
HAL Id: hal-00346841
https://hal.science/hal-00346841v1

Submitted on 12 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Heterogeneous component interactions: Sensors
integration into multimedia applications

Christine Louberry, Philippe Roose, Marc Dalmau

To cite this version:
Christine Louberry, Philippe Roose, Marc Dalmau. Heterogeneous component interactions: Sensors
integration into multimedia applications. Journal of Networks, Issue N°6, Academy Publisher, 2008,
3 (4), pp.ISSN : 1796-2056. �hal-00346841�

https://hal.science/hal-00346841v1
https://hal.archives-ouvertes.fr

Figure 1. Example of an application based on software components

and sensors

Heterogeneous component interactions: Sensors

integration into multimedia applications

Christine Louberry
LIUPPA, Bayonne, France

Email: louberry@iutbayonne.univ-pau.fr

Philippe Roose and Marc Dalmau
LIUPPA, Bayonne, France

Email: {roose, dalmau}@iutbayonne.univ-pau.fr

Abstract—Resource-constrained embedded and mobile

devices are becoming increasingly common. Since few years,

some mobile and ubiquitous devices such as wireless sensor,

able to be aware of their physical environment, appeared.

Such devices enable proposing applications which adapt to

user’s need according the context evolution. It implies the

collaboration of sensors and software components which

differ on their nature and their communication mechanisms.

This paper proposes a unified component model in order to

easily design applications based on software components

and sensors without taking care of their nature. Then it

presents a state of the art of communication problems

linked to heterogeneous components and proposes an

interaction mechanism which ensures information

exchanges between wireless sensors and software

components.

Index Terms—Multimedia applications, software

component, component model, sensor network,

communication management

I. INTRODUCTION

Our work is interested in distributed applications based

on software and physical components (sensors). Since

few years, the technological developments in electronics

and communication have allowed the arrival of mobile

and ubiquitous devices providing several services. The

growing demand for rich and customized services leads

to the challenge of the realization of applications able to

adapt themselves to the user’s needs and to the real

environment. The emergence of wireless mobile sensors

able to process data in an autonomous way may allow

proposing applications aware to their physical context

and able to react according to the environment evolution.

The characteristic of such applications is that they

integrate strongly constrained devices. An example to

illustrate that is a surveillance application (Fig. 1). We

disseminate infrared sensors and camera sensors in an

area we want to monitor. Infrared sensors can detect

intrusions in the area. The detection of an intruder causes

starting the nearest camera in order to obtain an image of

the intruder. The collaboration of this camera with a

video analysis software component enables to determine

the probable trajectory of the intruder and to start the

cameras located on this trajectory or to direct the cameras

to obtain images of different angles of sight.

These applications need to integrate several types of

components (software and hardware) but also several

modes of communication (wired, wireless), several

protocols (WiFi, ZigBee, Ethernet), and several

mechanisms (method call, event, Mailbox, etc). Without

the intervention of an intermediary, these components

would not understand each other. To support

interoperability, we chose to act at various levels. In this

paper we focus on the level of application design. On the

one hand we deal with the modeling of components by a

unified component model then we deal with the modeling

of interactions by a description of connections between

components.

The reminder of this paper is organized as follows: In

section II, we present related work on modeling sensors

and interfaces between applications and sensors. Section

III presents the wireless sensor model we use in our

applications. In section IV we present a general view of

our software component model called OSAGAIA and its

various elements. We detail the contributions for the

integration of sensors in the OSAGAIA model. Section V

draws up a state of the art on communication

mechanisms. In section VI, we discuss various

approaches concerning data and protocol transformation

Sensor

IDCard Function

- type

Communicati on

Processor

- manufacturer

- type
- frequency

Battery

- power level

Memory

- free space

OS

- name

Mode

- mode

+ send()

+ receive()

Protoco l

- protocolName

- range

1 * 1

1 1 1 1 1 1

Figure 3. Sensor class diagram

Figure 2. General architecture of a wireless sensor

facilitating communication between components. We

conclude our paper and give the perspective of our

research in section VII.

II. RELATED WORK

These last years, wireless sensor networks aroused the

interest of research activities in computer science and

electronic fields [1]. Most of them concentrate on energy

consumption problems and on operating systems and

network problems (routing, packet loss, connectivity). On

the other hand, few activities are carried out around the

problems of communication due to the heterogeneity of

devices used. More precisely, preoccupations exist about

the use of sensors to improve applications which until

now are only run by software components.

