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Abstract

This paper proposes granules for association rules in Deterministic

Information Systems (DISs) and Non-deterministic Information Systems

(NISs). Granules for an association rule are de�ned for every implication,

and give us a new methodology for knowledge discovery and decision sup-

port. We see that decision support based on a table under the condition P

is to �x the decision Q by using the most proper association rule P ⇒ Q.

We recently implemented a system getRNIA powered by granules for as-

sociation rules. This paper describes how the getRNIA system deals with

decision support under uncertainty, and shows some results of the exper-

iment.
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1 Introduction

Rough set theory o�ers a mathematical approach to vagueness and uncertainty,

and the rough set-based concepts have been recognized to be very useful [5, 10,

11]. This theory usually handles tables with deterministic information, which

we call Deterministic Information Systems. Furthermore, Non-deterministic

Information Systems and Incomplete Information Systems (IISs) have also been

proposed for handling information incompleteness in DIS. Several theoretical

works have been reported [3, 4, 6, 7, 8, 9, 10].

We followed these previous works, and investigated rough sets in DIS and

rough sets in NIS. We call a series of our works Rough Non-deterministic In-

formation Analysis (RNIA) [14, 15, 16, 17, 18]. RNIA can handle tables with

inexact data like non-deterministic information, missing values and interval val-

ues. This paper proposes granules for association rules in tables with such

inexact data, and adds the functionality of decision making to the getRNIA

system [2].

In decision making based on association rules, we have the following steps.

(Step 1) We at �rst generate rules from data sets, and store them. For the

condition P , if a rule P ⇒ Q is stored, we conclude Q is the decision for P .

(Step 2) If there is no rule with condition P , we generate each implication

P ⇒ Qi, and calculate its criterion value. By comparing criterion values, we

select an implication P ⇒ Qj and the decision Qj .

If the constraint for rule generation is weak, we have much more rules, and

we may apply a stored rule to deciding Q. However, it will be hard to store

all implications for any condition P . Therefore, (Step 1) is not enough for the
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condition P , and we need to reconsider the above (Step 2) in DIS and NIS.

Recently, granular computing [12] is attracting researchers as the new paradig-

m of computing. Since the manipulation of granules in NIS is one of the inter-

esting topics, we focus on granules for association rules, and we investigate the

criterion value and its calculation in NIS.

This paper is organized as follows: Section 2 surveys rules in DIS and NIS

as well as the framework of RNIA. Section 3 de�nes granules for association

rules, and clari�es their properties. Section 4 applies granules for association

rules to decision support in DIS and NIS, respectively. Section 5 describes the

details of the getRNIA system [2] and the application to the Mushroom data

set in UCI machine learning repository [19]. Finally, Section 6 concludes this

paper.

2 Rules in DIS and NIS

This section surveys rules in DIS and NIS, and refers to RNIA.

2.1 Rules in DIS

Deterministic Information System (DIS ) ψ is a quadruplet [10, 11],

ψ = (OB,AT, {V ALA| A ∈ AT}, f),

where OB is a �nite set whose elements are called objects, AT is a �nite set

whose elements are called attributes, V ALA is a �nite set whose elements are

called attribute values, and f is a mapping below:

f : OB ×AT → ∪A∈ATV ALA.
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The value f(x,A) means the attribute value for the object x and the attribute

A. We usually consider a standard table instead of this quadruplet ψ. We call

a pair [attribute, value] a descriptor. Let us consider an attribute Dec ∈ AT

which we call the decision attribute and CON ⊆ (AT \ {Dec}) which we call

(a set of ) condition attributes. For descriptors [A, valueA] (A ∈ CON) and

[Dec, val], we call the following expression an implication τ in ψ:

τ : ∧A∈CON [A, valueA] ⇒ [Dec, val].

De�nition 1. For τ in ψ, if f(x,A)=valueA for every A ∈ CON , we say the

object x supports the conjunction ∧A∈CON [A, valueA]. For τ , if f(x,A)=valueA

for every A ∈ CON and f(x,Dec)=val, we say the object x supports τ . In order

to specify the object x supporting τ , we employ the notation τx, and we say τx

is an instance of τ in ψ.

For examining τ in ψ, we evaluate its instance τx. In ψ, a (candidate of) rule

is an implication τ such that an instance τx satis�es an appropriate constraint.

