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Abstract. Understanding the conundrum of human cooperation has
been declared one of the century’s grand challenges. Traditionally,
the evolution of cooperative action in nature is analyzed through
the lens of Evolutionary Game Theory, specifically, using the social
learning framework, a model for Darwinian competition. However,
more complex individuals may resort to more sophisticated learning
rules such as Counterfactual Thinking (CT). Given these individu-
als’ cognitive empowerment, the question of how the presence of
counterfactuals influences the evolution of cooperation in a hybrid
population of these complex agents and social learners. Here we ex-
plore how cooperation emerges from the interplay of different strat-
egy revision paradigms by analyzing large-scale Markov processes.
We find that increasing the prevalence of CT individuals can pro-
mote cooperation, but such an increase is non-monotonous. More-
over, whereas counterfactual reasoning generally fosters cooperation,
it fails to promote such behaviour among counterfactuals. Lastly, we
find that increasing the population’s heterogeneity level enhances co-
operation among social learners, but again not among counterfactu-
als. This indicates that, under certain circumstances, the presence of
more sophisticated agents may help promote cooperation in hybrid
populations. The proposed study may come as a starting point for
a more profound understanding of agents’ counterfactual rationality
impact on hybrid populations.

1 Introduction

Cracking the enigma of collaborative behaviour in the natural world
has been deemed one of the grand challenges of the century. It has
been intriguing the scientific community in various areas such as so-
ciology, biology, mathematics, physics and others [1, 18, 23, 24, 29,
30, 31, 34, 39]. The emergence and sustainability of cooperation at
different levels of organization have been widely studied and mod-
elled through the lens of evolutionary game theory, where special
attention has been given to social dilemmas, either on its dyadic pro-
cesses [7, 35, 38] or collective action [2, 12, 14, 15, 33, 41, 42].

To explain the emergence of cooperation, researchers have pro-
posed many dynamic mechanisms, such as preferential selection
[8, 44], punishment and reward [11, 29], memory effects [20, 50],
and reputation [21, 25], among many other. Most studies assume
that the decision process occurs through imitation and that decision-
makers are purely rational [22]. Therefore, the population’s dynam-
ics have its framework based on the typical social learning (SL) defi-
nition from Evolutionary Game Theory (EGT), which assembles the
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base model for Darwinian competition [22, 40]. However, not only
the pursuit of the highest payoffs in evolutionary social dilemmas is
risky, but also individual’s reasoning may not always be driven by
the basic selfish agenda of conventional fitness maximization [43].
In fact, in many real-world scenarios, individuals may adopt differ-
ent reasoning mechanisms, not being entirely rational for instance,
as in the case of conformity-driven individuals who imitate the most
abundant strategy in the population [17, 43, 44], or not complying
with the imitation process, as in the case of counterfactual reasoning,
where agents assemble their reasoning introspectively [5, 19]. The
latter mechanism is of foremost interest, as it regards a very sophisti-
cated ability, uniquely attributed to humans, that could have a major
impact on future hybrid societies of agents and humans [27, 28].

Counterfactual reasoning, or counterfactual thinking (CT), is gen-
erally defined as a human cognitive ability that captures the process
of introspectively reasoning about hypothetical past events, specifi-
cally what would have happened if those events had occurred [9, 19].
More simply, counterfactual reasoning, which deals with what-ifs, is
considered a fundamental component of moral behavior and scien-
tific thought. According to Pearl’s Causality Theory, it plays a criti-
cal role in the development of thinking machines [28]. In its simplest
form, CT may be modelled as an initial form of myopic best response
rule at the population level, by considering the fitness of the agent in
a system configuration that did not, but could have occurred [19].
Given this new mechanism that greatly empowers individuals’ rea-
soning process the question arises of how the presence of individuals
resorting to CT (CTs or counterfactuals [9]) affects the evolutionary
dynamics of populations.

The impact of counterfactual reasoning in the context of the evo-
lution of cooperation in populations of agents was first analyzed by
Pereira et al. [19], where the authors proposed a model and explored
the evolutionary dynamics of a small prevalence of counterfactuals
within a population of social learners facing collective action. It is
shown that CT has a very low impact on dilemmas that do not require
coordination whereas it has a great impact on coordination dilemmas
such as the Stag-Hunt Game. Specifically, it is suggested that a small
group of counterfactuals strongly fosters the overall population co-
operation level, where such behaviour would not be expected. De-
spite these initial developments being strong insights into the world
of counterfactual reasoning in populations, they prompt further in-
vestigation. Specifically, we lack understanding regarding the impact
of increasing the number of sophisticated agents in the population
and whether this insight remains valid across all coordination games.