For the moment, no model common to all sensors was

proposed. Although there are standard communication

protocols (WiFi, ZigBee, Bluetooth, etc.) and standard

routing protocols for mobile networks (AODV [7], OLSR

[12], etc.), there is no standard to model a sensor. In order

to easily integrate sensors in applications and to propose a

unified component model, we need a sensor model. We

describe it in part III.

Moreover, due to low power and small memory,

operating systems for sensors are low-level architectures

and make application development non-trivial. To bridge

the gap between applications layers (high and low), a new

approach has emerged: middleware. In this paragraph, we

present a survey of existing middleware, especially

developed for sensor networks.

A classification of sensor oriented middleware

according to their objectives can be found in [10]. The

three main categories are: virtual machine based,

database based and message-oriented middleware.

Virtual machine based middlewares allow developers

to write applications in separate modules which are

injected through the network. Then, the virtual machine

interprets the modules. They run on the operating system

of the sensor, that is to say they are embedded on sensors.

Mate (TinyOS) [15] and Magnet (MagnetOS) [3] belong

to this category.

In database based middlewares, the network is

considered as a virtual database system. It offers a user-

friendly interface to query the network and extract data.

Cougar [5] uses a database approach to manage sensor

network operation and TinyDB [16] uses queries to

extract sensor data from a network using TinyOS.

Most of the time, sensors produce events. So, the most

suitable communication model to this type of network is

the asynchronous communication model. That’s why

message-oriented middlewares like Mires [21] propose a

publish-subscribe mechanism. With this method, sensors

only receive data which they are interested in.

A common point to these middleware is that they are

used to facilitate the development of sensor-specific

applications.

The researches mentioned above deal with applications

embedded on sensors, dedicated to sensor networks but

do not tackle the problem of collaboration between

sensors and software components. However, in the future,

sensors are intended to be used by applications which

also integrate software components. Collaborations

between these two categories of components will be

necessary.

The challenge is now to enable these components to

communicate together in order to take advantage of the

functionalities of sensors in applications and improve

services.

III. WIRELESS SENSOR MODEL

The recent advances in microelectronics and wireless

technologies allow developing small sized sensors

endowed with processing capacities and wireless

communication modes. Some of them allow even

multimedia processing as sound and image (Cyclops

[19]) thanks to embedded small cameras and

microphones. This paragraph presents a brief state of the

art and proposes a model for actual wireless sensors.

Sensors are generally composed of a core (mote) on

which various components are attached (Fig. 2). A

wireless sensor includes a processor, memory, a radio

module, a battery and detectors [4]. It consists in three

elements: an ID card, one or several functions and a

communication module (Fig. 3). The ID card consists

itself in four elements: a processor, a memory, a battery

and an operating system. The communication module

consists in a communication mode (for example event

communication or client/server communication), and a

communication protocol or a transmission type (WIFI or

Bluetooth, etc). The communication module is endowed

Figure 4. Internal architecture of an Elementary Processor

with a port allowing input/output of messages and events.

For example, the ID card of a Crossbow MICA2 sensor

consists of a processor Atmega128 at 4MHz, a 512 KB

memory to store the measures, a system memory of 128

KB, a two AA battery and the TinyOS [11] operating

system. It communicates by sending messages by radio.

A sensor can have several functions by integration of

various detectors. It can measure outside temperature,

atmospheric pressure, humidity, magnetic field,

luminosity, displacement or capture pictures, sound, etc.

Of course, when integrated into an application, this

sensor will provide a precise service which will use one,

some or all the functions of the sensor. The next

paragraph describes this integration in a unified

component model.

IV. UNIFIED COMPONENT MODEL

In this paragraph, we proposed a unified component

model to design applications without having to manage

the software or hardware nature of components. This

model is an adaptation, for wireless sensors, of the

OSAGAIA model [8].

A. OSAGAIA Model

The OSAGAIA model had been developed for

distributed multimedia applications. It focuses on the

problems of flow synchronization and of components

dynamic connection/disconnection. It is made of two

entities which handle that. The first one is the conduit that

allows the transport of synchronous multimedia flows

within the application. It can be distributed through the

Internet. The second one is the Elementary Processor

(EP). It is a container that provides a runtime

environment for a Business Component (BC). The BC

encapsulates a particular multimedia processing, i.e. the

functional implementation. For instance, a video capture

BC implements the necessary mechanism to provide this

capture.

Inter-flow synchronization is known as temporal

constraints between several flows (e.g. the sound and the

image of a video), in opposition with intra-flow

synchronization which concerns samples of the same

flow. More precisely, these constraints are defined

between the samples of each flow (e.g. one image

corresponds to several sound samples in a video). So, it is

necessary to identify the samples of each flow in a unique

way in order to match them with samples of others flows.