In this paper, we employ the following constraint [1, 3, 10, 11] for rules:

For given threshold values α and β (0 < α, β ≤ 1.0), and any x ∈ OBJ(τ) ̸= ∅,

support(τx) = |OBJ(τ)|/|OB| ≥ α,

accuracy(τx) = |OBJ(τ)|/|OBJ(∧A∈CON [A, valueA])| ≥ β,

Here, OBJ(∗) means the set of objects supporting the formula ∗, and

|S| means the cardinality of the set S. We do not consider any τ with

OBJ(τ) = ∅.

In our previous work, both τ and τx are not distinguished well, because they

caused no problem in ψ. However in NIS, we need to pay attention to x in τx.
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Figure 1: NIS Φ1 and 24 derived DISs.

2.2 Rules in NIS

We give the de�nition of NIS Φ [9, 10, 11]:

Φ = (OB,AT, {V ALA|A ∈ AT}, g),

OB, AT, V ALA are the same as in ψ,

g : OB ×AT → P (∪A∈ATV ALA) (a power set).

In Φ, the attribute value for the object x and the attribute A is given as a

set g(x,A), and we see that an actual attribute value exists in the set. If we

replace each set g(x,A) with a value v ∈ g(x,A), we obtain one ψ, which we

call a derived DIS from Φ. Especially, we see ψ is Φ where every g(x,A) is a

singleton set. Figure 1 shows the relation between NIS Φ1 and 24 derived DISs.

In Φ, we also handle the following implication τ :

τ : ∧A∈CON [A, valueA] ⇒ [Dec, val].

De�nition 2. For τ , if valueA ∈ g(x,A) for every A ∈ CON , we say the object

x supports the conjunction ∧A∈CON [A, valueA] in Φ. If valueA ∈ g(x,A) for

every A ∈ CON and val ∈ g(x,Dec), we say the object x supports τ in Φ.
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Remark 1. Let us consider an implication τ : [color, red] ⇒ [size,m] in Figure

1. This τ is supported by objects 1, 2, and 3 in Φ1. Namely, we have three

instances τ1, τ2, and τ3. However, the �rst τ1 is supported in 4 (=24/6)

derived DISs, and τ2 is supported in 12 (=24/2) derived DISs. Since we de�ne

the evaluation of instances in Φ over all derived DISs, the evaluation of τ1 and

the evaluation of τ2 may not be the same. In Φ, if an instance τx satis�es a

given constraint, we see this τx is an evidence causing the rule τ . There may

be another instance τy not satisfying the given constraint. This does not occur

in the evaluation in ψ, and this remark speci�es the di�erence between rules in

ψ and rules in Φ.

For Φ, let DD(Φ) denote a set below:

DD(Φ) = {ψ | ψ is a derived DIS from Φ}.

Then, we can consider the following two types of rules with modalities in Φ.

(Certain rule) If an instance τx satis�es a given constraint in each ψ ∈ DD(Φ),

we say τ is a certain rule in Φ.

(Possible rule) If an instance τx satis�es a given constraint in at least one

ψ ∈ DD(Φ), we say τ is a possible rule in Φ.

2.3 Blocks inf and sup De�ned in NIS

In rough set theory, we make use of equivalence classes and descriptors. Here,

we give the next de�nition. This is an enhancement of blocks [3, 4]. For Φ with

a function g : OB × AT → P (∪A∈ATV ALA) and each descriptor [A, valueA]

(A ∈ AT ), we de�ne two sets inf and sup [14, 15].
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(1) For a descriptor [A, valueA],

inf([A, valueA]) = {x ∈ OB | g(x,A) = {valueA}},

sup([A, valueA]) = {x ∈ OB | valueA ∈ g(x,A)}.

(2) For a conjunction of descriptors ∧i[Ai, valuei],

inf(∧i[Ai, valuei]) = ∩iinf([Ai, valuei]),

sup(∧i[Ai, valuei]) = ∩isup([Ai, valuei]).

In Φ1 of Figure 1, we have the following:

inf([color, red]) = {2}, sup([color, red]) = {1, 2, 3},

inf([size, s]) = ∅, sup([size, s]) = {1, 2},

inf([color, red] ∧ [size, s]) = {2} ∩ ∅ = ∅,

sup([color, red] ∧ [size, s]) = {1, 2, 3} ∩ {1, 2} = {1, 2}.

Two sets inf and sup are the minimum and the maximum sets for the equivalence

class de�ned by a descriptor or a conjunction of descriptors, respectively. We

employed these inf and sup blocks and coped with certain and possible rule

generation in Φ [14, 15].

