions as suggestions to the users can signifi-
cantly enhance their search experience. Although there are many
approaches based on deep learning that can automatically predict
the relatedness between questions, those approaches are limited
because the semantic and interaction features of the sentences
may be lost. In this paper, we propose a novel method to predict
the relatedness between questions based on semantic matching.
We adopt the Interaction Feature Extractor to capture the
interaction information and fuse it through a fusion mechanism
to enhance the interaction between questions. Our experimental
results demonstrate that our proposed method achieves state-
of-the-art performance in terms of Precision, Recall, and F1-
score evaluation metrics, outperforming the baseline approaches.
Furthermore, we show that our model also performs well in
other semantic matching tasks in software fields, indicating its
generalization ability and robustness.

Index Terms—Stack Overflow, Question Relatedness, Deep
Learning, Semantic Matching

I. INTRODUCTION

Stack Overflow is a Programming Community-based Ques-
tion Answering (PCQA) forum that functions as a platform
for developers to seek solutions to programming issues and
exchange knowledge in their respective fields. Over time,
Stack Overflow has accumulated a large number of questions,
with many duplicate and related questions. Figure 1 illustrates
an example of a pair of related questions. They are discussing
different but related issues, which means that the answers
in question 2 contribute to the solution of question 1. It is
worth mentioning that typically, developers manually share
related questions through URL links, which are identified
after the question has been posted. If developers can find
related questions when seeking solutions to new issues, they
can leverage the existing answers to efficiently resolve their
problems. Meanwhile, these available answers enable devel-
opers to avoid posting duplicate issues, thereby facilitating
the maintenance of the website. The website contains a vast
array of questions, and given the possibility of expressing
the same question in multiple ways, manual identification
methods prove to be inefficient and time-consuming. Hence,

DOI reference number: 10.18293/SEKE2023-163

; Bekeley caffe command line interface

| 4sked 5 years, 6 months ago Medified 5 years, 6 months ago Viewed 266 times

if you are using a custom python layer - and assuming you wrote the class correctly in python - let's
say the name of the class is "my_ugly_custom layer"; and you execute caffe in the linux command
1 line interface,

how do you make sure that caffe knows how to find the file where you wrote the class for
your layer? do you just place the .py file in the same directory as the train.prototxt?

or

if you wrote a custom class in python you need to use the python wrapper interface?

thanks alot! | will try it out and comment. - Algjandro Simkievich

see this 't more information about "Python” layer. — Shai | Question 1
L.} e
Frmos —mm g — e A
: What is a "'Python"" layer in caffeﬂ i
| Asked 6years, 2 months ago Modified 3 years, 7 months ago Viewed 8k fimes |
i |
i Caffe has a layer type "python™ . !
i |
| .
N or instance, Is layer type can be used as & 10ss layer.
| For instance, this layer & b s al i
i On other oceasions it is used as an input layer. |
H |
! What is this layer type?
| How can this layer be used? :
|
H |
| machine-leaming al-network p-leaming caff i
! Question 2 i

it is necessary to propose an automated method to identify
duplicate and related questions.

Due to its strong nonlinear fitting ability, deep learning can
effectively extract semantic information, and in recent work,
some researchers have employed deep learning to predict
question relatedness[1,3,6,9]. Taking Pei et al.’s [3] work as an
example, their method adopts BiLSTM to extract contextual
information and employs the soft attention mechanism to
extract the interaction features of words. However, their model
only learns the interaction features of words and ignores the
extraction of semantic and interaction features of sentences,
which are crucial for predicting the semantic relevance be-
tween questions.