To do this, a time-stamp is associated to each set of

samples on each flow at acquisition or creation time. We

name this mechanism the flows time-stamping. The

couple formed by a set of samples and a time-stamp is

called a Temporal Unit (TU). A set of TUs corresponding

to the same temporal interval from different synchronous

flows is called a synchronous slice. Thus, a succession of

synchronous slices constitutes a set of synchronous flows.

They are bundled into a conduit in order to be

transported.

Both entities of the model are connected by

input/output ports. Ports are the means by which the

multimedia flows pass from EP to Conduit, and

conversely. Ports accept TUs as input or provide TUs as

output. The port is the structural unit of connection

between both entities of the model (connectable element).

Output ports of one entity can only be connected with

input ports of others ones.

BC implements a particular media processing

(functional implementation). The BC needs to be

executed in a container named EP. The BC is data driven,

that means its processing is linked to incoming data.

The EP is a container for the BC. It supports non-

functional properties for a correct execution of the BC

(functional properties) and of the whole application. The

EP is composed of an Input Unit (IU), an Output Unit

(OU) and a Control Unit (CU) as shown in figure 4. The

EP is supervised by the platform (add, remove or replace

EPs). The EP has input/output ports for each multimedia

flow entering or outgoing. These ports allow its

connection to conduits. Each port is linked respectively to

the IU or the OU. These units are interfaces between BC

and multimedia flows. They contain methods used by the

BC in order to read (respectively write) in the input

(respectively output) ports. The CU manages all the

elements of the EP. This unit communicates with events

and specific methods. For instance, the BC behavior is

controlled by the CU through its methods init(), start()

and stop(). CU also manages the data circulation within

the EP. Particularly it ensures that incoming flows which

are not processed by the BC cross the EP without loosing

the synchronization between them and with flows which

are processed. A prototype is available to the following

URL: http://www.iutbayonne.univ-

pau.fr/~roose/V2/korronteaSimulator/KorronteaSimulator

.zip.

Sensors are particular Business Component. We extend

OSAGAIA model in a unified model to integrate them in

applications.

B. Unified Model

Sensors are able to produce several kinds of data

flows. To process information, they communicate with

software components able to achieve the specific

processing of this information. To integrate sensors

among software components, we have to propose a

unified component model. We propose to integrate a

sensor into an Elementary Processor (EP) of the

OSAGAIA model. The EP encapsulates the sensor as it

would do for a software component.

Figure 6. Integrating a sensor into an OSAGAIA EP

Figure 7. Example of flows exchanges into an application

composed of mobile and non-mobile components

Sensor

CommunicationID Card CU Function

1

IU OU

1 1 * 1 1

Figure 5. Class diagram of an Elementary Processor

Using the OSAGAIA model, the interconnection of

components is done using an Input/Output Unit (IU, OU).

The execution platform supervises the Business

Component (BC) thanks to a Control Unit (CU) located

into the container (the Elementary Processor - EP).

According to OSAGAIA, the Business Component (BC)

is used to process multimedia flows. A flow enters the

Communication Unit via the Input Unit of the Elementary

Processor (EP) and get out through the Output Unit.

These units are supervised by the Control Unit of the EP.

In order to inter-connect and to manage the sensor, we

add a CU, a IU and a OU to it (Fig 5). The CU allows to

send commands to the sensor and to the IU and OU and

to get back their state. The CU is able to evaluate the state

of the memory and the battery of the sensor in order to

inform in real-time the supervision platform about the

available space or the battery level. It can also

communicate with the sensor OS in order to supervise it.

In the OSAGAIA model, the supervision platform is

distributed on all sites. Because of memory size

restrictions and compute power limits it is not possible to

locate a part of this platform on each sensor as it is

traditionally done on each computer. That is why we

choose to externalize the CU associated to the sensor to

the nearest site able to support the platform. This

externalization is not reflected in the UML diagram

because, at a structural level, the Control Unit is part of

the Elementary Processor. Actually, the role of the CU is

to ensure the link between the component and the

platform.

Using this process, the model obtained (Fig. 5)

matches the model of the Elementary Processor in the

OSAGAIA model.

However, a sensor communicate with its radio

(wireless network card, etc). It is its only interaction point

with other components. Consequently all information

exchange will be done using the Input/Output radio

device (Fig. 6). So, we need to distinguish data and

control/state flows in order to re-orientate them according

to their nature towards the corresponding entity.

That is why we use a data flow model including the

information of course (data, command) but also an

identifier allowing knowing if this flow is:

- a data flow;

- a state flow;

- a command flow.