3 Granules for Association Rules

This section proposes granules for association rules in DIS and NIS. We consider

a set of all objects supporting τ : ∧A∈CON [A, valueA] ⇒ [Dec, val]. If an object

x supports τ , the object x must support ∧A∈CON [A, valueA]. Namely, we focus

on OBJ(∧A∈CON [A, valueA]) in ψ and sup(∧A∈CON [A, valueA]) in Φ.
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3.1 Granules for Association Rules in DIS

For τ : ∧A∈CON [A, valueA] ⇒ [Dec, val] in ψ, we may express it by τ : P ⇒

Q for simplicity. For every x ∈ OBJ(P ), clearly either f(x,Dec)=val or

f(x,Dec)=val′ (val ̸= val′) holds. Therefore, we divide OBJ(P ) by [Dec, val],

and we de�ne the following two sets:

1⃝ = {x ∈ OBJ(P ) | x supports P ⇒ Q},

2⃝ = {x ∈ OBJ(P ) | x supports P ⇒ Q′(= [Dec, val′])}.

We name these two sets granules for τ in ψ, and we employ the notation

Grψ({P}, {Q})=( 1⃝, 2⃝). Clearly, the following holds:

1⃝∩ 2⃝ = ∅, 1⃝∪ 2⃝ = OBJ(P ).

Therefore, Grψ({P}, {Q}) de�nes two equivalence classes over OBJ(P ), and

stores information about τ . For example, we have the following for every x ∈ 1⃝:

support(τx) = | 1⃝|/|OB|, accuracy(τx) = | 1⃝|/(| 1⃝|+ | 2⃝|).

Furthermore, we can generate merged granules Grψ({P1, P2}, {Q})=( 1⃝, 2⃝)

over OBJ(P1 ∧ P2) (for an implication P1 ∧ P2 ⇒ Q) from two sets of granules

Grψ({P1}, {Q})=( 1⃝1, 2⃝1) and Grψ({P2}, {Q})=( 1⃝2, 2⃝2). Then, we have

the following easily:

1⃝ = 1⃝1 ∩ 1⃝2, 2⃝ = OBJ(P1 ∧ P2) \ 1⃝.

Example 1. Let us consider Table 1, and two implications τ : [A, 1] ⇒ [C, 1]
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Table 1: An exemplary DIS ψ1.

OB A B C

x1 1 2 1
x2 1 2 1
x3 1 1 1
x4 1 3 2
x5 2 2 1

and τ ′ : [A, 1] ∧ [B, 2] ⇒ [C, 1].

For τ : [A, 1] ⇒ [C, 1], OBJ([A, 1]) = {x1, x2, x3, x4},

Grψ1({[A, 1]}, {[C, 1]}) = ({x1, x2, x3}, {x4}),

support(τx1) = |{x1, x2, x3}|/5 = 3/5,

accuracy(τx1) = |{x1, x2, x3}|/|OBJ([A, 1])| = 3/4.

Since Grψ1({[B, 2]}, {[C, 1]}) = ({x1, x2, x5}, ∅), we obtain the following:

For τ ′ : [A, 1] ∧ [B, 2] ⇒ [C, 1], Grψ1({[A, 1], [B, 2]}, {[C, 1]}) = ( 1⃝, 2⃝),

1⃝ = {x1, x2, x3} ∩ {x1, x2, x5} = {x1, x2},

OBJ([A, 1] ∧ [B, 2]) = {x1, x2}, 2⃝ = OBJ([A, 1] ∧ [B, 2]) \ 1⃝ = ∅,

support(τ ′x1) = |{x1, x2}|/5 = 2/5,

accuracy(τ ′x1) = |{x1, x2}|/|OBJ([A, 1] ∧ [B, 2])| = 1.0.

The above consideration shows that most of the computation on rule generation

in ψ can be executed by a set of granules and the merging process.

3.2 Granules for Association Rules in NIS

We consider τ : ∧A∈CON [A, valueA] ⇒ [Dec, val] in Φ. For simplicity, we

employ the notation τ : P ⇒ Q (P = ∧A∈CON [A, valueA], Q=[Dec, val]),

P ⇒ Q′, P ′ ⇒ Q and P ′ ⇒ Q′ (P ̸= P ′, Q ̸= Q′).
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Example 2. In Figure 1, object 2 supports two implications, τred,s : [color, red] ⇒

[size, s] and [color, red] ⇒ [size,m]. If we focus on τred,s, object 2 supports both

P ⇒ Q and P ⇒ Q′. We express this by the following:

SIMP (2, τred,s) = {P ⇒ Q,P ⇒ Q′}.