Here we propose an in-depth study on how counterfactuals influ-
ence cooperation in hybrid populations comprising both humans and
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agents. To do so, we apply the evolutionary game theory framework
to describe well-mixed hybrid populations of social learners and CT
agents, organized in different arrangements. We start by describing
the model for homogeneous population dynamics inN -person evolu-
tionary games. Previous studies have shown that counterfactual rea-
soning promotes the coexistence of strategies [5, 19], thus assum-
ing the role of a coexisting dilemma, therefore shattering coordina-
tion games’ dynamics. Following this trend, it is of interest to chal-
lenge the CT dynamics further by studying the impact of counter-
factuals under collective coordination dilemmas, such as the famous
N -person stag hunt dilemma (NSH) [26, 38, 47]. More specifically,
we investigate how CTs affect cooperation dynamics in relation to
the characteristics of the social dilemma.

In the second part, we propose a novel model for counterfactual
reasoning in heterogeneous populations. We define the dynamics of
collective coordination dilemmas in these populations, based on pre-
vious works in heterogeneous populations [4, 47, 48]. We then an-
alyze the framework’s dynamics for two sub-populations of social
learners and counterfactuals under different conditions, specifically,
for different population arrangements and different interactivity lev-
els. From this exploration, we aim to propose some initial insights
into this new very complex dynamic.

2 Homogeneous Populations

Let us consider the interaction between a group ofN individuals that
we assume to be rational and intelligent [22]. These players may ei-
ther choose to cooperate (C) by contributing a cost c to the public
good or to defect (D) by not contributing. After all individuals are
given a chance to contribute, the accumulated endowment is multi-
plied by an enhancement factor F and the amount is equally shared
among all individuals of the group. This framework defines a typical
public good game, specifically a N -person version of the Prisoner’s
Dilemma [26]. However, in coordination problems, we assume the
public good is only reached if at least 0 ≤ M ≤ N players have
contributed, otherwise, no one gets anything. This defines the model
for the N -person stag hunt game (NSH), a prototypical example of
the social contract [18, 38]. In Table 1 we summarize the payoffs of
both C and D, respectively ΠC(k) and ΠD(k), for any number k of
contributors.

Payoff obtained C D

1 ≤ k < M −c 0
k ≥M kFc

N
− c kFc

N

Table 1. Payoffs values for the N -person stag-hunt game. For later
reference, we will define a given NSH with the tuple (N,M,F,C).

We now assume a well-mixed finite population of Z individuals
that engage in an NSH, where groups of size N are randomly sam-
pled. For both strategies C and D, we define the average fitness, or
social success [13], respectively fC and fD , as the hypergeometric
distribution for a number k of cooperators:

fC(k) =

(
Z − 1

N − 1

)−1 N−1∑
j=0

(
k − 1

j

)(
Z − k

N − j − 1

)
ΠC(j + 1)

(1)

fD(k) =

(
Z − 1

N − 1

)−1 N−1∑
j=0

(
k

j

)(
Z − k − 1

N − j − 1

)
ΠD(j) (2)

where we impose that the binomial coefficients satisfy the boundary
condition of

(
k
j

)
= 0 if k ≤ 0.

Having established the baseline model for interactions among
agents, let us now detail the evolution process of finite populations
under social learning and then under counterfactual thinking. In both
cases this can be conveniently done by adopting the birth-death pro-
cess, combined with the pairwise comparison rule [45, 46], to de-
scribe the evolutionary dynamics of Cs and Ds [36].

Starting with the social learning framework, we say that, at each
step, an individual A, following a strategy SA, imitates a randomly
selected individualB following strategy SB �= SA with a probability
p given by the standard Fermi distribution [35, 36, 45, 49]:

pSA→SB
SL (k) ≡ 1

1 + e−βSL(fSB
(k)−fSA

(k))
(3)

where βSL stands for the intensity of selection and expresses noises
associated with the imitation process errors [19, 36]. Given this
model, it now becomes trivial to write down the probabilities to in-
crease (T+

SL) or decrease (T−
SL) the number of cooperators by one:

T±
SL(k) =

k

Z

Z − k

Z − 1

[
1 + e∓βSL(fC(k)−fD(k))

]−1

(4)

that are commonly defined as transition probabilities.
The quantity corresponding to the right-hand side of the replicator

equation specifies the gradient of selection, a measure that defines the
most likely outcome of evolution [26, 36, 41]. In finite populations,
the gradient of selection for social learning is given by:

GSL(k) ≡ T+
SL(k)− T−

SL(k) (5)

which, in the limit of large populations Z � N , is equivalent to the
replicator equation for infinite populations [26].