The figure 7 shows an application composed of a

mobile video sensor (V), a mobile sound sensor (S) and a

mixing software component (M) located on a non-mobile

terminal. On the below part of the schema, a zoom on this

non-mobile terminal shows the local part of the platform,

the Control Units of the two sensors (V, S) and the

Elementary Processor containing the Business

Component M. The sensor V sends a video flows to M,

but because M is too far, S has to play a relay role. S

receives this flow, identifies it as a flow to relay and

communicates it to its Output Unit in order to transmit it

to M. S also sends its own produced flow to M. M reads

the two flows received into in Input Unit, identify them as

data flows and communicates them to its Business

Component. When the platform needs to send a command

to V, it sends it to S which relay it to V. This is the same

when S and V send state flows to the platform. However,

in order to not overload sensors, the platform is

distributed on all non-mobile stations; because of the

mobility of sensors, the Control Units of sensors can be

moved from one fixed station to another in order to

directly reach the sensor if possible. This is part of the

quality of service management that the platform normally

does.

This process allows managing both sensors and

software components in a unique way thanks to the

generic model.

Now, there is a generic model to manage sensors and

software components, we have to propose a mechanism

facilitating communication between these components.

Next paragraph presents such a mechanism.

V. STATE OF THE ART ABOUT COMMUNICATION

MECHANISMS

This paragraph presents a state of the art of

communication mechanisms that software components

and sensors can both use.

A. Communication in software components

In the software engineering literature, we can notice

that the software components communication

mechanisms most used are event-based, method call-

based, stream-based, client-server-based and message-

based communication. The first one is generally used to

report property changes of a component to others.

Method call is the traditional communication mechanism

of software components. Calls can be local or distant

(RPC). The stream-based mechanism is often used to

transfer multimedia data. The next part shows that all

mechanisms cannot be used by sensors due to their

operating system.

B. Communication in wireless sensors

The most popular wireless sensors are Crossbow

MICA2 and Java Sun Spot. The first ones use TinyOS

operating system [11]. TinyOS proposes a

communication mechanism by messages and uses its own

messages format. This format looks like a network packet

[14]. It encloses the address of destination, the length of

the message and the data field. The data field can contain

many kinds of data (measurements, video, sound) but

also others data structures like commands. The second

ones use Squawk java virtual machine. Squawk runs

without any operating system. It proposes a message-

based communication mechanism too but looking at the

Java Sun Spot API, we can notice that Sun Spot can also

use a client-server-based communication mechanism and

a stream-based one. In reality, usage of the radio link

reduces these possibilities to only one: the message-based

mechanism.

C. Interaction modelling

Modeling interactions is a recurrent challenge in

software engineering. One way to describe interactions is

to use an architecture description language (ADL) [2].

Such languages introduce the concept of connector. In

[18], authors draw up a taxonomy of connectors. They

classify connectors into four service categories:

communication, coordination, conversion and facilitation

connectors. We focus on conversion connectors and more

precisely, on adaptors. Adaptors are a kind of connectors

which provide facilities to components to interoperate

although they have not been designed for.

Several researches were made in order to enable

heterogeneous software components to interoperate.

Indeed, due to the several models proposed and to the

reuse of components preoccupation, applications based

on software components come up with the problem of

technical and semantic heterogeneity. Most of these

works deal with semantic interoperability and propose

solutions to bridge the gap between incompatible

interfaces’ signatures.

In this article, we are interested in adaptors and

technical interoperability. Adaptors also called wrappers

are piece of code linking two components that normally

have incompatible interfaces. Examples of this kind of

connectors are adaptors of Yellin and Strom [23] or

wrappers of Spitznagel and Garlan [22]. They propose to

construct adaptors using finite state machines (FSM).

These adaptors notice differences between the FSM of

communication protocols of two components and provide

some code hiding these differences and allowing

components to interact. In [23], authors define wrappers

as new code that moderate the behavior (data format,

protocol of interaction, etc) of components without

modifying it. Their work focuses on wrappers that affect

the communication between components. They specify

connector wrappers as protocol transformations able to

redirect, replay, insert and discard particular events.

As we are interested in protocol translation, we want to

define connectors allowing to link two components using

different communication mechanisms. For example, we

want a sensor using message-based communication to

interoperate with a software component using method

call-based communication. Defining such connectors

requires knowing all the types of interactions we can

encounter in an application. The next paragraph presents

a list of the communication mechanisms that components

(software and sensors) can use.

VI. COMMUNICATION PROTOCOL

Interactions between heterogeneous components are

recurrent problems in software development. Our

applications make collaborate two kinds of components:

software components and wireless sensor. Wireless

sensors and software components differ on several points.

They have different nature, hardware and software, they

use different communication mechanisms, etc. They need

to communicate in order to ensure service collaboration.