This paper conducts research based on the work of Pei et
al. [3]. In order to leverage interaction features to predict the
semantic relevance between questions, we propose a related
questions Detection Model in Stack Overflow (named DMSO),
which detects the related questions based on the semantic

relatedness between questions. To better extract the features
of sentences, we introduce Interaction Feature Extractor to
enhance the model’s ability to extract interaction information
and fuse it through a fusion mechanism to enhance the
interaction between questions. To evaluate the proposed model,
we conduct experiments on the public dataset built by Shirani
et al. [6] and compare with the baseline models.
The main contributions of this paper are as follows:

o We proposed a novel semantic matching model to detect
the semantic relatedness between questions, which is
an automated method to identify duplicate and related
questions.

o We implement an interaction feature extractor to capture
the features of sentences to enhance the model’s ability
to extract interaction formation.

o We evaluate our approach on a public dataset, and the
result shows that our model not only outperforms previ-
ous methods in the question relatedness prediction task
but also has a good performance in duplicate question
detection tasks in software engineering domains.

The rest of the paper is organized as follows. Section II
briefly describes the related work of our study. Section III
introduces the overall framework and technical details of our
approach. Section IV describes the experimental settings and
presents the experiment results. Section V concludes the paper
and outlines future work.

II. RELATED WORK

A. Detecting the semantic relatedness between questions on
programming community Q&A sites

Predicting the semantic relatedness between questions on
programming community Q&A sites is beneficial to improve
the efficiency of users in finding questions, and even helps
them solve problems directly. Xu et al. [1] refer to a question
and its answers in Stack Overflow as a knowledge unit, and
divide these knowledge units into four classes: duplicate,
direct, indirect, and isolated. In their paper, they proposed
a CNN model, which adopts a convolutional neural network
to extract contextual information in the knowledge units. They
then calculate the semantic similarity of two contextual vectors
by the cosine function and predict the class of knowledge unit
pairs based on the semantic similarity. Fu et al. [8] proposed
an SVM-based model(Tuning SVM), which uses word2vec [7]
to obtain word embedding and adopts differential evolution
(DE) as its tuning algorithm. In their study, tuning SVM
with parameter tuning runs much faster than the CNN model.
Following the study of Fu et al., Xu et al. [9] proposed
the Soft-Cos SVM model in their paper. The Soft-Cos SVM
model calculates the soft cosine similarity based on Simbow
to measure the distance between knowledge unit pairs and
adopt SVM as the final classifier. In addition, Xu et al. built a
dataset containing 40,000 pairs of knowledge units. Based on
the work of Xu et al., Shirani et al. [6] constructed a dataset
with more than 300,000 pairs of knowledge units (hereafter,
Knowledge Unit dataset). They also constructed two baseline

models SOFTSVM and DOTBILSTM. SOFTSVM is similar
to the previous SVM-based method, and it uses word2vec
for word embedding of knowledge units, then calculates the
cosine similarity, and finally predicts the semantic relatedness
between knowledge units by SVM. DOTBILSTM uses BiL-
STM to extract contextual information in the knowledge units,
then calculates the inner product of the contextual vectors and
obtains the probability distribution of each class using fully
connected layers and softmax functions.

In recent work, Pei et al. [3] proposed the attention-based
model ASIM. This model also adopts BiLSTM to encode local
semantic information and obtain the interaction information
between two knowledge units by soft attention mechanism.
The experimental results show that ASIM is the state-of-the-
art model in the dataset built by Shirani et al.. However, their
approach was based on word-level interaction features between
pairs of knowledge units through the soft attention mecha-
nism. Therefore, these methods cannot sufficiently consider
the semantic and interaction features at the sentence level,
which is crucial for predicting the semantic relevance between
questions. Therefore, we introduce a novel interaction method
to improve the extraction of interaction features, hoping to
achieve better performance in the task of predicting semantic
relatedness between questions.

B. Duplicate question detection

Previous studies have shown [11] that the rapid growth in
the number of duplicate questions is not conducive to website
maintenance and it can lead to a decrease in the number of
active users of community Q&A sites. AskUbuntu is another
popular programming community Q&A site. Bogdanova et
al.[14] construct a dataset with 30,000 question pairs from
the AskUbuntu data dump and adopt CNN to detect duplicate
questions. Based on the work of Bogdanova et al., Rodrigues
et al.[15] released the AskUbuntu dataset’s clean version.
They proposed a hybrid deep convolutional network model
DCNN. The deep learning approaches described above do not
require manually designed features and have a higher accuracy
rate compared to traditional automatic detection methods.
However, these methods also fail to consider the interaction
information of sentences. We will use the AskUbuntu dataset
released by Rodrigues et al.[15] to explore the generalization
performance of DMSO in similar tasks.