Regarding counterfactual reasoning, individuals may not assess
the present state of the population but rather evaluate the possible
alternative moves to what actually took place. Counterfactuals will
conjecture what would be the outcome if their previous decision had
been different. Similarly to the SL framework, this can be modelled
as an incipient form of the myopic best response rule [19], where
an agent A following SA switched its strategy to SB �= SA with a
probability:

pSA→SB
CT (k) ≡ 1

1 + e
−βCT (f ′

SB
(k)−fSA

(k))
(6)

where, like SL, we define βCT as the intensity of counterfactual
thinking that, again, regulates the accuracy of the imitation process.
Here f ′

SB
defines the fitness of the strategy SB in a hypothetical

situation had the player chosen SB in his previous move. In practi-
cal terms, this means that a cooperator (SA = C) will compare its
strategy’s fitness (fC(k)) with the fitness of D if he had chosen that
strategy (fD(k−1)). Oppositely, a defector (SA = D) will compare
its current strategy’s fitness (fD(k)) with the fitness of C if he had
chosen that (fC(k + 1)).

Unlike social learning, counterfactual reasoning occurs introspec-
tively [5, 19], meaning that one would not require a dyadic interac-
tion to revise its strategy. Taking this into consideration, as before,
the transition probabilities for CT come naturally as:

T+
CT (k) =

Z − k

Z

[
1 + e−βCT (fC(k+1)−fD(k))

]−1

(7)

T−
CT (k) =

k

Z

[
1 + e−βCT (fD(k−1)−fC(k))

]−1

(8)
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Figure 1. Social dynamics for homogeneous populations as a finite Markov Chain. States are represented by the number k of cooperators in the population.
Transition probabilities T+(k), T−(k) and T 0(k) represent, respectively, the probabilities to increase, decrease or maintain the number of cooperators by 1.

Notice that, due to the interactions’ introspective nature, the CT
transition probabilities take a slightly simpler form when compared
to SL, not considering the random selection of the second agent in
the interaction. This implies a relatively higher order of magnitude
when compared to social learning, and hence, for the sake of a better
understanding, we are prone to impose βCT > βSL.

In the same way as SL, having these transition probabilities, we
define the CT stochastic gradient of selection as:

GCT (k) ≡ T+
CT (k)− T−

CT (k) (9)

In this framework of homogeneous populations, we assume that
individuals are equivalent as they may resort to any of the available
heuristics (SL or CT) to revise their strategies. Formally speaking,
we define δ as the probability that any individual has to resort to CT
in its reasoning (this is equivalent to χ definition in [19]). Naturally,
this leads us to a redefinition of the more general system’s gradient
of selection as:

G(k) = (1− δ)GSL(k) + δ GCT (k) (10)

Until now, we have not taken into consideration possible muta-
tions in the decision-making process, which raises a big problem in
the evolutionary dynamic. The social dynamics framework describes
a one-dimensional finite Markov chain with Z + 1 states, which are
represented accordingly to the number k of cooperators [26] (see Fig-
ure 1). If we focus on the two possible monomorphic states k = 0
(or all defectors) and k = Z (all cooperators), we rapidly realize
that these states are also absorbing states, meaning that if the system
eventually ends up there, it will not leave it. In this case, we say that
the update method is non-innovative [37].

To contradict this tendency, however, we can introduce mutations
in the definition of the transition probabilities, hence removing the
absorbing states and turning the update method to innovative instead.
Generally, we say that there is a probability μ of occurring a mutation
and an agent adopts a random strategy, without resorting to any of the
heuristics SL or CT. As a result, for both SL and CT, we redefine the
transition probabilities to:

T+
SL/CT (k, μ) = (1− μ)T+

SL/CT (k) + μ
Z − k

Z
(11)

T−
SL/CT (k, μ) = (1− μ)T−

SL/CT (k) + μ
k

Z
(12)

and consequently, we now have:

GSL/CT (k, μ) = T+
SL/CT (k, μ)− T−

SL/CT (k, μ) (13)

The general gradient of selection then takes its final form homo-
geneous well-mixed populations as:

G(k, μ) = (1− δ)GSL(k, μ) + δ GCT (k, μ) (14)

Finally, considering this birth-death process, we can fully de-
scribe the Markov process by summarizing all the possible transi-
tions in the transition matrix Ti,j such that Tk,k±1 = T±(k, μ) and
Tk,k = 1 − T−(k, μ) − T+(k, μ). From this, we can compute a
so-called stationary distribution, s̄, which defines the probability of
finding the system at a certain state k at any time. It is obtained sim-
ply by computing the left eigenvector of the transition matrix with
eigenvalue 1, that is, it must satisfy s̄ = T s̄ [11, 19].

