1. Wong W.E., Horgan J.R., London S., andAgrawal H.A Study of Effective Regression Testing in Practice. In PROCEEDINGS The Eighth International Symposium On Software Reliability Engineering, IEEE, pp. 264-274, 1997. 2. Wong W.E., Li X., andLaplante P.A.Be More Familiar with Our Enemies and Pave the Way Forward: a Review of the Roles Bugs Played in Software Failures. Journal of Systems and Software, vol. 133, pp. 68-94, 2017. 3. Wong W.E., Debroy V., Surampudi A., Kim H., andSiok, M.F. Recent Catastrophic Accidents: Investigating How Software Was Responsible. In2010 Fourth International Conference on Secure Software Integration and Reliability Improvement, IEEE, pp. 14-22, 2010. 4. Bueno P.M., Jino M., andWong W.E.Diversity Oriented Test Data Generation Using Metaheuristic Search Techniques. Information Sciences, vol. 259, pp. 490-509, 2014. 5. Rothermel G., Untch R.H., Chu C., andHarrold M.J.Test Case Prioritization: An Empirical Study. In Proceedings IEEE International Conference on Software Maintenance-1999 (ICSM'99).'Software Maintenance for Business Change'(Cat. No. 99CB36360), pp. 179-188, IEEE, 1999. 6. Gao R., Eo J.S., Wong W.E., Gao X., andLee S.Y.An Empirical Study of Requirements-based Test Generation on an Automobile Control System. In Proceedings of the 29th Annual ACM Symposium on Applied Computing, pp. 1094-1099, 2014. 7. Wong W.E., Horgan J.R., London S., andMathur A.P.Effect of Test Set Minimization on Fault Detection Effectiveness. Software: Practice and Experience, vol. 28, no. 4, pp. 347-369, 1998. 8. Chiang C.L., Huang C.Y., Chiu C.Y., Chen K.W., andLee C.H.Analysis and Assessment of Weighted Combinatorial Criterion for Test Suite Reduction. Quality and Reliability Engineering International, 2021. 9. Chvatal V.A Greedy Heuristic for the Set-covering Problem. Mathematics of operations research, vol. 4, no. 3, pp. 233-235, 1979 10. Harrold, M.J., Gupta, R. and Soffa, M.L.A Methodology for Controlling the Size of a Test Suite. ACM Transactions on Software Engineering and Methodology (TOSEM), vol. 2, no. 3, pp. 270-285, 1993. 11. Chen, T.Y. and Lau, M.F.A New Heuristic for Test Suite Reduction. Information and Software Technology, vol.40, no. 5-6, pp. 347-354, 1998. 12. Chen, T.Y. and Lau, M.F.A Simulation Study on Some Heuristics for Test Suite Reduction. Information and Software Technology, vol. 40, no. 13, pp. 777-787, 1998. 13. Yoo S., Harman M., Tonella P., andSusi A.Clustering Test Cases to Achieve Effective and Scalable Prioritisation Incorporating Expert Knowledge. In Proceedings of the eighteenth international symposium on Software testing and analysis, pp. 201-212, 2019. 14. Kanungo T., Mount D.M., Netanyahu N.S., Piatko C.D., Silverman R., andWu A.Y.A Local Search Approximation Algorithm for K-means Clustering. Computational Geometry, vol.28, no. 2-3, pp. 89-112, 2004. 15. Steinbach M., Karypis G., andKumar V. A Comparison of Document Clustering Techniques, 2000. 16. Yadav, D.K. and Dutta, S.K.Test Case Prioritization Using Clustering Approach for Object Oriented Software. International Journal of Information System Modeling and Design (IJISMD), vol. 10, no. 3, pp. 92-109, 2019. 17. Arafeen, M.J. and Do, H. Test Case Prioritization Using Requirements-based Clustering. In2013 IEEE sixth international conference on software testing, verification and validation, IEEE, pp. 312-321, 2013. 18. Elbaum S., Rothermel G., Kanduri S. and Malishevsky A.G.Selecting a Cost-effective Test Case Prioritization Technique. Software Quality Journal, vol. 12, no. 3, pp. 185-210, 2004. 19. Huang Z.Extensions to the K-means Algorithm for Clustering Large Data Sets with Categorical Values. Data mining and knowledge discovery, vol. 2, no. 3, pp. 283-304, 1998. 20. Madhuri R., Murty M.R., Murthy J.V.R., Reddy, P.P., and Satapathy, S.C. Cluster Analysis on Different Data Sets Using K-modes and K-prototype Algorithms. In ICT and Critical Infrastructure: Proceedings of the 48th Annual Convention of Computer Society of India-Vol II. Springer, Cham, pp. 137-144, 2014. 