Jump to content

Dudeney number: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Rescuing 1 sources and tagging 0 as dead.) #IABot (v2.0.9.2) (Whoop whoop pull up - 11040
 
(28 intermediate revisions by 8 users not shown)
Line 1: Line 1:
In [[number theory]], a '''Dudeney number''' in a given [[number base]] is a [[natural number]] equal to the [[perfect cube]] of another [[natural number]] such that the [[digit sum]] of the first natural number is equal to the second. The name derives from [[Henry Dudeney]], who noted the existence of these numbers in one of his puzzles, ''Root Extraction'', where a professor in retirement at [[Colney Hatch]] postulates this as a general method for root extraction.
In [[number theory]], a '''Dudeney number''' in a given [[number base]] <math>b</math> is a [[natural number]] equal to the [[perfect cube]] of another [[natural number]] such that the [[digit sum]] of the first natural number is equal to the second. The name derives from [[Henry Dudeney]], who noted the existence of these numbers in one of his puzzles, ''Root Extraction'', where a professor in retirement at [[Colney Hatch]] postulates this as a general method for root extraction.


== Mathematical definition ==
== Mathematical definition ==
Let <math>n</math> be a natural number. We define the '''Dudeney function''' for base <math>b > 1</math> and [[Exponentiation|power]] <math>p > 0</math> <math>F_{p, b} : \mathbb{N} \rightarrow \mathbb{N}</math> to be the following:
Let <math>n</math> be a natural number. We define the '''Dudeney function''' for base <math>b > 1</math> and [[Exponentiation|power]] <math>p > 0</math> <math>F_{p, b} : \mathbb{N} \rightarrow \mathbb{N}</math> to be the following:
:<math>F_{p, b}(n) = \sum_{i=0}^{k - 1} \frac{n^p \bmod{b^{i+1}} - n^p \bmod b^i}{b^i}</math>
:<math>F_{p, b}(n) = \sum_{i=0}^{k - 1} \frac{n^p \bmod{b^{i+1}} - n^p \bmod b^i}{b^i}</math>
where <math>k = \lfloor \log_{b}{n} \rfloor + 1</math> is the number of digits in the number in base <math>b</math>.
where <math>k = p\left(\lfloor \log_{b}{n} \rfloor + 1\right)</math> is the <math>p</math> times the number of digits in the number in base <math>b</math>.


A natural number <math>n</math> is a '''Dudeney root''' if it is a [[Fixed point (mathematics)|fixed point]] for <math>F_{p, b}</math>, which occurs if <math>F_{p, b}(n) = n</math>. The natural number <math>m = n^p</math> is a '''generalised Dudeney number'''<ref>http://www.jakob.at/steffen/dudeney.html</ref>, and for <math>p = 3</math>, the numbers are known as '''Dudeney numbers'''. <math>0</math> and <math>1</math> are '''trivial Dudeney numbers''' for all <math>b</math> and <math>p</math>, all other trivial Dudeney numbers are '''nontrivial trivial Dudeney numbers'''.
A natural number <math>n</math> is a '''Dudeney root''' if it is a [[Fixed point (mathematics)|fixed point]] for <math>F_{p, b}</math>, which occurs if <math>F_{p, b}(n) = n</math>. The natural number <math>m = n^p</math> is a '''generalised Dudeney number''',<ref>{{Cite web|url=http://www.jakob.at/steffen/dudeney.html|title = Generalized Dudeney Numbers}}</ref> and for <math>p = 3</math>, the numbers are known as '''Dudeney numbers'''. <math>0</math> and <math>1</math> are '''trivial Dudeney numbers''' for all <math>b</math> and <math>p</math>, all other trivial Dudeney numbers are '''nontrivial trivial Dudeney numbers'''.


For <math>p = 3</math> and <math>b = 10</math>, there are exactly six such integers {{OEIS|id=A061209}}: <math>1, 512, 4913, 5832, 17576, 19683</math>
For <math>p = 3</math> and <math>b = 10</math>, there are exactly six such integers {{OEIS|id=A061209}}: <math>1, 512, 4913, 5832, 17576, 19683</math>
Line 18: Line 18:
:<math>n \leq (b - 1)(1 + p + \log_{b}{n^p}) = (b - 1)(1 + p + p \log_{b}{n}))</math>
:<math>n \leq (b - 1)(1 + p + \log_{b}{n^p}) = (b - 1)(1 + p + p \log_{b}{n}))</math>


implying a finite number of Dudeney roots and Dudeney numbers for each order <math>p</math> and base <math>b</math>.<ref>http://blog.hostilefork.com/six-dudeney-numbers-proof/</ref>
implying a finite number of Dudeney roots and Dudeney numbers for each order <math>p</math> and base <math>b</math>.<ref>{{Cite web|url=http://blog.hostilefork.com/six-dudeney-numbers-proof/|title=Rebol : Proving There are Only Six Dudeney Numbers}}</ref>