The gradient of selection and the stationary distribution are the two
quantities that will be of foremost importance in the study of popu-
lation dynamics, as they allow us to predict the most likely outcomes
of evolution. To evaluate the cooperation levels under this dynam-
ics, we can define some measures such as the expected fraction of
cooperation:

EFC =
Z∑

k=0

k · s̄(k) (15)

Additionally, we can compute the overall probability of achieving
success, in the form of the group achievement [48], defined as:

ηG =
Z∑

k=0

s̄(k) · aG(k) (16)

where we take the multivariate hypergeometric sampling to compute
aG, the (average) fraction of groups that overcome the threshold of
M contributors.

2.1 Results and discussion

In line with previous studies, a small prevalence of counterfactuals is
enough to push an entire population of social learners towards highly
cooperative standards [19]. Despite being very interesting, this in-
sight may raise some questions, specifically, we fall short of know-
ing what happens if we keep increasing the amount of CT agents in
the population and if it is still valid for any coordination game. In
this regard, we conduct two studies, in the context of homogeneous
populations, that provide helpful insights and a more complete view
of the impact of CT in well-mixed populations.

We first compute the general gradient of selection for a homoge-
neously well-mixed finite population of Z individuals, that play a co-
ordination game, for all the possible values of the probability of CT.
As previously stated, to more easily capture the CT impact on the
population dynamics, we will assume βSL > βCT . In Figure 2, we
show an example of this dynamic for an NSH, with the enhancement
factor M < F < N , from where two main insights may be taken.
The first one, regarding the evolutionary dynamics of the population,
is that the CT does promote a coexistence dynamics that completely
disrupts and shatters the NSH coordination nature, as expected. If we
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focus on the evolution of the gradient roots (G(x, δ) = 0), we see
that as we increase δ, the NSH stable fixed point on lower x gets
closer and closer to the typical unstable fix point [26], eventually
cancelling each other and destroying the basin of repulsion.

Figure 2. Gradient of selection of a homogeneously well-mixed
population as a function of the fraction of cooperators x = k

Z
and the

probability of CT, δ. We have Z = 50 individuals playing a NSH with
(N,M,F, c) = (10, 6, 8.5, 1), μ = 1

Z
and βSL = 5.0 > βCT = 1.0.

Attending to the roots of G(x, δ), counterfactual reasoning coexistence
dynamics completely shatters the coordination nature of the NSH. As we

increase the number of counterfactuals, both ηG and EFC rapidly grow until
a certain maximum critical point δC (represented by a red circle), from
which they start to decrease. This indicates there is an optimal amount of

counterfactual agents that maximize the cooperation standards.

A second and more interesting insight is that increasing the
prevalence of CT-driven agents pushes the entire population to-
wards highly cooperative standards, however, this increase is non-
monotonous. As one may infer from both ηG and EFC, increas-
ing the probability of CT leads to an extreme increase of these two
quantities until a certain critical point, δC , from which they start to
decrease, EFC more gently and ηG more abruptly. In other words, al-
though having more counterfactuals in the population is beneficial in
terms of cooperation, from a certain δC , increasing the probability of
CT will progressively prejudice the cooperative standards. This in-
dicates that there is an optimal amount of counterfactual agents that
maximize the cooperation standards. Therefore we complement the
conclusions previously taken in [19] by stating that a small preva-
lence of CT-driven individuals does promote highly cooperative
standards, but only until a critical point, from which having more
counterfactuals becomes a disadvantage.

In a second study, we doubt the validity of the previous insights by
questioning whether counterfactual reasoning is always beneficial in
coordination games. Specifically, we are interested in investigating if
there is a dependency on the beneficial action of CT on the coordi-
nation game specification. To answer this question, we again take a
finite homogeneously mixed population of agents and study the im-
pact of the enhancement factor in the NSH dilemma. We compute
the group achievement as ηG(δ, F ), that is, as a function of the prob-
ability of CT and the enhancement factor, passing through all the
different regimes of NSH, F < M , M < F < N and F > N [26].