Object 3 supports two implications, and if we focus on τblue,m : [color, blue] ⇒

[size,m], object 3 supports P ⇒ Q and P ′ ⇒ Q. Similarly, we have the follow-

ing:

SIMP (3, τblue,m) = {P ⇒ Q,P ′ ⇒ Q}.

For τ in Φ, we divide sup(P ) by [Dec, val], and we de�ne the following six

sets:

1⃝ = {x ∈ sup(P ) | SIMP (x, τ) = {P ⇒ Q}},

2⃝ = {x ∈ sup(P ) | SIMP (x, τ) = {P ⇒ Q,P ⇒ Q′}},

3⃝ = {x ∈ sup(P ) | SIMP (x, τ) = {P ⇒ Q′}},

4⃝ = {x ∈ sup(P ) | SIMP (x, τ) = {P ⇒ Q,P ′ ⇒ Q}},

5⃝ = {x ∈ sup(P ) | SIMP (x, τ) = {P ⇒ Q,P ⇒ Q′, P ′ ⇒ Q,P ′ ⇒ Q′}},

6⃝ = {x ∈ sup(P ) | SIMP (x, τ) = {P ⇒ Q′, P ′ ⇒ Q′}}.

We name these six sets granules for τ in Φ, and we employ the notation

GrΦ({P}, {Q})=( 1⃝, 2⃝, 3⃝, 4⃝, 5⃝, 6⃝). From the above de�nition, each object

supporting τ belongs to either 1⃝, 2⃝, 4⃝ or 5⃝. Each object not supporting τ

belongs to either 3⃝ or 6⃝. In Figure 1, we have the following:

GrΦ1
({[color, red]}, {[size, s]}) = (∅, {2}, ∅, ∅, {1}, {3}),

GrΦ1({[color, red]}, {[size,m]}) = (∅, {2}, ∅, {3}, {1}, ∅).
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Then, we have the following:

i⃝∩ j⃝ = ∅ (i ̸= j),

1⃝∪ 2⃝∪ 3⃝∪ 4⃝∪ 5⃝∪ 6⃝ = sup(P ).

Similarly to Grψ({P}, {Q}), GrΦ({P}, {Q}) stores information about τ : P ⇒

Q, and we can also generate merged granules GrΦ({P1, P2}, {Q})=( 1⃝, 2⃝, 3⃝,

4⃝, 5⃝, 6⃝) (for an implication P1 ∧ P2 ⇒ Q) from GrΦ({P1}, {Q})=( 1⃝1, 2⃝1

3⃝1, 4⃝1, 5⃝1, 6⃝1) and GrΦ({P2}, {Q})=( 1⃝2, 2⃝2, 3⃝2, 4⃝2, 5⃝2, 6⃝2). The

following holds:

1⃝ = 1⃝1 ∩ 1⃝2, 2⃝ = 2⃝1 ∩ 2⃝2, 3⃝ = 3⃝1 ∩ 3⃝2,

4⃝ = ( 1⃝1 ∩ 4⃝2) ∪ ( 4⃝1 ∩ 1⃝2) ∪ ( 4⃝1 ∩ 4⃝2),

5⃝ = ( 2⃝1 ∩ 5⃝2) ∪ ( 5⃝1 ∩ 2⃝2) ∪ ( 5⃝1 ∩ 5⃝2),

6⃝ = ( 3⃝1 ∩ 6⃝2) ∪ ( 6⃝1 ∩ 3⃝2) ∪ ( 6⃝1 ∩ 6⃝2).

The details of this merging algorithm are in [18]. Most of the computation on

rule generation in Φ can also be executed by a set of granules and the merging

process.

In the previous implementation of rule generation in Prolog and C [13], we

employed inf and sup blocks, which are extensions from the equivalence classes.

However, we recently implemented the getRNIA system [2] by using the above

granules for association rules. The employment of granules for association rules

makes NIS-Apriori algorithm [15] more simple and more comprehensive.

4 Decision Support in DIS and NIS

This section considers decision support in DIS and NIS. This is an advancement

from [16].
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4.1 Decision Support Task in DIS

In DIS, we carry out the following task.