We first propose solutions which deal with interactions

between sensors and software components in a general

way. Then we consider communication in the Unified

Model. As an EP is a container for a sensor, we have to

link them so that they can exchange information.

A. Heterogeneous component interactions

Software components and sensors do not use the same

communication mechanism. First one uses method calls,

Figure 8. Structure of a sensor software [4]

A

B

C

Middleware
Repository

Figure 9. Example of a centralized middleware and its repository

TC C

Platform

Useful flow

for C

Transformed

flow
Processed

flow

Figure 10. Example of conversion component

whereas the other one uses messages broadcast. We have

to provide a mechanism that acts as a link between such

elements.

A first approach consists in introducing an interaction

transformation process into the input and output units (IU

and OU). The first possibility is to add an interaction

transformer to the OU. When a component sends data to

another, the OU transforms it in the appropriated format

for the addressee. This mechanism implies that the

component knows the addressee’s type. It is not true

because only the supervision platform knows the

components’ type. Secondly, we can add a data

transformation process to the IU. When a component

receives a data, the UI identifies it in order to apply the

appropriate transformation. This method implies that the

entry port of the destination component can accept data in

any form. It also implies to know the data structures and

interaction mechanisms of all the components of the

network. In the case of sensors, this method is not

applicable due to their small memory. Moreover, each

component must know all the possible transformations. It

means that when a new transformation is introduced into

the application, all components have to be updated. That

will be difficult to deploy on a real scale.

A second approach consists in using a middleware. A

description of the characteristics required by a

middleware for sensor networks can be found in [4]:

- scalable: the application is reduced to essential

components and data types.

- generic: interfaces must be generic to minimize

customization for other applications.

- adaptive: able to add/remove components during

runtime.

- reflective: able to change the behavior of

components instead of changing themselves.

The authors propose a concept of a software-

architecture for wireless sensor networks which separates

software from hardware and divides the software into

three functional blocks (Fig. 8). The Node-specific

Operating System handles device management, for

example boot up, memory management, etc. Sensor

drivers groups hardware drivers, e.g., timer, radio.

Middleware then organizes the collaboration of nodes

(collaboration of services). With this architecture, sensors

integrate a distributed middleware which is the only way

to contact them in order to simplify the development of

services for sensor networks. The authors of [9] propose a

middleware pattern for sensor networks in order to handle

the heterogeneity in sensor applications. It combines

services proposed by existing middlewares for sensor

networks. Services are divided in three categories:

Application layer, Data management layer and Network

service management layer. They are implemented in

separate components in order to make it possible to

replace them. Applications indicate their needs to the data

management layer which gathers the needed data by

interrogating sensors. Reusing readings enables to save

energy but is not suitable to realize real-time applications.

Moreover, middleware is suitable to reconfiguration but

not to data transformation. Because components do not

care about their neighbors, the middleware would have to

request the supervision platform before each sending in

order to transform interaction mechanism. With sensors,

it would generate too many transmissions.

In our model, we already integrate input and output

units in a sensor. Adding a middleware could harm the

operation of the sensor due to its low power and its small

memory.

Instead of a distributed middleware, we can use a

centralized middleware with a repository which contains

all the data type transformations. Figure 9 shows an

application composed of two software components A and

B and one sensor C. Instead of sending two messages in

two different formats to B and C, A sends its message to

the middleware which transforms and sends it to B and C

with the appropriate format. However, the use of such a

middleware increases networks transfers and add delays

because of transaction time with the repository.

A third approach consists in using OSAGAIA software

components [8]. We can define some Business

Components (TC) which provide a conversion processing

specific to each kind of components (Fig. 10). Each

component is associated to the conversion component

specific to it. This method limits delay because it only

induces some processing time whereas middleware

method induces network transfer time. Another advantage

Figure 12. Connection between EPs and sensors

Figure 11. Transformation in the Conduit

is the preservation of the synchronization. Indeed, the

conversion component is a component of our model and

consequently contains the properties to keep the

synchronization.

The disadvantage is when we reconfigure the

application. We have to change the components per pair:

the component and its conversion component. It implies

of being aware of functional dependencies between

components as in [13].

A fourth approach consists in using the Control Unit

(CU) of the Conduit in our model (Fig. 11). In the

OSAGAIA model, all data streams are transported by

Conduits. The Conduit contains synchronization

properties that allow keeping the synchronization during

data transport. The purpose is to implement the CU in

order to know all possible data transformations in the

network. There is no more network delay, only

processing time due to the data transformation. This

solution is the most suited to our applications. Conduit is

a kind of middleware independent of business

components. It ensures communication transparency and

in case of sensors, does not introduce additional

transmissions and processes what preserves its resources.