<math>F_{1, b}</math> is the [[digit sum]]. The only Dudeney numbers are the single-digit numbers in base <math>b</math>, and there are no periodic points with prime period greater than 1.
<math>F_{1, b}</math> is the [[digit sum]]. The only Dudeney numbers are the single-digit numbers in base <math>b</math>, and there are no periodic points with prime period greater than 1.
Line 54: Line 54:
| 2 || [[base-12|12]] || B || A1 || 9 → 13 → 14 → 12 || 69 → 169 → 194 → 144
| 2 || [[base-12|12]] || B || A1 || 9 → 13 → 14 → 12 || 69 → 169 → 194 → 144
|-----
|-----
| 2 || 13 || 4, 9, C, 13 || 13, 63, B1, 169 || <math>\varnothing</math> || <math>\varnothing</math>
| 2 || 13 || 4, 9, C, 13 || 13, 63, B1, 1E6 || <math>\varnothing</math> || <math>\varnothing</math>
|-----
|-----
| 2 || 14 || D || C1 || 9 → 12 → 9 || 5B → 144 → 5B
| 2 || 14 || D || C1 || 9 → 12 → 9 || 5B → 144 → 5B
|-----
|-----
| 2 || 15 || 7, 8, E || 34, 44, D1 ||
| 2 || 15 || 7, 8, E, 16 || 34, 44, D1, 169 ||
2 → 4 → 2
2 → 4 → 2


Line 98: Line 98:
| 3 || 10 || 8, 17, 18, 26, 27 || 512, 4913, 5832, 17576, 19683 || 19 → 28 → 19 || 6859 → 21952 → 6859
| 3 || 10 || 8, 17, 18, 26, 27 || 512, 4913, 5832, 17576, 19683 || 19 → 28 → 19 || 6859 → 21952 → 6859
|-----
|-----
| 3 || 11 || 5, 9, 13, 15, 18, 22, 25 || 104, 603, 2075, 3094, 5176, A428, 13874 ||
| 3 || 11 || 5, 9, 13, 15, 18, 22 || 104, 603, 2075, 3094, 5176, A428 ||
8 → 11 → 8
8 → 11 → 8


Line 115: Line 115:
3767 → 12167 → 3767
3767 → 12167 → 3767
|-----
|-----
| 3 || 12 || 19, 1A, 1B, 28, 29, 2A || 5439, 61B4, 705B, 16B68, 35937, 39304 ||
| 3 || 12 || 19, 1A, 1B, 28, 29, 2A || 5439, 61B4, 705B, 16B68, 18969, 1A8B4 ||
8 → 15 → 16 → 11 → 8
8 → 15 → 16 → 11 → 8


Line 129: Line 129:
|-----
|-----
| 4 || 4 || 3, 13, 21, 31 || 1101, 211201, 1212201, 12332101 || <math>\varnothing</math> || <math>\varnothing</math>
| 4 || 4 || 3, 13, 21, 31 || 1101, 211201, 1212201, 12332101 || <math>\varnothing</math> || <math>\varnothing</math>
|-----
| 4 || 5 || 4, 14, 22, 23, 31 || 2011, 202221, 1130421, 1403221, 4044121 || <math>\varnothing</math> || <math>\varnothing</math>
|-----
| 4 || 6 || 24, 32, 42 || 1223224, 3232424, 13443344 || 14 → 23 → 14 || 114144 → 1030213 → 114144
|-----
|-----
| 5 || 2 || 110, 111, 1001 || 1111001100000, 100000110100111, 1110011010101001 || <math>\varnothing</math> || <math>\varnothing</math>
| 5 || 2 || 110, 111, 1001 || 1111001100000, 100000110100111, 1110011010101001 || <math>\varnothing</math> || <math>\varnothing</math>
|-----
| 5 || 3 || 101 || 12002011201 || 22 → 121 → 112 → 110 → 22 || 1122221122 → 1222021101011 → 1000022202102 → 110122100000 → 1122221122
|-----
| 5 || 4 || 2, 22 || 200, 120122200 || 21 → 33 → 102 → 30 → 21 || 32122221 → 2321121033 → 13031110200 → 330300000 → 32122221
|-----
| 6 || 2 || 110 || 1011011001000000 || 111 → 1001 → 1010 → 111 || 11100101110010001 → 10000001101111110001 → 11110100001001000000 → 11100101110010001
|-----
| 6 || 3 || <math>\varnothing</math> || <math>\varnothing</math> || 101 → 112 → 121 → 101 || 1212210202001 → 112011112120201 → 1011120101000101 → 1212210202001
|}
|}

==Extension to negative integers==
Dudeney numbers can be extended to the negative integers by use of a [[signed-digit representation]] to represent each integer.