21. He, Z., Deng, S. and Xu, X.Improving K-modes Algorithm Considering Frequencies of Attribute Values in Mode. In International Conference on Computational and Information Science, Springer, Berlin, Heidelberg, pp. 157-162, 2005. 22. Sangam, R.S. and Om, H.The K-modes Algorithm with Entropy Based Similarity Coefficient. Procedia Computer Science, vol. 50, pp. 93-98, 2015. 23. Mahmoodi M., Tavassoli S.H., Takayama O., Sukham J., Malureanu R., andLavrinenko A.V.Existence Conditions of High‐k Modes in Finite Hyperbolic Metamaterials. Laser & Photonics Reviews, vol. 13, no. 3, pp. 1800253, 2019. 24. Xiao Y., Huang C., Huang J., Kaku I. and Xu Y.Optimal Mathematical Programming and Variable Neighborhood Search for K-modes Categorical Data Clustering. Pattern Recognition, vol. 90, pp. 183-195, 2019. 25. Schütze H., Manning C.D., andRaghavan P.Introduction to information retrieval, Cambridge: Cambridge University Press, vol. 39, pp. 234-265, 2008 26. Gowda, K.C. and Krishna, G.Agglomerative Clustering Using the Concept of Mutual Nearest Neighbourhood. Pattern recognition, vol. 10, no. 2, pp. 105-112, 1978. 27. Franti, P., Virmajoki, O. and Hautamaki, V.Fast Agglomerative Clustering Using a K-nearest Neighbor Graph. IEEE transactions on pattern analysis and machine intelligence, vol. 28, no. 11, pp. 1875-1881, 2006. 28. Zhou, H.B. and Gao, J.T.Automatic Method for Determining Cluster Number Based on Silhouette Coefficient. In Advanced Materials Research, Trans Tech Publications Ltd, vol.951, pp. 227-230. 2014. 29. Dinh, D.T., Fujinami, T. and Huynh, V.N.Estimating the Optimal Number of Clusters in Categorical Data Clustering by Silhouette Coefficient. In International Symposium on Knowledge and Systems Sciences, Springer, Singapore, pp. 1-17, 2019. 30. Aranganayagi, S. and Thangavel, K. Clustering categorical data using silhouette coefficient as a relocating measure. In International conference on computational intelligence and multimedia applications (ICCIMA2007), IEEE, vol. 2, pp. 13-17, 2007. 31. Cruciani E., Miranda B., Verdecchia R. and Bertolino A. Scalable Approaches for Test Suite Reduction. In2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), IEEE, pp. 419-429, 2019. 32. Hutchins M., Foster H., Goradia T. and Ostrand T.Experiments on the Effectiveness of Dataflow-and Control-flow-based Test Adequacy Criteria. In Proceedings of 16th International conference on Software engineering, IEEE, pp. 191-200, 1994. 33. Just, R., Jalali, D. and Ernst, M.D. Defects4j: a Database of Existing Faults to Enable Controlled Testing Studies for Java Programs. In Proceedings of the2014 International Symposium on Software Testing and Analysis, pp. 437-440, 2014. 34. Software-artifact Infrastructure Repository: Home. http://sir.csc.ncsu.edu/portal/ (accessed Dec. 11, 2020. 35. R. Just, rjust/defects4j. https://github.com/rjust/defects4j (accessed Mar. 06, 2021). 36. Gcov (Using the GNU Compiler Collection (GCC)). https://gcc.gnu.org/onlinedocs/gcc/Gcov.html (accessed Dec. 11, 2020). 37. PIT Mutation Testing. https://pitest.org/ (accessed Mar. 24, 2021). 38. Shi A., Yung T., Gyori A. and Marinov D. Comparing and Combining Test-suite Reduction and Regression Test Selection. In Proceedings of the2015 10th joint meeting on foundations of software engineering, pp. 237-247, 2015. 39. Zhang L., Marinov D., Zhang L., andKhurshid, S. An Empirical Study of Junit Test-suite Reduction. In2011 IEEE 22nd International Symposium on Software Reliability Engineering, IEEE, pp. 170-179, 2011. 40. Li Y., Wong W.E., Lee S.Y. and Wotawa F.Using Tri-relation Networks for Effective Software Fault-proneness Prediction. IEEE Access, vol. 7, pp. 63066-63080, 2019. 41. Lin, J.W. and Huang, C.Y.Analysis of test suite reduction with enhanced tie-breaking techniques. Information and Software Technology, vol. 51, no. 4, pp. 679-690, 2009 42. Rothermel G., Harrold M.J., Von Ronne, J., and Hong, C. Empirical Studies of Test‐suite Reduction. Software Testing, Verification and Reliability, vol. 12, no. 4, pp. 219-249, 2002. 43. Jeffrey, D. and Gupta, N.Improving Fault Detection Capability by Selectively Retaining Test Cases During Test Suite Reduction. IEEE Transactions on software Engineering, vol. 33, no. 2, pp. 108-123, 2007. |