In Figure 3, we show that interestingly ηG(δ, F ) demonstrates a
different behaviour for each of these three regimes. When F < M ,
CT helps increase the group achievement, hence benefiting coopera-
tion more the higher the δ is. This result comes as trivial if we take
into consideration that in this regime cooperators have no chance to
survive [26] (ηG ∼ 0) and, as CT promotes coexistence, the only
possible outcome of increasing the number of counterfactuals would
be to promote cooperation. Oppositely, when F > N , that is, in the
pure coordination regime [26], CT is (almost) always harmful to co-
operation, prejudicing it more the higher the δ is. In this sense, it will
be more beneficial to the population to have either a small number
or no counterfactuals at all. The only exception resides in a specific
configuration where F � N and δ ∼ 0, where adding a very small
amount of counterfactuals in fact nudges the population to very high
cooperative standards. However, as we increase δ, cooperative action
deteriorates. Finally, the regime where M < F < N is more pe-
culiar, as it shows different behaviours depending if F is closer to
M , acting similarly as in the F < M regime, of to N , being closer
to the F > N regime. However, in this latter case, there is a big
difference: initially, ηG is very small and it rapidly grows, forming
this very accentuated slope, that we saw in Figure 2, after which the
group achievement begins to decrease, again implying the existence
of a critical δC for which ηG is maximal. This small region, along
with the previously mentioned exception in F > N , corresponds to
the scenario seen in the previous study, also explored by [19].

Figure 3. Group achievement as function of the probability of CT, δ and
the enhancement factor, F . We consider a finite homogeneous population of

Z = 50 individuals playing different NSH dilemmas with
(N,M,F, c) = (10, 5, F, 1), where F ∈ [1, 15], μ = 1

Z
and

βSL = 5.0 > βCT = 1.0. There is a clear distinction between the three
regimes: when F < M , CT benefits cooperation more the higher the δ is;
when F > N CT is mostly harmful for cooperation; when M < F < N
we can find a curve where CT aggressively pushes the population towards
high cooperative standards for small δ, although it only occurs when F is

closer to N than to M . This indicates that the benefit of CT is dependent on
the coordination nature of the game, being highly beneficial when F � N .

These results suggest that the benefit of CT is dependent on the co-
ordination nature of the social dilemma. Counterfactual reasoning is
generally beneficial to the population in regimes where cooperation
is always a disadvantage (F < N [26]), with a more pronounced
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effect when F � N , and starts to harm the cooperation standards
as soon as we enter the pure coordination regime (F > N ). From
a conceptual perspective, the presence of more sophisticated agents
in a homogeneous population is more beneficial when cooperation is
not expected, and harmful when it is expected.

3 Heterogeneous Populations

When a population is organized in multiple smaller communities of
same-heuristic individuals, a different approach shall be taken. Fol-
lowing a framework similar to the one presented in [4, 47, 48], we
divide the population according to each individual’s learning rule, in
our case SL and CT, which is fixed and unchangeable. Here indi-
viduals lose the equivalency property that we saw in homogeneous
populations. We then treat each sub-population independently, al-
though always considering all interactions between different sub-
populations are possible. The interactivity between individuals from
different sub-populations is weighted by the homophily, 0 ≤ h ≤ 1,
that is formally defined as follows: when h = 0 anyone in the pop-
ulation may influence and be influenced by anyone else, while when
having h = 1 individuals are restricted to influence (and be influ-
enced) only by those of the same sub-population. The first case is
equivalent to the well-mixed population assumption, while the latter
highlights the definition of heterogeneous populations. Homophily
is then a measure of the level of heterogeneity, from a well-mixed
arrangement (h = 0) to a pure heterogeneous one (h = 1).

