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Abstract 

Panoramic images are one of the most requested exams by den-
tists for allowing the visualization of the entire mouth. Inter-
preting X-ray images is a time-consuming task in which misdi-
agnoses can occur due to the inexperience or fatigue of profes-
sionals. In this work, we applied different image enhancement 
techniques as a pre-processing step to determine which image 
features correlate with improvements in teeth detection in pan-
oramic images using deep learning architectures. We con-
trasted the performance of five object-detection architectures 
using 300 panoramic images of a public dataset. We evaluated 
the enhancement in the pre-processing step and the detection 
performance. Quality and detection metrics were considered, 
and the cross-correlation between them was computed for every 
object-detection method contemplated. We observe the depend-
ence of the detection performance with some image enhance-
ment techniques, especially those that introduce less noise and 
preserve the global contrast of the image. 
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Introduction 

Panoramic radiography is an extra-oral type of dental X-ray im-

age that has become commonly used in dental practice and can 

be a valuable diagnostic tool in the dentist’s armamentarium. It 

allows the visualization of the maxillary and mandibular teeth, 

surrounding bones, chin, and part of the cervical spine [1], com-

plementing the clinical examination while exposing the patient 

to a small dose of radiation [1,2]. The interpretation of X-ray 

images is a time-consuming task mainly performed by dentists 

where misdiagnosis can occur due to the inexperience, fatigue, 

or bias of the professional [3]. Hence, a computer-assisted ap-

plication is a helpful tool for assisting diagnosis and reducing 

the workload of the professionals. 

Teeth detection can be done by Image-Processing and Deep 

Learning (DL) algorithms. In the field of dentistry, neural net-

works are being mainly used for the detection and segmentation 

of teeth, with a few works focusing on the classification of den-

tal pathologies as caries and periodontal bone loss [2]. Recent 

tooth detection and classification works achieve results compa-

rable to professionals. Tuzoff et al. [4] achieved a sensitivity of 

99.41% and a precision of 99.45% using Faster-RCNN [5] ar-

chitecture for teeth detection in panoramic radiographs. Chen et 

al. [2] developed three post-processing techniques to improve 

the Faster-RCNN detections, achieving a precision and sensi-

tivity of 98.8% and 98.5%, respectively. In [6] a fully convolu-

tional neural network based on U-Net [7] is used to perform 

semantic segmentation on panoramic images, achieving a final 

accuracy of 95.06%. The success of a DL method not only de-

pends on the configuration of the network (the architecture), but 

also, is related to other aspects like pre-processing, data aug-

mentation, and hyper-parameter optimization. In this work, we 

explored some pre-processing, which has proven to be a differ-

entiating factor between DL algorithms with the same architec-

ture [8]. 

The rest of the article is organized as follows: in Methods we 

present the description of the dataset, the Image Enhancement 

Techniques (IET), the object detection architectures, and the 

experimental setup. In Results, we show the object detection 

performance of each architecture, as well as the correlation be-

tween the detection results and the Image Quality Metrics 

(IQM). Finally, we present the discussion and conclusion re-

marks. 

Methods 

Dataset 

We use a public dataset of 1500 panoramic images generated 

by Gil Silva et al. [9] originally conceived for semantic seg-

mentation. From the 1500 images, 300 images were selected 

and divided into 192 for training, 48 for validation, and 60 for 

testing. Bounding boxes were drawn for each tooth, implant, 

prosthesis, or dental root fragments as the ground-truth labels. 

These annotations were reviewed, edited, and validated by two 

experienced dentists. 
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Figure 1– Diagram of steps followed in this work. 

Table 1– Hyperparameters values. 

Architecture batch size learning rate weight decay warmup iterations steps 

Faster R-CNN 2 0.01 0.0001 48 6 

RetinaNet 2 0.008 0.0001 4 4 

Cascade R-CNN 2 0.009 0.001 24 3, 5 

FCOS 2 0.02 - 48 6, 13 

YOLOv3 8 0.001 0.001 - 48, 96 

Image enhancement techniques (IET) 

The image enhancement techniques considered were the 

smoothing-edge preservation filters Anisotropic Diffusion 

(AD) [10] and Bilateral Filtering (BF) [11], in addition to the 

contrast enhancement algorithms BBHE [12], CLAHE [13], 

GRMMCE [14], MTHT [15], and QHELC [16]. Before apply-

ing the mentioned techniques, the images were first trimmed to 

exclude extra toothless regions by having as references the hard 

palate and lower mandibular contour. For evaluating the image 

enhancement, we considered quality metrics like Absolute 

Mean Brightness Error (AMBE), Peak Signal to Noise Ratio 

(PSNR), Structural Similarity Index Measure (SSIM), standard 

deviation or global contrast (GC), Contrast Improvement Ratio 

(CIR) [17], Entropy, and Edge Preservation Index (EPI) [18]. 