Obviously, all the methods described in this paragraph

require knowing all the data types which will be used in

the network. They also imply that the application must

know the composition of the network permanently in

order to give messages to the appropriate transformation

component according to the destination.

This paragraph summarizes general solutions about

heterogeneous component interactions. Now we focus on

one kind of interaction: communication in the Unified

Model.

B. Interactions in Unified Model

All the solutions presented before are available for a

massively heterogeneous network with many types of

components. In our model, we consider that all business

components, whatever their nature is, are contained in an

EP. However, the communication mechanisms of

software components and sensors are different. Most of

the time, software components exchange data according

to local or remote procedure calls. It implies that

components have public methods invoked by other

components. However, sensors cannot use procedure call

to communicate with other components using their radio

link.

When an EP encapsulates a software business

component, the two entities are logically located on the

same platform (or base station) and communicate via

method calls. When an EP encapsulates a sensor, in order

to not overload CPU and memory capacities, we decide

to export EP functionalities on the nearest base station

from the sensor. As we said in the previous paragraph,

contrary to business component, sensors communicate

broadcasting messages to the EP. Indeed because the two

entities are on two distinct platforms, we have to define a

connection mechanism between the EP and the sensor it

encapsulates. This connection must include a

communication mechanism adaptor from method call to

broadcasting (mailbox) and inversely (Fig. 12).

In [6] and [17], authors distinguish two kinds of

communication abstraction: connector and medium. They

define a connector as an abstract architectural element. It

specifies the reification of an interaction, communication

or coordination system of an application. It provides

some extra-functional interaction mechanisms

independent of the application. A connector provides

generic interfaces which are adapted to the specifications

of the linked components’ interfaces. This mechanism

ensures the transparency of the communication.

The medium reify a communication or interaction

abstraction. It is a software component which offers a

communication service. A medium provides explicit

interfaces with methods that components can invoke

directly. Unlike a connector, a medium is dependant of

other components; their implementation must integrate

the use of the communication service.

Our goal is to ensure collaboration between

heterogeneous components and to provide a connection

mechanism transparent to the EP. Thus an EP can

integrate a business component or sensor without taking

care about the connection. Connectors seem to be the

most adapted way to reach our objective.

The next paragraph describes the interaction

abstraction we choose to use for this connection.

C. Communication mechanism connector

The sensors we are interested in are smart sensors like

Sun SPOTs (Fig. 13). Indeed, the applications we

implement are dynamically reconfigured according to the

environment evolution. Crossbow sensors (Motes) use the

TinyOS operating system. To run an application with

TinyOS, you first have to create this application as a

Figure 13. Sun SPOT wireless sensor, sensor board on top,

processor and radio in the middle and battery board on the bottom

TinyOS module, then to create an image of the operating

system including this new module and finally to load this

image on the sensor. This process is too heavy and is not

suitable to dynamically reconfigurable real-time

applications. Loading a new operating system image at

each reconfiguration would spend too much energy and

time. Sun SPOTs sensors do not use an operating system

but a Java virtual machine which is more suitable to

reconfiguration. The main characteristics of Sun SPOTs

are:

- Microcontroller 16Mhz

- 512Kb RAM and 4Mb Flash memory

- Wireless communication 802.15 ZigBee compliant

- Squawk Java virtual machine J2ME CLDC 1.1

compliant running without any operating system

[20].

As the definition of a connector described in [17], we

define a connector to link an EP and its sensor with its

property, its plugs and its protocol.

The property of the communication mechanism

connector is to ensure the adaptation of communication

mechanisms of the EP and the sensor so that they can

interact.

The connector has two plugs. The first plug, called

Left plug, receives the requests of the EP and transmits

the answers from the sensor. Its interface has the same

public method than the EP. Thus, Left plug

communicates with the EP by method calls. The second

plug, called Right plug, waits for messages coming from

the sensor. It transforms the method calls in

comprehensible message by the sensor and conversely.

The Right plug communicates with the sensor by

messages broadcast.

Interactions between components imply to follow

some rules in order to organize the communication.

Theses rules are defined with a protocol. Because of the

unreliability of the sensors (connectivity, battery), we

decide that the best way to offer a suitable quality of

service to the user in case of material breakdown is to

propose an asynchronous communications protocol.