We now consider a population of Z = ZSL +ZCT , with ZSL so-
cial learners and ZCT counterfactuals, hence one must now consider
Cs and Ds for each heuristics. Individuals resorting to each learn-
ing rule are given an initial endowment, bSL for SL and bCT for CT
agents, which will remain fixed and will play a coordination game,
specifically the heterogeneous version of the NSH. Each type of co-
operator will contribute to the public good with cSL = c bSL and
cCT = c bCT , respectively for SL and CT. For the sake of simplicity,
we take bSL = bCT . This new dynamic defines a new more complex
formulation of the NSH social dilemma, which payoffs can now be
defined as:

ΠSL
C (k) = ΠSL

D (k)− cSL (17)

ΠSL
D (k) = (kSL + kCT )

Fcb̄

N
Θ (18)

where, for convenience, we define k = (kSL, kCT ). The quantity
Θ ≡ Θ(cSLkSL+cCT kCT −cb̄M) is the Heaviside function, where
Θ(k) = 1 whenever k ≥ 0 and Θ(k) = 0 otherwise. We also define
Zb̄ = ZSLbSL + ZCT bCT as the average endowment.

The social learner’s fitness for C and D, respectively fSL
C and

fSL
D , come naturally by using the multivariate hypergeometric sam-

pling without replacement, which according to [47] can be formally
presented for social learning as:

fSL
C (k) =

(
Z − 1

N − 1

)−1 N−1∑
jSL=0

N−1−jSL∑
jCT=0

(
kSL − 1

jSL

)(
kCT

jCT

)

×
(

Z − kSL − kCT

N − 1− jSL − jCT

)
ΠSL

C (jSL + 1, jCT ) (19)

fSL
D (k) =

(
Z − 1

N − 1

)−1 N−1∑
jSL=0

N−1−jSL∑
jCT=0

(
kSL

jSL

)(
kCT

jCT

)

×
(
Z − 1− kSL − kCT

N − 1− jSL − jCT

)
ΠSL

D (jSL, jCT ) (20)

Regarding CT, similarly to the homogeneous populations case,
counterfactual reasoning assumes an introspective updating process.
Having this, we can write down the fitness for CT as a function of
the previous fitnesses as:

fCT
C (k) =

{
fSL
C (kSL, kCT ) C → D

fSL
C (kSL, kCT + 1) D → C

(21)

fCT
D (k) =

{
fSL
D (kSL, kCT − 1) C → D

fSL
D (kSL, kCT ) D → C

(22)

where SA → SB , with SA,B ∈ {C,D}, means that an agent fol-
lowing strategy SA compares its strategy fitness with SB fitness.

From these fitnesses, we can define the transition probabilities in
heterogeneous populations [48] for social learning as:

TSL
− (k) =

kSL

Z

{
(1− μ)

[
ZSL − kSL + (1− h)(ZCT − kCT )

ZSL − 1 + (1− h)ZCT

×
(
1 + e−βSL(fSL

D −fSL
C )
)−1

]
+ μ

}
(23)

TSL
+ (k) =

ZSL − kSL

Z

{
(1− μ)

[
kSL + (1− h)kCT

ZSL − 1 + (1− h)ZCT

×
(
1 + e−βSL(fSL

C −fSL
D )
)−1

]
+ μ

}
(24)

and for counterfactual thinking as:

TCT
− (k) =

kCT

Z

{
(1− μ)

[
1 + eβCT (fCT

C −fCT
D )

]−1

+ μ

}
(25)

TCT
+ (k) =

ZCT − kCT

Z

{
(1− μ)

[
1 + eβCT (fCT

C −fCT
D )

]
+ μ

}−1

(26)

where, for the sake of simplicity, we defined the same mutation rate
regardless of the heuristic μ = μSL = μCT .

From these transition equations, we may compute the transition
matrix, now adapted to a multi-dimensional space. To do so, we in-
dex all the possible states with an integer number, for which con-
version we define a bijective function V such that p = V (k) and
q = V (k′), and, consequently, k = V−1(p) and k′ = V−1(q).
Afterwards, we may write the transition matrix as Tqp = Tk→k′ ,
where Tk→k′ is the corresponding transition probability from con-
figuration k to k′. Having computed T , one may finally obtain the
stationary distribution following the usual procedure. To the obtained
vector it is applied the inverse of V we may finally obtain the station-
ary distribution directly as a function of k, as s̄ ≡ s̄(k) [48].