I1I. THE APPROACH

According to Xu et al. [1], a question in Stack Overflow and
its answers is a knowledge unit (KU). Based on the degree of
relatedness between two knowledge units from high to low, the
relatedness types between them can be defined as the following
four classes:

e Duplicate: The questions in the two knowledge units are
duplicate questions.

e Direct: Information in one knowledge unit can directly
solve the question in another knowledge unit.

e Indirect: The information in one knowledge unit is helpful
to the solution of the question in another knowledge

unit, but the information alone cannot directly solve the
question.

o Isolated: There is no semantic relatedness between the
two knowledge units.

We treat this task as a multi-class classification problem.
The input to the model is a pair of knowledge units, and the
relatedness is predicted as one of the four classes mentioned
above.

Figure 2 gives an illustration of the DMSO framework,
which is mainly composed of the following five modules: (1)
Word Embedding Layer, (2) Word Encoding Layer, (3) Local
Interaction Layer, (4) Global Interaction Fusion Layer, and
(5) Prediction Layer.

Prediction Layer

Global Interaction

. Interaction
Fusion Layer

Feature Extractor

Local Interaction
Layer

Interaction
Feature Extractor

BiLSTM

Word Encoding

BiLSTM
Layer

Embedding

Knowledge Unit X

Word Embedding
Layer

Embedding

Knowledge Unit Y

Fig. 2 The framework of DMSO

A. Input of the model

We concatenate the title, body, and answers to the question
to form a textual sequence as the input text. And we apply
some data pre-processing steps on the input text, including
dividing by sentence, normalizing URLs and numbers, re-
moving punctuation marks and stop words, splitting camel
case words, stemming, and changing all words to lowercase.
We use the pre-processed text sequences as the final input
to the model. Suppose the text sequence of a knowledge
unit is KU = {wi,wa,...,w,}, where n is the sequence
length. The inputs of the model DMSO are text sequences
KUx and KUy, and the target of the model predicts the
relatedness of KUx and KUy . Since the two text sequences
are treated symmetrically before the Prediction Layer, we will
only present the processing of KUx in the model to avoid
repetition.

B. Word Embedding Layer

In this layer, we adopt word embedding techniques to
convert words into their corresponding vector representations.
The word embeddings pre-trained in the universal domain

containing large amounts of data not related to software
engineering, may lead to ambiguous representations of words
[16]. Therefore, we use the title, body, and answers in Stack
Overflow as the corpus, constructing a 300-dimensional word
vector through word2vec [7]. Each word w; in the knowledge
unit is transformed into a vector representation x; with 300 di-
mensions. Therefore, the knowledge units containing n words
can be converted into corresponding matrix representation,
which is the input of the word encoder of the model:

KUx=21P22D ... D x, (D
Where @ is the concatenation operator.

C. Word Encoding Layer

In this layer, we adopt BiLSTM to fuse local features into
each word’s original representation. BILSTM is composed of
a forward and a backward LSTM[4]. The semantic under-
standing of natural language words depends on the context.
This means that the meaning of the word depends not only on
what has been read before but also on what will be read. We
adopt BiLSTM as the word encoder, which can capture local
contextual depegdencies from both forward and backward
directions. Let h;,% € [1,n] denote the hidden state of the
forward LSTM in the time step ¢, and the encoding process
of BiLSTM is as follows:

o= LSTM(H, 1, z), Vi€ {1,2,..n} ()
Bo=LSTM (W or,20), Vi € {1,2,.n} (3)
- =
Xz:[h“ hz],VZG{l,Q,,n} (4)
D. Local Interaction Layer

Most of the previous deep learning models used in the
semantic matching task on PCQA sites were based on rep-
resentation models. These approaches do not consider the in-
teraction information between these two questions. In the field
of neural language processing, the attention mechanism was
first applied in a neural machine translation model [19]. By
applying the attention mechanism to the questions relatedness
prediction task, the model can effectively extract the inter-
action information between questions through inter-sentence
alignment and obtain better performance. Furthermore, Tay et
al. [2] have shown that by equipping the attention mechanism
with a more flexible structure, the model can generate more
robust representations.