Thus, if for an unspecified reason, the sensor breaks

down whereas its EP requests it, the EP would not remain

blocked waiting for an answer, blocking a part of the

application. Another procedure allowing discovering the

devices of the network would be used to inform the EP of

the absence of the sensor. That causes a quality of service

event which is caught by the supervision platform. The

platform moves the EP in order to allow it reaching the

sensor. If it is not possible, the platform chooses a sensor

to ensure a relay function between the EP and the too far

sensor. Figure 14 represents the interaction diagram of an

EP communicating with its sensor. The Right plug creates

a message each time it receives a corresponding EP

method call from the Left plug. This creation process is

based on the following scheme:

Message name = Method name;

Message property = {Method parameters};

Write message in output port;

The connector is located on the same base station as

the EP. Thus, exchanges with the EPs and adaptation

processes are carried out locally to the base station, only

the already transformed information is transmitted to

sensors.

Providing a connector to link sensors and EPs does not

entirely resolve the communication problem. We now

face with mobility problems. When the sensor moves,

appears or breaks down, we have to transfer, add or

remove the EP and the connector to the nearest base-

station. It implies to provide a process which will be

aware of network composition.

VII. CONCLUSION AND FUTURE WORK

Sensors become more and more present around us.

They have now processing capacities, a relatively

important memory and can do measures and capture

sound or picture. Our objective is to use them to improve

multimedia applications by adding services linked to the

physical context.

In order to design such applications easily, we propose

a unified component model allowing the developer not to

take care of the type (hard/soft) of entities. In this paper,

we focused on the OSAGAIA model and show how to

extend it to sensors. However, we had to take into

account the low capacity and the mobility of sensors. A

prototype implemented with JavaBeans is available and

allows simulating the deployment of sensors/software

components and their mobility.

This original model allows designing applications

using inter-connections of hardware and software

components without any particular adaptation of the

components involved. The platform is able to supervise

these components and can re-organize the circulation of

data flows to improve the QoS of the application. It

receives states from each of them in order to know how

the application runs and sends command to the

components in order to drive the execution.

Within sight of the various solutions of data

management described in part VI, we can see that there is

a real need with regard to data transformation and data

management. The majority of the solutions deal with

applications specific to sensor networks. Few ones are

interested in the problems of integration of the sensors in

Figure 14. Asynchronous communication protocol

existing applications. The approach we propose is

interested in the problem of components heterogeneity in

applications which mix software and hardware

components.

Future works will be in the discovery of devices in the

network in order to manage connection between EP and

sensors. The most popular service discovery protocols are

UPnP and Jini. UPnP (Universal Plug and Play) is an

industry standard to allow devices to be automatically

discovered and added into a network in an easy-to-use

way. UPnP is based on TCP/UDP and HTTP protocols.

Jini Technology proposes a service discovery protocol for

adhoc network. It is a Java-specific middleware that can

only be used by client able to interpret Java bytecodes.

Due to their characteristics, Sun SPOTs can integrate one

of these service discovery protocols.

Some tests were implemented on Felix OSGi

framework. We developed a group of connectors

according to the specification we propose, mapping a

method call from the EP to a message the sensor can

understand (http://www.iutbayonne.univ-

pau.fr/~louberry/Pages/recherche.html). Next simulations

and tests will be dedicated to the integration of service

discovery protocol in our application in order to improve

the communication.

ACKNOWLEDGMENT

This work is supported by the ANR / CNRS, 2006-

2009.

REFERENCES

[1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Caryirci,

“Wireless Sensor Networks: a survey”, Computer

Networks, vol. 38, no. 4, pp. 393–422, April 2002

[2] R.J. Allen, D. Garlan, “A Formal Basis for Architectural

Connection”, ACM Transactions on Software engineering

and Methodology, Vol. 6, No. 3, July 1997, p.213-249.

[3] R. Barr, et al., “On the Need for System-Level Support for

Ad hoc and Sensor Networks”, Operating Systems Review,

ACM, vol. 36, no. 2, pp. 1-5, April 2002.

[4] J. Blumenthal, M. Handy, F. Golatowski, M. Haase, D.

Timmermann, “Wireless Sensor Networks - New

Challenges in Software Engineering”, Proc. IEEE Conf.

ETFA 03, September 2003, vol. 1, p.p. 551- 556.

[5] P.Bonnet, J. Gehrke, P. Seshadri, “Towards Sensor

Database Systems”, Proc. 2nd Int’l Conf. MDM 01, 2001,

pp. 314-810.

[6] Eric Cariou, Antoine Beugnard, “The Specification of

UML Collaborations as Interactions Components”, at the

Fifth International Conference on the Unified Modeling

Language (UML 2002), September 30 - October 4, 2002,

Dresden, Germany, volume 2460 of Lecture Notes in

Computer Science, Springer Verlag.