AMBE measures if a method preserves the original brightness 

of an image. The better the brightness preservation, the lower 

AMBE would be. PSNR measures the distorting noise intro-

duced in an image, where a higher image quality yields a higher 

PSNR. SSIM measures the structural similarity between the 

original image and the output image with a better value closer 

to 1. CIR measures the enhancement in the local contrast of the 

images. A higher value of CIR indicates a higher difference be-

tween the local contrast of the original image and the output 

image [17]. Entropy is used to quantify the information content 

of an image; a more detailed image has the higher entropy. EPI 

index quantifies the edge preservation after applying the en-

hancement to the image. EPI equals 1 indicates a similar value 

between the input and enhanced images [18]. 

Object detection architectures 

We selected Faster R-CNN [5], Cascade R-CNN [19], Reti-

naNet [20], Fully Convolutional One-Stage Object Detection 

(FCOS) [21], and You Only Look Once (YOLOv3) [22] for be-

ing among the most widely used architectures. Pre-trained mod-

els were chosen from the Model Zoo of MMDetection [23], an 

open-source object detection toolbox based on Pytorch. Back-

bones used were ResNext [24] for Faster R-CNN, RetinaNet, 

and Cascade R-CNN, ResNet 101 for FCOS, and DarkNet-53 

for YOLOv3. All pre-trained models were trained on the COCO 

dataset.  

The best weight of each method, trained with the panoramic 

images, was chosen considering the highest mean Average Pre-

cision (mAP) with , The IoU is defined as:  

, where  is the area of detected boxes 

and is the area of ground truth boxes. 

With the models trained and the weights selected, the perfor-

mance of the models on the test set was evaluated considering 

as true detection a prediction with . We then meas-

ured the accuracy (ACC), precision (PRE), and recall, metrics 

that are calculated using: , 

, and , where TP or True 

Positive is the number of teeth correctly detected, FP or False 

Positive is the number of teeth incorrectly detected, and FN or 

False Negative is the number of teeth that are not detected or 

are detected with and . Figure 1 shows a diagram of 

the steps followed in this work. 

Experimental setup 

Table 1 shows the parameters used for training the models, 

these values were set after hyperparameter tuning. The baseline 

model was trained using the original dataset, and seven more 

models were trained with the dataset obtained after the applica-

tion of different IET. We chose the best weight for each archi-

tecture, after training for at most 100 epochs. 

Results 

Image quality metrics (IQM) 

Table 2 shows the IQM for the pre-processed images as well as 

the Entropy and GC measured on the original dataset. We no-

ticed that the IET that introduces less noise to the images was 

the bilateral filtering, achieving the highest PSNR among the 

techniques. While the change in the contrast made by BBHE, 
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introduces the most distortion and noise to the images, having 

low values of SSIM and PSNR. CLAHE also introduces noise 

to the images, but unlike BBHE, CLAHE preserves the edges 

of the objects, having the closest value of EPI to one, while also 

raising the entropy of the images. Applying QHELC produces 

an image with an EPI close to one, which also has the highest 

SSIM value, indicating a low distortion introduced to the im-

ages. 

Teeth detection 

Table 3 shows the detection performance of the methods. Faster 

R-CNN results show that five models have a better accuracy 

than the baseline model, being the MTHT model the one with 

the best results, and the BF model the second best. On the con-

trary, QHELC model is the one with the lowest detection per-

formance, having the worst accuracy and precision among the 

models. CLAHE is the model with the highest recall across all 

models.  

In RetinaNet results, we noticed that GRMMCE, bilateral fil-

tering, and QHELC models have better accuracy than the base-

line. Being GRMMCE the one with the best accuracy, whereas 

BBHE has the lowest accuracy and precision among the mod-

els.  

According to Cascade R-CNN results, QHELC model is the 

only model that has a slightly better performance than the base-

line model, while the model with the worse performance is 

again the BBHE model, having a precision 5.37% less than the 

precision of the QHELC model.  

In FCOS results, the accuracy and recall have the same value 

since the precision is 100%. For this architecture, QHELC 

model achieves the higher accuracy, and it is followed by the 

baseline model, while the BBHE model presents the lowest ac-

curacy among the models. 

Finally, in YOLOv3 detection results, we noticed that there 

were no improvements introduced by any IET. Conversely, the 

BBHE model presents the lowest accuracy among the models. 

Cross-correlation 

We computed the correlation heat maps presented in Figure 2 

using the IQM in Table 2 and the detection results of Table 3. 

Figure 2-A shows the correlation heat map of Faster R-CNN. 

The relationships between the detection metrics and the IMQ 

are mostly neutral in this heat map. The relationship that 

slightly stands out is the negative relation of the precision with 

AMBE and GC. RetinaNet models’ correlation heat map is 

shown in Figure 2-B. The map shows that the precision has a 

negative relationship of -0.27 with GC, and -0.22 with CIR. In 

Figure 2-C, the heat map of Cascade R-CNN models shows that 

the accuracy and the precision have a negative relation with 

AMBE, the GC, and CIR. While they have a positive relation-

ship with both SSIM and PSNR. The heat map of FCOS in Fig-

ure 2-D does not have the precision since the value of this met-

ric is 100% for every model. According to the heat maps in Fig-

ure 2-D and 2-E, the teeth detection results of FCOS and 

YOLOv3 models have a neutral relationship with the IQM con-

sidered. 