==Programming example==
==Programming example==
The example below implements the Dudeney function described in the definition above [[Cycle detection|to search for Dudeney roots, numbers and cycles]] in [[Python (programming language)|Python]].
The example below implements the Dudeney function described in the definition above [[Cycle detection|to search for Dudeney roots, numbers and cycles]] in [[Python (programming language)|Python]].
<source lang=python>
<syntaxhighlight lang="python">
def dudeneyf(x, p, b):
def dudeneyf(x: int, p: int, b: int) -> int:
"""Dudeney function."""
y = pow(x, p)
y = pow(x, p)
total = 0
total = 0
Line 144: Line 160:
return total
return total


def dudeneyf_cycle(x, p, b):
def dudeneyf_cycle(x: int, p: int, b: int) -> List:
seen = []
seen = []
while x not in seen:
while x not in seen:
Line 154: Line 170:
x = dudeneyf(x, p, b)
x = dudeneyf(x, p, b)
return cycle
return cycle
</syntaxhighlight>
</source>



==See also==
==See also==
* [[Arithmetic dynamics]]
* [[Arithmetic dynamics#Other areas in which number theory and dynamics interact|Arithmetic dynamics]]
* [[Factorion]]
* [[Factorion]]
* [[Happy number]]
* [[Happy number]]
* [[Kaprekar's routine|Kaprekar's constant]]
* [[Missing-digit sum]]
* [[Kaprekar number]]
* [[Meertens number]]
* [[Narcissistic number]]
* [[Narcissistic number]]
* [[Perfect digit-to-digit invariant]]
* [[Perfect digit-to-digit invariant]]
* [[Perfect digital invariant]]
* [[Perfect digital invariant]]
* [[Sum-product number]]


== References ==
== References ==
Line 172: Line 190:
==External links==
==External links==
* [http://www.jakob.at/steffen/dudeney.html Generalized Dudeney Numbers]
* [http://www.jakob.at/steffen/dudeney.html Generalized Dudeney Numbers]
* [http://hostilefork.com/2009/12/24/six-dudeney-numbers-proof/ Proving There are Only Six Dudeney Numbers]
* [http://hostilefork.com/2009/12/24/six-dudeney-numbers-proof/ Proving There are Only Six Dudeney Numbers] {{Webarchive|url=https://web.archive.org/web/20131020205341/http://hostilefork.com/2009/12/24/six-dudeney-numbers-proof/ |date=2013-10-20 }}


{{Classes of natural numbers}}
{{Classes of natural numbers}}

Latest revision as of 20:54, 20 October 2022

In number theory, a Dudeney number in a given number base is a natural number equal to the perfect cube of another natural number such that the digit sum of the first natural number is equal to the second. The name derives from Henry Dudeney, who noted the existence of these numbers in one of his puzzles, Root Extraction, where a professor in retirement at Colney Hatch postulates this as a general method for root extraction.

Mathematical definition

[edit]

Let be a natural number. We define the Dudeney function for base and power to be the following:

where is the times the number of digits in the number in base .

A natural number is a Dudeney root if it is a fixed point for , which occurs if . The natural number is a generalised Dudeney number,[1] and for , the numbers are known as Dudeney numbers. and are trivial Dudeney numbers for all and , all other trivial Dudeney numbers are nontrivial trivial Dudeney numbers.

For and , there are exactly six such integers (sequence A061209 in the OEIS):

A natural number is a sociable Dudeney root if it is a periodic point for , where for a positive integer , and forms a cycle of period . A Dudeney root is a sociable Dudeney root with , and a amicable Dudeney root is a sociable Dudeney root with . Sociable Dudeney numbers and amicable Dudeney numbers are the powers of their respective roots.

The number of iterations needed for to reach a fixed point is the Dudeney function's persistence of , and undefined if it never reaches a fixed point.

It can be shown that given a number base and power , the maximum Dudeney root has to satisfy this bound:

implying a finite number of Dudeney roots and Dudeney numbers for each order and base .[2]

is the digit sum. The only Dudeney numbers are the single-digit numbers in base , and there are no periodic points with prime period greater than 1.

Dudeney numbers, roots, and cycles of Fp,b for specific p and b

[edit]

All numbers are represented in base .