(Decision support task in ψ)

(Input) ∧A∈CON [A, valueA] and the decision attribute Dec.

(Output) The set below:

{(valj , support(τxj ), accuracy(τxj )) | valj ∈ V ALDec, x ∈ 1⃝},

τj : ∧A∈CON [A, valueA] ⇒ [Dec, valj ].

Since τxj is an evidence for supporting the decision valj , this task helps us to

decide the most suitable decision valj by using support(τxj ) and accuracy(τ
x
j ).

We can apply this strategy to any condition ∧A∈CON [A, valueA].

In Figure 1, let us considerDIS4. If the condition is [color, red] andDec=size,

we have the decision size=m, because there is the unique implication below:

τ1 : [color, red] ⇒ [size,m] (support(τ1) = 1.0, accuracy(τ1) = 1.0).

In this case, we de�nitely conclude the decision size=m.

4.2 Decision Support Task in NIS

We extend decision support in DIS to NIS. For each τx, it is easy to calculate

support(τx) and accuracy(τx) in ψ by using Grψ({P}, {Q}). However, these

values depend upon ψ ∈ DD(Φ). Therefore, we de�ne the maximum and the
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minimum values in Φ below:

minsupp(τx) = minψ∈DD(Φ){support(τx) in ψ},

minacc(τx) = minψ∈DD(Φ){accuracy(τx) in ψ},

maxsupp(τx) = maxψ∈DD(Φ){support(τx) in ψ},

maxacc(τx) = maxψ∈DD(Φ){accuracy(τx) in ψ},

where support(τx) = accuracy(τx) = 0 in ψ, if x ̸∈ OBJ(τ) in ψ.

The four values depend upon |DD(Φ)|. However, we can prove the following

result, and we escape from the problem on the computational complexity.

Proposition 1. In Φ, let us consider τ : P ⇒ Q and GrΦ({P}, {Q})= ( 1⃝, 2⃝,

3⃝, 4⃝, 5⃝, 6⃝).

(1) For any x ∈ 1⃝,

minsupp(τx) = | 1⃝|/|OB|,

minacc(τx) = | 1⃝|/(| 1⃝|+ | 2⃝|+ | 3⃝|+ | 5⃝|+ | 6⃝|).

(2) For any x ∈ ( 2⃝∪ 4⃝∪ 5⃝),

minsupp(τx) = 0, minacc(τx) = 0.

(3) For any x ∈ ( 1⃝∪ 2⃝∪ 4⃝∪ 5⃝),

maxsupp(τx) = (| 1⃝|+ | 2⃝|+ | 4⃝|+ | 5⃝|)/|OB|.

maxacc(τx) = (| 1⃝|+ | 2⃝|+ | 4⃝|+ | 5⃝|)/(| 1⃝|+ | 2⃝|+ | 3⃝|+ | 4⃝|+ | 5⃝|).

Proof. In this proof, we show the procedure to obtain some derived DISs from

DD(Φ) by selecting an implication in each granule. Each object x supporting

τ belongs to either 1⃝, 2⃝, 4⃝ or 5⃝.

(1) Since accuracy(τx)=|OBJ(τ)|/|OBJ(P )|, we select implications satisfying
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`the same condition and the di�erent decision'. Let NUME and DENO denote

the set of objects of the numerator and the denominator.

(A) For 1⃝, we only select P ⇒ Q, so NUME=DENO= 1⃝.

(B) For 2⃝, we select P ⇒ Q′, and we obtain NUME= 1⃝, DENO= 1⃝∪ 2⃝.

(C) For 3⃝, we only select P ⇒ Q′, and we obtain NUME= 1⃝, DENO= 1⃝∪

2⃝∪ 3⃝.

(D) For 4⃝, we select P ′ ⇒ Q, because the selection of P ⇒ Q increases the

accuracy(τx) (N/M ≤ (N + 1)/(M + 1) for 0 < N ≤ M), and we obtain

NUME= 1⃝, DENO= 1⃝∪ 2⃝∪ 3⃝.

(E) For 5⃝, we select P ⇒ Q′, and we obtain NUME= 1⃝, DENO= 1⃝∪ 2⃝∪

3⃝∪ 5⃝.

(F) For 6⃝, we select P ⇒ Q′, and we obtain NUME= 1⃝, DENO= 1⃝∪ 2⃝∪

3⃝∪ 5⃝∪ 6⃝.