 

Table 2 – Average of IQM measured on the testing group.  

 AMBE Entropy SSIM PSNR EPI Contrast CIR 

Original dataset  6.998    33.120  

AD 9.4E-07 6.982 0.963 41.003 0.423 32.715 0.742 

BF 2.2E-06 6.987 0.970 42.996 0.448 32.863 0.680 

BBHE 5.7E-02 6.829 0.710 14.810 0.423 74.154 39.204 

CLAHE 5.9E-02 7.647 0.866 19.038 0.951 50.484 1.699 

GRMMCE 5.2E-04 7.058 0.959 35.632 0.672 34.578 4.356 

MTHT 6.0E-04 7.156 0.767 27.793 0.309 37.119 35.199 

QHELC 1.1E-03 6.982 0.993 36.906 0.913 36.334 0.188 

Table 3– Teeth detection performance of the methods. 

 Faster R-CNN RetinaNet Cascade R-CNN FCOS YOLOv3 

 ACC  PRE  Recall ACC  PRE  Recall ACC  PRE  Recall ACC  PRE ACC  PRE  Recall 

Baseline 98.92  99.49  99.43 98.81  99.43  99.37 99.43  99.94  99.49 97.83  100  96.29  99.94  96.34 

AD 99.09  99.66  99.43 98.69  99.37  99.31 99.37  99.89  99.49 97.43  100 94.18  99.82  94.34 

BF 99.20  99.71  99.49 98.92  99.43  99.49 99.37  99.94  99.43 97.54  100 95.03  99.88  95.14 

BBHE 98.81  99.32  99.49 97.37  97.92  99.43 95.35  95.76  99.54 97.37  100 95.84  99.76  96.05 

CLAHE 99.15  99.49  99.66 98.70  99.09  99.60 97.75  98.25  99.49 97.71  100 95.66  99.82  95.83 

GRMMCE 99.03   99.54  99.49 98.98  99.43  99.54 99.37  99.83  99.54 97.54  100 95.95  99.82  96.11 

MTHT 99.26  99.71  99.54 98.41  99.03  99.37 99.31  99.94  99.37 97.71  100 95.04  99.64  95.37 

QHELC 98.64  99.31  99.31 98.92  99.37  99.54 99.49  99.94  99.54 98.11  100 95.83  99.94  95.88 
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Discussion 

The detection performance of the models, shown in Table 3, 

indicates that applying an enhancement to the dataset does not 

always result in an improvement of the detection. This behavior 

is found in Cascade R-CNN, FCOS, and YOLOv3, where the 

baseline model has the second best or the best result. We can 

also observe that the QHELC model achieves the best results in 

Cascade R-CNN and FCOS, and the second-best result in Reti-

naNet. The BBHE model shows the weakest or one of the weak-

est performances in the five architectures. The heat map with 

the strongest relationships belongs to Cascade R-CNN in Fig-

ure 2-C. The negative relationship of the precision with GC and 

CIR, also presented in the RetinaNet heat map, means that the 

precision will be negatively affected by an increment of GC and 

local contrast. According to Table 2, BBHE is the enhancement 

technique that increases the most GC and the local contrast of 

the images, which results in the BBHE model having the lowest 

precision among the models of RetinaNet and Cascade R-CNN. 

We can see this in Figure 3, where in A we have the inference 

of the original model of RetinaNet, and in B we see the BBHE 

model. In Figure 3-A, a fragment of a tooth is missed, while in 

Figure 3-B the fragment is detected but there are two extra 

boxes, these boxes affect the precision of the model. The heat 

map of Figure 2-C also shows that the accuracy and the preci-

sion have a positive relationship with SSIM and PSNR. This 

means that techniques that less noise and distortion introduced 

to the images, like QHELC, have a greater chance to have 

higher accuracy and precision. 

The correlations found in this work might vary if the dataset has 

a higher number of images, or with greater diversity in the fea-

tures of the images. For that reason, increasing the number of 

images in the dataset would elevate the importance of the re-

sults.  

Conclusions 

We evaluated the detection performance of several deep learn-

ing object-detection architectures with images modified by 

seven IET as a pre-processing step in the context of teeth detec-

tion. Some models show dependency on the modification of the 

image while others do not. We also correlated the features ob-

tained by the IET with improvements of the detection perfor-

mance showing that images with the highest values of SSIM 

and PSNR, i.e., those IET which preserves better the structure 

and introduce less noise to the images reach better performance 

and are suitable to be used for data augmentation, while incre-

menting CIR and GC will be in detrimental of the detection per-

formance. 

 

 

Figure 2– Correlation heat maps of A: Faster R-CNN, B: RetinaNet, C: Cascade R-CNN, D: FCOS, and E: YOLOv3. 

 

Figure 3– A: Baseline model inference missed a tooth marked with a blue box. B: BBHE model inference has two extra boxes marked 
with the green boxes. 
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