Also from the transition probabilities, we may generally define the
2-dimensional heterogeneous gradient of selection for social learning
and conformity as follows:

∇(k) = (GSL(k), GCT (k)) (27)

In this new setup, the group achievement must also be redefined:

ηG =

ZSL∑
jSL=0

ZCT∑
jCT=0

aG(j) · s̄(j) (28)

with j = {jSL, jCT }. Additionally, it will also be important to com-
pute the EFC, but now, having different sub-populations, we com-
pute it concerning each of the heuristics as:

EFCL =
kL
ZL

· s̄ (29)

for each learning rule L ∈ {SL,CT}.
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3.1 Results and discussion

We have proposed a novel framework for counterfactual thinking in
heterogeneous populations, based on previous works of Vasconce-
los et al. [47, 48]. This new dynamic counts with two main aspects
that strongly differentiate it from the homogeneous framework, de-
scribed in the previous section. First, we assume individuals are no
longer equivalent and their heuristic now comes as a new property for
every agent, meaning that the probability of CT now loses its signif-
icance. By separating the population heuristics-wise, we now open a
new degree of freedom with the proportion between the sizes of each
sub-population, ZSL/ZCT . Second, and also as a consequence of
this segregation, a new degree of complexity arises as we introduce
the concept of homophily, as a measure of the interactivity between
the sub-populations. In this respect, we conduct two main studies to
investigate the impact of these core differences between the hetero-
geneous and the homogeneous frameworks.

In the first study, we analyze the different metrics to evaluate the
cooperative overall performance, such as ηG and the EFCs for dif-
ferent population compositions. Specifically, by fixing a certain size
Z and varying the sizes of both sub-populations, we are able to cap-
ture a range of configurations that will allow us to generally evalu-
ate the impact that the proportion between the two communities has
on cooperation. In Figure 4 we show the evolution of ηG, EFC,
EFCSL and theEFCCT as we increase the proportion between the
social learners and counterfactuals, that is, ZSL/ZCT , for different
values of the homophily.

Figure 4. Different cooperation evaluation metrics as a function of the
sub-populations proportion, ZSL/ZCT . We fix a population of Z = 100

individuals that play an NSH with
(N,M, bSL, bCT , c, F ) = (10, 5, 1, 1, 0.3, 10), with μ = 1

Z
and

βSL = βCT = 5. Regardless of the homophily, cooperation reaches a
maximum expected value when we have more social learners than

counterfactuals. Interestingly, the EFCCT shows to be the opposite,
reaching its maximum value the fewer SL agents we have.

Two main insights can be taken from this study. Primarily, irre-
spective of the homophily, both ηG and EFC assume their max-
imum values for higher proportions of ZSL/ZCT . Interestingly,
EFCCT shows the exact opposite behaviour, assuming its maximum
when the number of social learners is minimum. This can suggest
that while having fewer counterfactuals promotes the population’s
overall cooperation to higher standards, the cooperation levels within
the CT community decrease. This effect is more pronounced when
h = 0, as for the opposite case even the EFCSL follow the same
trend (as EFCCT ).

Secondly, while on the well-mixed populations’ regime (h = 0)
the dynamics seem very stable, with small variations for all coop-
eration measures when the heterogeneity level is maximal (h = 1)
a very big slope occurs as we approximate to a very small ZCT . A
similar effect occurs in the homogeneous population’s dynamics, as
demonstrated in Figure 3 when F ∼ N , where ηG starts close to
zero for small δ and grows rapidly as we increase the number of
counterfactuals. Similarly, we achieve the same result if we increase
ZCT when compared to ZSL. This may be due to the fact that having
a very small number of CT-driven agents, we get closer to a single
community of SL individuals, that is completely segregated to the
CT sub-populations as the homophily is maximal.

In a second study, we investigate the general dynamics of the NSH
from a heterogeneous point of view. Particularly, we analyze the gra-
dient of selection and the stationary distribution in a fixed popula-
tion disposition (specifically having ZSL = ZCT ) and we vary the
level of heterogeneity. In Figure 5 we see an example of this study,
where it is shown that a higher homophily slightly increases the
group achievement, hence promoting better cooperative outcomes.
Another (much more) interesting insight is that the maximum value
of the stationary distribution progressively moves towards higher val-
ues of kSL, although slightly moving downward toward lower values
of kCT . This indicates that the most likely outcome of evolution will
end up in highly cooperative standards among social learners but not
among counterfactual thinkers, a result that is in agreement with the
previous study in which we saw a decreasingEFCCT as we increase
the proportion ZSL/ZCT .

Although very intriguing, notice that these conclusions are ex-
tremely dependent on the game dynamics and therefore one should
not generalize for any coordination dilemma. As we previously did
for the homogeneous populations, a more complete study is neces-
sary to complement the study of this complex heterogeneous model
for counterfactual reasoning.