Therefore, in this Layer, we introduce a novel interac-
tion method to improve the extraction of interaction features
through constructing interaction attention and difference at-
tention. Figure 3 shows the workflow of how the Interaction
Feature Extractor extracts the interaction information between
two features.

We first conduct a dot product between X; and Y, which are
the output of two words in the knowledge unit KUx and KUy
from the Word Encoding Layer. After the weighted summation
of the attention scores of all words in KUx and KUy, we can
obtain the interaction attention matrix A. And the difference
attention D adopts a subtraction-based attention mechanism,

Interaction Feature Extractor

Attention

===
1
| MatMul

| Soft

Difference :
i

! Attention

Subtract

Fig. 3 The architecture of the Interaction Feature Extractor

which allows the model to pay attention to dissimilar parts
between knowledge unit pairs by element-wise subtraction.
The difference attention is introduced to better capture fine-
grained interaction information between knowledge units.

A=XT.y (5)
D=|X-Y| (6)

Where - denotes the inner production operation, | X —Y || €
R"™>*™ and n, is the KUx sequence length. We mask the
two attention matrices and perform a sigmoid operation on
the difference attention D. Then we multiply A and D to get
the attention matrix of the local interaction feature.

SX = softmaz(A ® sigmoid(D)) - Y @)
SY = softmaz(A ® sigmoid(D)) - X (8)

Where softmax is a normalization function, sigmoid is an
activation function, and ® denotes element-wise multiplica-
tion.

E. Global Interaction Fusion Layer

Previous methods only consider local interaction features
and ignore the extraction of global features, so it is difficult
to capture the semantic information and dependencies at the
sentence level. To address the problem that local interaction
features are insensitive to the understanding of global informa-
tion, we extract the semantic features and interaction features
of sentences to represent the global interaction features in
knowledge unit pairs through the Global Interaction Fusion
Layer. We refer to the method of converting word vectors to
sentence vectors in the paper [5], which proceeds as follows.

GX = softmax(Watanh(WBSX + b))% 9)

Then we utilize the Interaction Feature Extractor to extract
global interaction features, which can help capture the global
relevance information between knowledge units. The global
information complements the semantic relatedness that cannot

be captured by local interaction.
FX FY = IFE(GX,GY) (10)

Where [F'E denotes the operation of the Interaction Feature
Extractor, which is the same as Equations (5-8) in the Local

Interaction Layer. We convert the aggregation features F'X and
FY into fixed-size vectors.

Vot = Mazpooling(F) (11)
V;gol = Mazxpooling(FY) (12)
Then we concatenate the vectors in the fusion layer.
T= FFN[Vp)gol; Vgcj)ol; Vp)(fol - Vp};ol; ‘/p)(fol © Vplgol] (13)

Where FFF'IN denotes a single-layer feedforward network.

FE. Prediction Layer

In the Prediction Layer, for the vectors 7' obtained from
the Global Interaction Fusion Layer, we adopt a single-layer
feedforward network to get the feature vector. Finally, we
calculate the probability distribution of four classes with the
softmax function.

IV. EXPERIMENT

In this section, we conducted some experiments to answer
the following research questions.

A. Research Questions

RQ1: How effective is DMSO in predicting knowledge unit
pairs of different classes?

DMSO adopts the semantic interaction-based approach,
introducing sentence-level interaction features to complement
the semantic relatedness that cannot be captured by local
interaction, which is a significant departure from previous
work. To investigate the effectiveness of our approach, we
compare the performance of DMSO with the baseline from
Pei et al’s work [3]. To present results more accurately, we
keep the results of all models to three decimal places.