[7] Ian D. Chakeres and Elizabeth M. Belding-Royer. "AODV

Routing Protocol Implementation Design." Proceedings of

the International Workshop on Wireless Ad Hoc

Networking (WWAN), Tokyo, Japan, March 2004.

[8] M. Dalmau, P. Roose, E. Bouix, F. Luthon, “A Multimedia

Oriented Component Model”, AINA 2005, The IEEE 19th

International Conference on Advanced Information

Networking et Applications, March 28-30 , 2005.

[9] B. Elen, S. Michiels, W. Joosen, P. Verbaeten, “A

Middleware Pattern to Support Complex Sensor Network

Applications”, ACM SIGPLAN, OOPSLA '06 Workshop

on Building Software for Sensor Networks, October 22-26

, 2006.

[10] S. Hadim, N. Mohamed, “Middleware: Middleware

Challenges and Approaches for Wireless Sensor

Networks”, IEEE Distributed Systems Online, vol 7, March

2006.

[11] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K.

Pister, “System Architecture Directions for Network

Sensors”, ASPLOS 2000, Cambridge, November 2000.

[12] P. Jacquet, et al., Project Hipercom, INRIA, “Optimized

Link State Routing Protocol”, RFC 3626, April 2004.

[13] S. Laplace, M. Dalmau, P. Roose, “QoS Oriented Design

and Management for Multimedia Distributed

Applications”, 6ème colloque francophone GRES, Luchon,

France, February 28-March 3, 2005

[14]]N. Lee, P. Levis, J. Hill, “Mica High Speed Radio Stack”,

11 Septembre 2002

[15] P. Levis, D. Culler, “Mate: Tiny Virtual Machine for

Sensor Networks”, Proc. 10th Int’l Conf. ASPLOS-X, ACM

Press, 2002, pp. 85-95.

[16] S. R. Madden, M. M. Franklin, J. M. Hellerstein, “TinyDB:

An Acquisitional Query Processing System for Sensor

Networks”, ACM Trans. Database Systems, vol. 30, no. 1,

2005, pp. 122-173.

[17] S. Matougui, A. Beugnard, “How to implement software

connectors? A reusable, abstract and adaptable connector”,

Distributed Applications and Interoperable Systems,

DAIS’05, Athens, Greece, 2005.

[18] N. R. Metha, N. Medvidovic, S. Phadke, “Towards a

Taxonomy of Software Connectors”, 2nd International

Conference on Software Engineering, Limerick, Ireland,

June 2000.

[19] M. Rahimi, R. Baer, O. I. Iroezi, J. C. Garcia, J. Warrior,

D. Estrin, and M. Srivastava, “Cyclops: In Situ Image

Sensing and Interpretation in Wireless Sensor Network”, in

ACM SENSYS, pages 192-204, November 2005.

[20] Doug Simon, Cristina Cifuentes, Dave Cleal, John Daniels

and Derek White, “Java(TM) on the Bare Metal of

Wireless Sensor Devices -- The Squawk Java Virtual

Machine”, Second International Conference on Virtual

Execution Environments, VEE’06, Ottawa, Canada, June

14-16, 2006.

[21] E. Souto, et al., “A Message-Oriented Middleware for

Sensor Networks”, Proc. 2nd Int’l Workshop MPAC 04,

ACM Press, 2004, pp. 127-134.

[22] B. Spitznagel, D. Garlan, “A Compositional Formalization

of Connector Wrappers”, Proc. 2nd Int’l Workshop MPAC

04, ACM Press, 2004, pp. 127-134.

[23] D. M. Yellin, R. E. Strom, “Interfaces, Protocols, and the

Semi-Automatic Construction of Software Adaptors”,

Proc. OOPSLA’94, Portland, Oregon, USA, October 1994.

Christine Louberry is a Ph.D. student in the department of

Computer Science at the University of Pau, France. She obtains

her Master Degree in Computer Science from the University of

Pau, France, in 2006. Her research interests include sensor

networks, component model and software architecture for

distributed multimedia applications, quality of service.

Philippe Roose is an Assistant Professor in the department

of Computer Science at the University of Pau, France. He is

responsible of the TCAP project - Video flows transportation on

sensor networks for on demand supervision. His research

interests include wireless sensors, software architectures for

distributed multimedia applications, software components,

quality of service, dynamic reconfiguration, COTS, distributed

software platform, information system for multimedia

applications.

Marc Dalmau is an Assistant Professor in the department of

Computer Science at the University of Pau, France. He is a

member of the TCAP project. His research interests include

wireless sensors, software architectures for distributed

multimedia applications, software components, quality of

service, dynamic reconfiguration, distributed software platform,

information system for multimedia applications.