4 Conclusions

In this work, we unravel the impact of counterfactual reasoning in
the decision-making process under collective action, specifically co-
ordination dilemmas, for different population arrangements. In the
context of well-mixed finite populations, we started by defining the
evolutionary framework when individuals are considered equivalent,
hence able to adopt any heuristic for their decision process, thus es-
tablishing a homogeneously mixed population. In this regard, we
complement the conclusions from Pereira et al. [19] by showing
that a small prevalence of CT-driven individuals may indeed pro-
mote highly cooperative standards, but only until a critical point,
from which having more counterfactual thinkers becomes a disad-
vantage. Moreover, we show that, in the case of an NSH, this result
is only valid when the enhancement factor assumes values close to
the group size (F � N ), hence suggesting that the CT impact is
dependent on the social game characteristics. We saw very distinct
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Figure 5. Gradient of selection and stationary distribution of a heterogeneous population playing a coordination game, for different homophilies
h = {0, 0.5, 1}. Individuals are playing an NSH described by (N,M, bSL, bCT , c, F ) = (10, 5, 1, 1, 0.3, 9.5). We have ZSL = ZCT = 50, with μ = 1

Z
and βSL = βCT = 5. We notice a small growth in the group achievement as we increase the homophily, generally suggesting a positive effect of CT.

Additionally, the stationary distribution shows that an increase in the heterogeneity level pushes the system towards high cooperative standards among social
learners, while slightly harming CT cooperative action.

impacts of CT on the NSH, being generally beneficial when coop-
eration is not expected (F < M ), and mostly harmful when it is
expected (F > N ). This suggests that the presence of individuals
employing counterfactual reasoning may not necessarily benefit the
population as a whole.

Furthermore, we proposed an evolutionary model for the popula-
tion’s heterogeneous arrangement, where we now consider that in-
dividuals are not equivalent and assume a specific heuristic at all
times, hence establishing different communities, or sub-populations,
for each learning rule. Compared with the homogeneous framework,
despite losing the definition of the probability of CT (δ), this new
dynamic now considers two new degrees of freedom: the commu-
nities’ sizes proportion (ZSL/ZCT ) and the interactivity, measured
through the homophily. Regarding the first measure, we showed that
the group achievement and the EFC are maximal for a higher rela-
tive amount of SLs (large ZSL/ZCT ), a result that goes in agreement
with the previous study on a homogeneous population. However, in-
terestingly the opposite occurs among counterfactuals, as EFCCT

decreases with increasing ZSL/ZCT . This result suggests that while
having fewer CT-driven individuals boosts the population’s overall
cooperation to higher standards, the cooperation levels within the
CT community decrease. This insight was later reinforced in the last
study, where we analyzed the gradient of selection and the stationary
distribution for an NSH, now varying the homophily. Specifically, we
showed that an increase in homophily not only leads to a slight en-
hancement of the group achievement but also pushes the stationary
distribution towards high cooperative standards within social learn-
ers, despite gently lowering the expected cooperation levels for coun-
terfactual thinking. Notice, however, that these studies were made in
the specific case of a N -person coordination game in the regime of
F � N , hence providing a very incomplete panorama of the hetero-
geneous population dynamics. In this regard, we suggest more com-

plete studies for different populations by exploring different social
dilemmas and metrics with the proposed model as a baseline.

An understanding of the reasoning behind the decision-making
process is essential to leverage cooperation in futuristic hybrid soci-
eties of humans and machines [5, 27, 19, 28]. To better comprehend
how humans behave, either naturally or facing artificial entities, it is
required a complete perception of the how human mind works either
individually or from a community perspective. The modulation of the
human mind, from a population point of view, passes through the un-
derstanding of different heuristics such as natural selection (through
social learning) [1, 22, 40, 39], conformity [17, 43, 44], counterfac-
tual thinking [17, 19, 28], dissimilarity [10], aspiration-based learn-
ing [3, 51], among others. To add another level of complexity, human
reasoning is not as basic as the theoretical game theory framework
proposes, as individuals frequently engage in deeper decision mech-
anisms that take into account the beliefs and goals of others to possi-
bly predict future actions. These non-trivial thinking mechanisms can
be usually modelled through the lens of Theory of Mind [6, 32, 52].
This additional layer of complexity enables much richer dynamics,
offering ample room for further exploration [16, 52].

Having such complexity, we suggest that a proper general formal-
ization of evolutionary game theory, which considers all mentioned
heuristics and dynamics, is required to help in the unification of all
different frameworks explored so far. This is, again, imperative if we
want to accurately build a complete model of human behaviour and
the human mind.
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