RQ2: How much influence do the modules we proposed
contribution to the improvement of DMSO?

Two important modules we proposed, including Global
Interaction Fusion Layer and Interaction Feature Extractor,
can help DMSO to capture the rich features of knowledge
units by extracting both the semantic and interaction features
of sentences. To evaluate their contributions, we perform the
following ablation studies, consisting in (1) removing the
Global Interaction Fusion Layer (GIF) and replacing it with the
max pooling operation; (2) removing the Interaction Attention
(IA) in two Interaction Feature Extractors; (3) removing the
Difference Attention (DA) in two Interaction Feature Extrac-
tors; , and (4) removing two Interaction Feature Extractors
(IFE). Then, we compare the revised model with the original
model on the Fl-score.

RQ3: Does DMSO work well in other semantic relevance
tasks from software engineering domains?

Duplicate question detection in programming community
Q&A sites is also a task to study semantic relevance in
software engineering. In contrast to predicting question rel-
evance, this task is a two-class classification problem where
the evaluation metric is accuracy. We want to explore the
generalization performance of DMSO through a different
software engineering task.

B. Dataset

We carry out experiments on the dataset built by Shirani et
al. [6]. This dataset focuses on Java-related knowledge units
on Stack Overflow, and it contains 160,161 distinct knowledge
units and 347,372 pairs of knowledge units with four types of
relationships. In this paper, it is divided into three parts with
the same proportion as in [6], that is, the training set containing
208, 424 knowledge unit pairs, the validation set containing
34, 736 knowledge unit pairs, and the test set containing 104,
212 knowledge unit pairs.

Moreover, to evaluate the generalization ability of DMSO
in a similar task, we also run experiments on the duplicate
question detection task in software engineering, using the clean
version of the AskUbuntu dataset prepared by Rodrigues et
al.[15]. In the AskUbuntu dataset, 24K question pairs are used
for training, 6K for testing, and 1K for validation. The two
classes in the AskUbuntu dataset are balanced, so there are an
equal number of duplicate and non-duplicate question pairs.
Since the dataset contains only questions and not answers,
we concatenate the question titles and bodies as inputs to
the model and modify the output of the prediction layer to
2 classes. The other parts of the model remain unchanged.

C. Evaluation Metric

We use the same evaluation metrics as in the previous
work[3,6] to evaluate DMSO’s performance. Precision; rep-
resents the proportion of knowledge unit pairs correctly classi-
fied as class i. Recall; is the percentage of all class ¢ correctly
classified. F'1-score; is harmonic mean of Precision; and
Recall;.

Precisi TruePositive; (14)
recision; = — —
TruePositive; + FalsePositive;
TruePositive;
Recall; = 15
coatti TruePositive; + FalseNegative; (15
F1— score; 2 x Precision; X Recall; (16)

Precision; + Recall;

D. Implementation Details

The deep learning framework we use is PyTorch 1.9.1
with CUDA 10.2 as the GPU computing platform, and all
experiments are implemented in a python 3.7 environment.
For our model, 300-dimensional word embeddings are used
according to experience. We set the hidden size as 200 for
all feedforward layers, and select GeLU [17] as the activation
function of the feedforward network. Adam [10] optimizer
with an initial learning rate of 0.001 was applied. The dropout
strategy [18] is adopted to avoid overfitting and the dropout
rate is set to 0.2. We use a batch size of 32. The model is
trained for 30 epochs to minimize the cross-entropy loss. We
release the source code of DMSO and hope to facilitate future
research.

https://github.com/anonymousseke/dmso

E. Result

RQ1: How effective is DMSO in predicting knowledge unit
pairs of different classes?

Table I presents the experiment results. The best results are
highlighted in bold. We can see that the results for the direct
and indirect classes are much lower than the duplicate and
isolated classes, indicating that, the semantic information in
these two classes is more confusing for understanding. So that
SOFTSVM and DOTBILSTM are difficult to identify patterns
for classification, which leads to poor results (34.7%, 50.6%,
55.2%, and 61.0%). This result reflects that this class limits
the overall performance of all approaches included DMSO.