By having the above selections, each element in OBJ(P ) is �xed. In ψ with

such attribute values, accuracy(τx) is clearly the minimum, whose value is

NUME/DENO=| 1⃝|/(| 1⃝| + | 2⃝| + | 3⃝| + | 5⃝| + | 6⃝|). This is the formula

for minacc(τx). The above selections minimize not only accuracy(τx) but al-

so support(τx), because τ is only supported by the objects in 1⃝. Therefore,

we conclude minsupp(τx) is | 1⃝|/|OB|. We also need to know that there is at

least one ψmin ∈ DD(Φ), where both support(τx) and accuracy(τx) become

the minimum.

(2) For x ∈ ( 2⃝∪ 4⃝∪ 5⃝), we can select an implication except P ⇒ Q from the

object x. Therefore, there is at least one ψ where x ̸∈ OBJ(τ). In this ψ, τx

does not occur, and we conclude minsupp(τx)=minacc(τx)=0.

(3) Since accuracy(τx)=|OBJ(τ)|/|OBJ(P )|, we select implications satisfying

`the same condition and the same decision'.

(A) For 1⃝, we only select P ⇒ Q.

14



(B) For 2⃝, we select P ⇒ Q.

(C) For 3⃝, we only select P ⇒ Q′.

(D) For 4⃝, we select P ⇒ Q.

(E) For 5⃝, we select P ⇒ Q.

(F) For 6⃝, we select P ′ ⇒ Q′.

In (A) and (C), the selection is unique. In (B), (D), (E), P ⇒ Q is selected, re-

spectively. In (F), the selection of P ⇒ Q′ reduces the accuracy(τx), so P ′ ⇒ Q′

is selected. In ψ with the above selections, clearly accuracy(τx)=(| 1⃝|+ | 2⃝|+

| 4⃝|+ | 5⃝|)/(| 1⃝|+ | 2⃝|+ | 3⃝|+ | 4⃝|+ | 5⃝|) is the maximum. At the same time

in ψ, P ⇒ Q is selected in all possible cases. Therefore, support(τx)=(| 1⃝| +

| 2⃝| + | 4⃝| + | 5⃝|)/|OB| is also the maximum. We need to know that there is

at least one ψmax ∈ DD(Φ), where both support(τx) and accuracy(τx) become

the maximum.

By using the above result, we consider the decision support task in NIS.

(Decision support task in NIS)

(Input) ∧A∈CON [A, valueA] and the decision attribute Dec.

(Output) The set below:

{(valj , [minsupp(τxj ),maxsupp(τxj )], [minacc(τxj ),maxacc(τxj )]) |

valj ∈ V ALDec}, τj : ∧A∈CON [A, valueA] ⇒ [Dec, valj ].

If 1⃝ ≠ ∅, we employ an object x ∈ 1⃝.

Otherwise, we employ an object x ∈ 2⃝∪ 4⃝∪ 5⃝.

Since τxj is an evidence for supporting the decision valj , this task helps us to

decide the most suitable decision valj . The support(τ
x) and accuracy(τx) in ψ

are extended to the following intervals in Φ:

[minsupp(τxj ),maxsupp(τ
x
j )] and [minacc(τxj ),maxacc(τ

x
j )].
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In Φ1, let us consider the case that the condition is [color, red] and Dec=size.

There are three implications:

(Case 1) τ11 : [color, red] ⇒ [size, s],

(Case 2) τ12 : [color, red] ⇒ [size,m],

(Case 3) τ13 : [color, red] ⇒ [size, l].

As for τ13 , we have the following:

GrΦ1({[color, red]}, {[size, l]}) = (∅, ∅, {2}, ∅, {1}, {3}).

Since 1⃝=∅, minsupp(τ13 )=minacc(τ13 )=0,

maxsupp(τ13 ) = (| 1⃝|+ | 2⃝|+ | 4⃝|+ | 5⃝|)/|OB| = (0 + 0 + 0 + 1)/3 = 1/3,

maxacc(τ13 ) = (| 1⃝|+ | 2⃝|+ | 4⃝|+ | 5⃝|)/(| 1⃝|+ | 2⃝|+ | 3⃝|+ | 4⃝|+ | 5⃝|)

= (0 + 0 + 0 + 1)/(0 + 0 + 1 + 0 + 1) = 1/2.