Nontrivial Dudeney roots Nontrivial Dudeney numbers Cycles of Amicable/Sociable Dudeney numbers
2 2
2 3 2 11
2 4 3 21
2 5 4 31
2 6 5 41
2 7 3, 4, 6 12, 22, 51
2 8 7 61 2 → 4 → 2 4 → 20 → 4
2 9 8 71
2 10 9 81 13 → 16 → 13 169 → 256 → 169
2 11 5, 6, A 23, 33, 91
2 12 B A1 9 → 13 → 14 → 12 69 → 169 → 194 → 144
2 13 4, 9, C, 13 13, 63, B1, 1E6
2 14 D C1 9 → 12 → 9 5B → 144 → 5B
2 15 7, 8, E, 16 34, 44, D1, 169

2 → 4 → 2

9 → B → 9

4 → 11 → 4

56 → 81 → 56

2 16 6, A, F 24, 64, E1
3 2
3 3 11, 22 2101, 200222 12 → 21 → 12 11122 → 110201 → 11122
3 4 2, 12, 13, 21, 22 20, 3120, 11113, 23121, 33220
3 5 3, 13, 14, 22, 23 102, 4022, 10404, 23403, 32242 12 → 21 → 12 2333 → 20311 → 2333
3 6 13, 15, 23, 24 3213, 10055, 23343, 30544 11 → 12 → 11 1331 → 2212 → 1331
3 7 2, 4, 11, 12, 14, 15, 21, 22 11, 121, 1331, 2061, 3611, 5016, 12561, 14641 25 → 34 → 25 25666 → 63361 → 25666
3 8 6, 15, 16 330, 4225, 5270 17 → 26 → 17 6457 → 24630 → 6457
3 9 3, 7, 16, 17, 25 30, 421, 4560, 5551, 17618

5 → 14 → 5

12 → 21 → 12

18 → 27 → 18

148 → 3011 → 148

1738 → 6859 → 1738

6658 → 15625 → 6658

3 10 8, 17, 18, 26, 27 512, 4913, 5832, 17576, 19683 19 → 28 → 19 6859 → 21952 → 6859
3 11 5, 9, 13, 15, 18, 22 104, 603, 2075, 3094, 5176, A428

8 → 11 → 8

A → 19 → A

14 → 23 → 14

16 → 21 → 16

426 → 1331 → 426

82A → 6013 → 82A

2599 → 10815 → 2599

3767 → 12167 → 3767

3 12 19, 1A, 1B, 28, 29, 2A 5439, 61B4, 705B, 16B68, 18969, 1A8B4

8 → 15 → 16 → 11 → 8

13 → 18 → 21 → 14 → 13

368 → 2A15 → 3460 → 1331 → 368

1B53 → 4768 → 9061 → 2454 → 1B53

4 2 11, 101 1010001, 1001110001
4 3 11 100111 22 → 101 → 22 12121201 → 111201101 → 12121201
4 4 3, 13, 21, 31 1101, 211201, 1212201, 12332101
4 5 4, 14, 22, 23, 31 2011, 202221, 1130421, 1403221, 4044121
4 6 24, 32, 42 1223224, 3232424, 13443344 14 → 23 → 14 114144 → 1030213 → 114144
5 2 110, 111, 1001 1111001100000, 100000110100111, 1110011010101001
5 3 101 12002011201 22 → 121 → 112 → 110 → 22 1122221122 → 1222021101011 → 1000022202102 → 110122100000 → 1122221122
5 4 2, 22 200, 120122200 21 → 33 → 102 → 30 → 21 32122221 → 2321121033 → 13031110200 → 330300000 → 32122221
6 2 110 1011011001000000 111 → 1001 → 1010 → 111 11100101110010001 → 10000001101111110001 → 11110100001001000000 → 11100101110010001
6 3 101 → 112 → 121 → 101 1212210202001 → 112011112120201 → 1011120101000101 → 1212210202001

Extension to negative integers

[edit]

Dudeney numbers can be extended to the negative integers by use of a signed-digit representation to represent each integer.

Programming example

[edit]

The example below implements the Dudeney function described in the definition above to search for Dudeney roots, numbers and cycles in Python.

def dudeneyf(x: int, p: int, b: int) -> int:
    """Dudeney function."""
    y = pow(x, p)
    total = 0
    while y > 0:
        total = total + y % b
        y = y // b
    return total

def dudeneyf_cycle(x: int, p: int, b: int) -> List:
    seen = []
    while x not in seen:
        seen.append(x)
        x = dudeneyf(x, p, b)
    cycle = []
    while x not in cycle:
        cycle.append(x)
        x = dudeneyf(x, p, b)
    return cycle

See also

[edit]

References

[edit]
  1. ^ "Generalized Dudeney Numbers".
  2. ^ "Rebol : Proving There are Only Six Dudeney Numbers".
  • H. E. Dudeney, 536 Puzzles & Curious Problems, Souvenir Press, London, 1968, p 36, #120.
[edit]