Meanwhile, compared to feature-based SOFTSVM, deep
learning methods do not rely on fixed patterns and allow
advanced abstraction modeling of text to understand the rel-
evance of two knowledge unit pairs and obtain better scores.
We can see that DMSO achieves the best results for all four
classes, with 83.4%, 83.2%, and 83.3% in overall Precision,
Recall, and Fl-score. In addition, compared to the state-of-
the-art model ASIM, DMSO improves by 1.5% in Fl-score,
and by 1.3% and 1.5% in both Precision and Recall. This
result shows that extracting semantic and interaction features
of sentences is important for understanding and identifying
the relevance of knowledge unit pairs, especially in long text
sequences and complex expressions in software domains.

RQ2: How much influence do the modules we proposed
contribute to the improvement of DMSO?

The experimental results are shown in Table II. After remov-
ing GIF or DA, respectively, the revised models’ performance
decreases to some degree (1.7% and 1.0%, in terms of F1-
score, respectively). However, after removing the IA or IFE,
the model’s performance decreases more obviously (2.7%
and 4.5%, in terms of Fl-score, respectively), especially in
predicting the direct class (10.3% and 2.5% in terms of
Fl-score, respectively). This experiment’s results prove the
importance of the Interaction Feature Extractor and the Global
Interaction Fusion Layer, which plays an essential role in
predicting question relatedness.

RQ3: Does DMSO work well in other semantic relevance
tasks from software engineering domains?

Table III presents the results. DMSO outperforms other
models, including rule-based approaches (Jerd [12]), classifiers
(SVM-bas [14], SVM-adv [15], and SOFTSVM), and neural
networks (CNN [14], DNN [13], DCNN [15], DOTBILSTM,
and ASIM), achieve an accuracy of 97.69%. Moreover, DCNN
is the best model in the paper [15] on the AskUbuntu dataset,
and the ASIM is the state-of-the-art model on the Knowledge
Unit dataset. The experimental results show that DMSO has a
degree of generalization capability that can be applied to other
software engineering fields.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a deep learning model DMSO we
introduce a deep learning model (DMSO) to predict semantic
relatedness between questions in Stack Overflow, helping de-
velopers acquire related knowledge to solve the programming

Table 1
Comparing the result(Precision, Recall, and F1-score) of DMSO and the baseline models in each relatedness class.

Model/Classes Duplicate Direct Indirect Isolated Overall

SOFTSVM 0.532 0.497 0.476 0.766 0.568

Precision DOTBILSTM 0.929 0.561 0.623 0.894 0.752
ASIM 0.948 0.720 0.698 0.917 0.821

DMSO 0.956 0.732 0.717 0.933 0.834

SOFTSVM 0.584 0.266 0.541 0.843 0.559

Recall DOTBILSTM 0.902 0.544 0.598 0.911 0.739
ASIM 0.936 0.712 0.673 0.947 0.817

DMSO 0.943 0.745 0.692 0.949 0.832

SOFTSVM 0.557 0.347 0.506 0.802 0.553

Fl-score DOTBILSTM 0.915 0.552 0.610 0.902 0.745
ASIM 0.941 0.716 0.685 0.932 0.819

DMSO 0.949 0.738 0.704 0.941 0.833

Table II
Comparing the Fl-score of DMSO and the revised models

Model/Classes Duplicate Direct Indirect Isolated Overall

DMSO 0.949 0.739 0.704 0.941 0.833
DMSO-GIF 0.933 0.715 0.679 0935 0.816
DMSO-IA 0916 0.714 0.690 0.903 0.806
DMSO-DA 0.938 0.733 0.689 0932 0.823
DMSO-IFE 0.912 0.636 0.678 0.925 0.788

Table III

Performance of different models in the Askubuntu dataset

Model/Classes Accuracy
Jerd 0.7291
SVM-bas 0.7025
SVM-adv 0.7587
CNN 0.7450
DNN 0.7865
DCNN 0.7900
DOTBILSTM 0.87
SOFTSVM 0.90
ASIM 0.9625
DMSO 0.9769

issues. The experiment results show DMSQO’s effectiveness and
consistency in predicting question relatedness, outperforming
some baseline models in previous works. Moreover, in the
duplicate question detection task of AskUbuntu, DMSO can
also achieve state-of-the-art performance, which proves its
generalization ability. We will explore the implementation
of an application that provides related questions when users
retrieve questions or post new issues in future work.