The total output is the following:

{([size, s], [0, 2/3], [0, 1.0]), ([size,m], [0, 1.0], [0, 1.0]), ([size, l], [0, 1/3], [0, 1/2])}.

Unfortunately in this example, both intervals seem too wide for decision support.

However, these intervals generally give us useful information for decision making

under uncertainty. If we take a careful strategy, we will have the decision based

on the values minsupp(τxj ) and minacc(τ
x
j ). On the other hand, if we take an

optimistic strategy, we will have the decision based on the values maxsupp(τxj )

and maxacc(τxj ).
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5 Decision Support in the getRNIA Software

This section describes our getRNIA software and its application to decision

support on the Mushroom data set in UCI machine learning repository [19].

5.1 getRNIA: A Web Version Program

Figure 2 shows the structure of this system, and Figure 3 shows the user in-

terface. This system is open, and we can easily access this site [2]. The main

role of the getRNIA system is rule generation, but we add the functionality of

decision support for much better usage.

Figure 2: An overview of the principles of getRNIA.

5.2 Decision Support Functionality and an Algorithm

This algorithm is simple, and we employ granules for association rules.

(Algorithm)

(1) Specify the condition ∧A∈CON [A, valueA] and the decision attribute Dec.

(2) Generate granules for association rules below:

{GrΦ({[A, valueA]}, {[Dec, valj ]}) | valj ∈ V ALDec}.
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Figure 3: The current user interface of getRNIA.

(3) Apply merging algorithm, and generate granules for association rules below:

{GrΦ({∧A∈CON [A, valueA]}, {[Dec, valj ]}) | valj ∈ V ALDec}.

(4) Apply calculation algorithm, and generate additional information, i.e., the

minimum and the maximum values.

We may directly generate GrΦ({∧A∈CON [A, valueA]}, {[Dec, valj ]}), how-

ever if we have each GrΦ({[A, valueA]}, {[Dec, valj ]}), we can �exibly change

the condition part.

5.3 An Application of the getRNIA to Mushroom Data

Set

Mushroom data set consists of |OB|=8124 and |AT |=23 [19]. The following is

a part of data set in the form of getRNIA.

18



object(8124,23)./* number of objects, number of attribute values */

support(0.2)./* support value for rule generation */

accuracy(0.6)./* accuracy value for rule generation */

decision(1)./* decision attribute */

attrib_values(1,dec,2,[e,p])./* 1st attribute values */

attrib_values(2,cap-shape,6,[b,c,x,f,k,s])./* 2nd attribute values */

: : :

attrib_values(12,stalk-root,6,[b,c,u,e,z,r]).

: : :

attrib_values(23,habitat,7,[g,l,m,p,u,w,d])./* 23rd attribute values */

data(1,[p,x,s,n,t,p,f,c,n,k,e,e,s,s,w,w,p,w,o,p,k,s,u])./* data */

data(2,[e,x,s,y,t,a,f,c,b,k,e,c,s,s,w,w,p,w,o,p,n,n,g]).

data(3,[e,b,s,w,t,l,f,c,b,n,e,c,s,s,w,w,p,w,o,p,n,n,m]).

data(4,[p,x,y,w,t,p,f,c,n,n,e,e,s,s,w,w,p,w,o,p,k,s,u]).

: : :

data(8122,[e,f,s,n,f,n,a,c,b,n,e,nil,s,s,o,o,p,o,o,p,b,c,l])./* nil */

data(8123,[p,k,y,n,f,y,f,c,n,b,t,nil,s,k,w,w,p,w,o,e,w,v,l]).

data(8124,[e,x,s,n,f,n,a,c,b,y,e,nil,s,s,o,o,p,o,o,p,o,c,l]).

In the above data set, decision attribute is �xed to the 1st attribute, i.e., Dec

is either edible(=e) or poisonous(=p). We apply NIS-Apriori, and can easily

generate rules under this data set. In object 8122, we see a nil, which means

a missing value. 2480 numbers of nil occur only in the 12th attribute stalk-

root. Therefore we can see Mushroom data set is DIS except the 12th attribute.

Since 12th attribute consists of 6 attribute values, the getRNIA system replaces

this nil with a set [b, c, u, e, z, r], and internally handles as NIS. The cardinality

of |DD(Φ)| is 62480. It will be hard to enumerate all derived DISs. In the
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Appendix, we show the obtained rules for this data set.

Now, we refer to the decision support in the getRNIA. We show examples.

