We give a complete classification of Dembowski-Ostrom polynomials from the composition of Dickson polynomials of arbitrary kind and monomials over finite fields. Moreover, by using a variant of the Weil bound for the number of points of affine algebraic curves over finite fields, we discuss the planarity of the obtained Dembowski-Ostrom polynomials.
Citation: |
[1] | E. Bergman, R. S. Coulter and I. Villa, Classifying planar monomials over fields of order a prime cubed, Finite Fields Appl., 78 (2022), 101959, 53 pp. doi: 10.1016/j.ffa.2021.101959. |
[2] | C. Blondeau and K. Nyberg, Perfect nonlinear functions and cryptography, Finite Fields Appl., 32 (2015), 120-147. doi: 10.1016/j.ffa.2014.10.007. |
[3] | W. Bosma, J. Cannon and C. Playoust, The Magma algebra system Ⅰ: The user language, J. Symbolic Comput., 24 (1997), 235-265. doi: 10.1006/jsco.1996.0125. |
[4] | J. S. Chahal and S. R. Ghorpade, Carlitz-Wan conjecture for permutation polynomials and Weil bound for curves over finite fields, Finite Fields Appl., 54 (2018), 366-375. doi: 10.1016/j.ffa.2018.07.006. |
[5] | R. S. Coulter, The classification of planar monomials over fields of prime square order, Proc. Amer. Math. Soc., 134 (2006), 3373-3378. doi: 10.1090/S0002-9939-06-08346-8. |
[6] | R. S. Coulter and F. Lazebnik, On the classification of planar monomials over fields of square order, Finite Fields Appl., 18 (2012), 316-336. doi: 10.1016/j.ffa.2011.09.002. |
[7] | R. S. Coulter and R. W. Matthews, Dembowski-Ostrom polynomials from Dickson polynomials, Finite Fields Appl., 16 (2010), 369-379. doi: 10.1016/j.ffa.2010.06.002. |
[8] | R. S. Coulter and R. W. Matthews, Planar functions and planes of Lenz-Barlotti class Ⅱ, Des. Codes Cryptogr., 10 (1997), 167-184. doi: 10.1023/A:1008292303803. |
[9] | P. Dembowski and T. G. Ostrom, Planes of order $n$ with collineation groups of order $n^2$, Math. Z., 103 (1968), 239-258. doi: 10.1007/BF01111042. |
[10] | L. E. Dickson, The analytic presentation of substitutions on a power of a prime number of letters with a discussion of the linear group, Ann. of Math., 11 (1897), 65-120. doi: 10.2307/1967217. |
[11] | C. Ding, Cyclic codes from APN and planar functions, preprint, 2012, arXiv: 1206.4687. |
[12] | C. Ding and T. Helleseth, Optimal ternary cyclic codes from monomials, IEEE Trans. Inf. Theory, 59 (2013), 5898-5904. doi: 10.1109/TIT.2013.2260795. |
[13] | N. Fernando, S. U. Hasan and M. Pal, Dembowski-Ostrom polynomials and reversed Dickson polynomials, Discret. Appl. Math., 298 (2021), 66-79. doi: 10.1016/j.dam.2021.03.012. |
[14] | S. U. Hasan, M. Pal, C. Riera and P. Stănică, On the $c$-differential uniformity of certain maps over finite fields, Des. Codes Cryptogr., 89 (2021), 221-239. doi: 10.1007/s10623-020-00812-0. |
[15] | X. Hou, Permutation polynomials over finite fields – A survey of recent advances, Finite Fields Appl., 32 (2015), 82-119. doi: 10.1016/j.ffa.2014.10.001. |
[16] | Y. Laigle-Chapuy, Permutation polynomials and applications to coding theory, Finite Fields Appl., 13 (2007), 58-70. doi: 10.1016/j.ffa.2005.08.003. |
[17] | C. Li and T. Helleseth, Quasi-perfect linear codes from planar and APN functions, Cryptogr. Commun., 8 (2016), 215-227. doi: 10.1007/s12095-015-0132-y. |
[18] | R. Lidl, G. L. Mullen and G. Turnwald, Dickson Polynomials, Pitman Monographs and Surveys in Pure and Applied Mathematics, 65. Longman Scientific and Technical, Essex, England, 1993. |
[19] | R. Lidl and W. B. Müller, Permutation polynomials in RSA-cryptosystems, Advances in Cryptology, Plenum, New York, (1984), 293-301. |
[20] | R. Lidl and H. Niederreiter, Finite Fields, Encyclopedia of Mathematics and Its Applications, 20. Addison-Wesley Publishing Company, Reading, MA, 1983. |
[21] | J. B. Lima and D. Panario, A trigonometric approach for Dickson polynomials over fields of characteristic two, Appl. Algebra Eng. Commun. Comput., 31 (2020), 253-270. doi: 10.1007/s00200-020-00429-9. |
[22] | G. L. Mullen and D. Panario, Handbook of Finite Fields, Discrete Mathematics and its Applications, CRC Press, Boca Raton, FL, 2013. doi: 10.1201/b15006. |
[23] | L. Rónyai and T. Szönyi, Planar functions over finite fields, Combinatorica, 9 (1989), 315-320. doi: 10.1007/BF02125898. |
[24] | I. Schur, Über den Zusammenhang zwischen einemem Problem der Zahlentheorie und einem Satz üiber algebraische Funktionen, Sitzungsber. Akad. Wiss., Berlin, (1923), 123-134. |
[25] | J. Schwenk and K. Huber, Public key encryption and digital signatures based on permutation polynomials, Electron. Lett., 34 (1998), 759-760. |
[26] | Q. Wang and J. L. Yucas, Dickson polynomials over finite fields, Finite Fields Appl., 18 (2013), 814-831. doi: 10.1016/j.ffa.2012.02.001. |
[27] | G. Weng and X. Zeng, Further results on planar DO functions and commutative semifields, Des. Codes Cryptogr., 63 (2012), 413-423. doi: 10.1007/s10623-011-9564-3. |
[28] | M. E. Zieve, Planar functions and perfect nonlinear monomials over finite fields, Des. Codes Cryptogr., 75 (2015), 71-80. doi: 10.1007/s10623-013-9890-8. |