[1]

[2]
[3]

REFERENCES

B. Xu, D. Ye, Z. Xing, X. Xia, G. Chen, and S. Li, “Predicting seman-
tically linkable knowledge in developer online forums via convolutional
neural network,” in 2016 31st IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 2016, pp. 51-62.

Tay Y, Luu A T, Zhang A, et al. Compositional de-attention networks[J].
Advances in Neural Information Processing Systems, 2019, 32.

J. Pei, Y. Wu, Z. Qin, Y. Cong and J. Guan, “Attention-based model for
predicting question relatedness on Stack Overflow,” in 2021 IEEE/ACM
18th International Conference on Mining Software Repositories (MSR),
2021, pp. 97-107.

[4]

[5

=

[6]

[7

—

[9

—

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997. III-D

Yang Z, Yang D, Dyer C, et al. Hierarchical attention networks for
document classification[C]//Proceedings of the 2016 conference of the
North American chapter of the association for computational linguistics:
human language technologies. 2016: 1480-1489.

S. Amirreza, X. Bowen, L. David, T. Solorio, and A. Alipour, “Question
relatedness on stack overflow: the task, dataset, and corpus-inspired
models,” in Proceedings of the AAAI Reasoning for Complex Question
Answering Workshop, 2019.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

W. Fu and T. Menzies, “Easy over hard: A case study on deep
learning,’in Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering (ESEC/FSE), 2017, pp. 49-60.

B. Xu, A. Shirani, D. Lo, and M. A. Alipour, “Prediction of relatedness
in stack overflow: deep learning vs. svm: a reproducibility study,” in Pro-
ceedings of the 12th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), 2018, pp.1-10.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

I. Srba and M. Bielikova, “Why is Stack Overflow Failing? Preserving
Sustainability in Community Question Answering,” in IEEE Software,
vol. 33, no. 4, pp. 80-89, 2016.

Y. Wu, Q. Zhang, and X.-J. Huang, “Efficient near-duplicate detection
for q&a forum,” in Proceedings of 5th International Joint Conference
on Natural Language Processing, 2011, pp. 1001-1009.

N. Afzal, Y. Wang, and H. Liu, “MayoNLP at SemEval-2016 Task
1: Semantic textual similarity based on lexical semantic net and deep
learning semantic model,” in Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016), 2016, pp. 674—-679.
D. Bogdanova, C. dos Santos, L. Barbosa, and B. Zadrozny, “Detecting
semantically equivalent questions in online user forums,” in Proceedings
of the 19th Conference on Computational Natural Language Learning,
2015, pp. 123-131.

J. Rodrigues, C. Saedi, V. Maraev, J. Silva, and A. Branco, “Ways of
asking and replying in duplicate question detection,” in Proceedings
of the 6th Joint Conference on Lexical and Computational Semantics
(*SEM 2017), 2017, pp. 262-270.

V. Efstathiou, C. Chatzilenas, and D. Spinellis, “Word embeddings for
the software engineering domain,” in Proceedings of the 15th Interna-
tional Conference on Mining Software Repositories, 2018, pp.38—41.
D. Hendrycks, and K. Gimpel. “Bridging nonlinearities and stochastic
regularizers with gaussian error linear units,” arXiv preprint arXiv:
1606.08415, 2016.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from over-
fitting,” The journal of machine learning research, vol. 15, no. 1, pp.
1929-1958, 2014.

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014. II-E