(Case 1)

(One condition) The 14th attribute stalk-surface-below-ring.

Four attribute values, f=�brous, y=scaly, k=silky, s=smooth.

The condition is [stalk-surface-below-ring,s].

(Decision) The 1st attribute Dec.

Two attribute values, e=edible, p=poisonous.

Since the 12th attribute is not related to (Case 1), we can see this is the deci-

sion support under DIS, namely minsupp(τxj )=maxsupp(τ
x
j ) and minacc(τ

x
j )=

maxacc(τxj ). Probably we will have the decision Dec=edible from Figure 4.

However, if we take a careful strategy, we may have the decision Dec=poisonous.

This depends upon user's strategy.

Figure 4: Additional information under [stalk-surface-below-ring,s].

(Case 2)

(Two conditions) The 9th attribute gill-size and the 11th attribute stalk-shape.

Two attribute values for gill-size, b=broad, n=narrow.

Two attribute values for stalk-shape, e=enlarging, t=tapering.

The condition is [gill-size,b]∧ [stalk-shape,t ].

(Decision) The 6th attribute odor.

Nine attributes, a=almond, l=anise, c=creosote, y=�shy, f=foul, m=musty,
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n=none, p=pungent, s=spicy.

From Figure 5, we will have the decision odor=n. This is also the decision

support under DIS.

Figure 5: Additional information under [gill-size,b]∧ [stalk-shape,t ].

(Case 3)

(One condition) The 12th attribute stalk-root. Seven attribute values includ-

ing missing values nil, b=bulbous, c=club, u=cup, e=equal, z=rhizomorphs,

r=rooted, nil=missing.

The condition is [stalk-root,c].

(Decision) The 7th attribute gill-attachment.

Four attribute values for gill-attachment, a=attached, d=descending, f=free,

n=notched.

From Figure 6, we will have the decision attachment=f. In this case, each

nil a�ects the maximum values.
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Figure 6: Additional information under [stalk-root,c].

6 Concluding Remarks

This paper advanced the preliminary work [16] by granules GrΦ({P}, {Q}) for

association rules. This will be an attempt to combine rough sets and granular

computing. Since granules store information about an implication τ : P ⇒ Q,

we can see GrΦ({P}, {Q}) as the reduced information about τ from Φ. We see

the merging algorithm will be the powerful tool for handling granules, because

we can calculate criterion values by a set of granules and the merging process.

RNIA handles non-deterministic information as a kind of incomplete infor-

mation, and gives the formal de�nition of rules. We clari�ed the di�erence be-

tween rules in ψ and rules in Φ in Remark 1. We can consider any x ∈ OBJ(P )

for τx in ψ, but τx (x ∈ 1⃝ ⊆ sup(P )) and τx (x ∈ 2⃝∪ 4⃝∪ 5⃝ ⊆ sup(P )) take

the di�erent criterion values.

We add the functionality of decision support to the getRNIA system. In each

execution, we obtained the result in real time. For a condition ∧A∈CON [A, valueA],

we decide valj in ψ by the following additional information.

{(valj , support(τxj ), accuracy(τxj )) | valj ∈ V ALDec},

τj : ∧A∈CON [A, valueA] ⇒ [Dec, valj ].
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Similarly, we decide valj in Φ by the following additional information.

{(valj , [minsupp(τxj ),maxsupp(τxj )], [minacc(τxj ),maxacc(τxj )]) |

valj ∈ V ALDec}, τj : ∧A∈CON [A, valueA] ⇒ [Dec, valj ].

These values will help us to have the decision. The proposed decision support

depends upon each ψ ∈ DD(Φ). If we sequentially pick up each ψ ∈ DD(Φ), we

face with the problem on the computation. It will be hard to calculate criterion

values in each ψ. We have solved this problem by Proposition 1.

The proposed method will be di�erent from neither statistical decision mak-

ing nor fuzzy decision support, and will be a new framework for decision support

under uncertainty.
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Appendix.

The getRNIA system generates the following visual results in the web page.

Figure 7: The rules from Mushroom data set generated by the getRNIA. Except
12th attribute stalk-root, we may see this table as DIS. The 6th rule and the
17th rule are related to stalk-root, therefore minsupp(τxj ) < maxsupp(τxj ) and
minacc(τxj ) < maxacc(τxj ).
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Figure 8: The pie charts for four attributes generated by the getRNIA.

Figure 9: The top four reliable rules generated by the getRNIA.
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