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Abstract—This paper describes our method developed for
TRECVID 2012 Semantic INdexing (SIN) Task. Our main
research purpose is the development of a fast method, which
can work on a single processor with no performance degra-
dation. To this end, computationally expensive processes are
re-formulated based on matrix operation. We re-formulate the
Euclidian distance computation for the kernel value computa-
tion in an SVM, and the probability density computation of
multivariate normal distributions for the GMM supervector
representation. This enables accurate concept detection using
a large number of training examples, and spatially-temporally
dense features.

The following four runs were submitted to SIN (light) task:

o L_A_kobe_muro_l5_4: This is our baseline run using five
features, 1. SIFT at Harris-Affine regions, 2. SIFT at
Hessian-Affine regions, 3. Trajectory displacement, 4.
HOG around trajectories, and 5. MFCC. Five SVMs built
on these features are fused using the weighted linear
combination approach. This run achieved the MAP 0.320.

o L_A_kobe_muro_l6_I: In addition to the above five fea-
tures, this run uses the sixth feature, Spatio-Temporal-
Dense RGB SIFT (STD-RGB-SIFT), consisting of SIFT
descriptors sampled at every sixth pixel in every other
frame. The extraction of this feature becomes feasible
because of the significant speedup of the probability
density computation. This run achieved the MAP 0.348.

o L_A_kobe_muro_l18_3: To cover the diversity of a con-
cept’s appearances, this run utilizes bagging where three
SVMs are built on each of six features using different
subsets of training examples. Such many SVMs can be
built due to the fast kernel value computation. SVMs are
fused using the weighted linear combination. This run
achieved the MAP 0.358, which is the highest score among
all the runs submitted to SIN (light) task.

o L_A_kobe_muro_ri8_2: This run uses rough set theory to
fuse SVMs in L_A_kobe_muro_l18_3, and achieved the
MAP 0.323.

The above results indicate the effectiveness of the spatially-
temporally dense feature STD-RGB-SIFT. In particular, the
MAP 0.302 was achieved only using STD-RGB-SIFT. This is
significantly higher than MAPs using the other single features.
Also, the effectiveness of bagging can be seen from the above
results.

I. INTRODUCTION

Through our past participation in TRECVID experiments,
we noticed that accurate concept detection requires both a
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large number of training examples and fine-grained features
in both the spatial and temporal dimensions. Many training
examples is necessary for covering the diversity of a con-
cept’s appearances. Naphade et al. reported that even though
a concept has its own difficulty of detection, the detection
performance is generally proportional to the logarithm of the
number of available positive examples [1].

Regarding spatially fine-grained features, better perfor-
mance can be achieved by sampling a larger number of
spatial regions (and representing them with some region
descriptor such as SIFT) [2]. The reason is that although
several region detectors like Harris-Laplace and Difference-
of-Gaussian (DoG) have been proposed, detected regions are
useful for localizing the same instance of an object in differ-
ent images, but are not necessarily useful for characterizing
different instances of an object. Thus, rather than region
detectors, exhaustively sampling many regions yields better
performance. Regarding temporally fine-grained features,
features extracted from multiple frames in an example yield
much better performance than features extracted only from
one keyframe [3], [4]. Features from multiple frames can
characterize a concept’s appearance, which may change due
to object movement and camera motion.

We investigated the above issues on TRECVID 2011 SIN
(light) task. The result is shown in Fig. 1 where each bar
represents the MAP for 23 evaluated concepts. Three bars in
the left side are obtained using SIFT descriptors at regions,
detected by Harris-Laplace region detector. On the other
hand, three bars in the right side are obtained using SIFT
descriptors at regions, uniformly sampled at every sixth pixel
in a video frame. For each side, the leftmost bar represents
the MAP only using 750 positive examples for a concept,
while the middle bar represents the MAP using all the
available positive examples. This indicates the importance
of a large number of training examples. In addition, the
middle bar uses SIFT descriptors extracted only from one
video frame in each example, the rightmost bar uses SIFT
descriptors extracted from multiple video frames (one frame
per second). This validates the effectiveness of temporally
dense features. Furthermore, the comparison between the left
and right sides indicates the effectiveness of spatially dense



features.
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Figure 1. Result of our preliminary experiment about numbers of positive
examples, and sampling approaches in the spatial and temporal dimensions.

However, processing many training examples and
spatially-temporally dense features incurs intensive compu-
tational costs. In the former case, one most computationally-
expensive process is the distance (dissimilarity) compu-
tation. This is necessary for the kernel value computa-
tion in an SVM, which is the most standard classification
method for concept detection. Although many existing meth-
ods adopt computationally-inexpensive distance measures
like histogram intersection [3] and inner product [5], the
performance is generally degraded. When using spatially-
temporally dense features, much computational cost is re-
quired to compute ‘contributions’ of numerous descriptors
to the representation of an example. In the case of the bag-
of-visual-words model, when one million descriptors are
sampled from an example, it is needed to find the most sim-
ilar visual word to each descriptor. Many existing methods
restrict regions or video frames from which descriptors are
sampled. But, this degrades the performance as indicated in
Fig. 1.

We consider that one reason for the above intensive com-
putational costs is to process examples or descriptors one by
one. In this paper, we introduce two methods which utilize
matrix operation to process a large number of examples or
descriptors in batch. These methods do not conduct any
approximation, but compute the exact solution in a much
faster time than processing examples or descriptors one by
one. The first method reformulates the Euclidian distance
computation to compute distances among many examples
in batch. This enables SVM training and testing to be
about 37 times faster than computing distances one by one.
The second method reformulates the probability density
computation of many descriptors for multiple multivariate
normal distributions. Thereby, we can efficiently compute

the GMM supervector representation of an example for a
spatially-temporally dense feature. This yields significant
performance improvement.

It should be noted that several works address the paral-
lelization of feature extraction and concept detection pro-
cesses using GPU [6] and multiple processors [7]. However,
although the parallelization speeds up a procedure, it occu-
pies hardware resources. In other words, without abundant
hardware resources (i.e., many processors or many GPUs),
it is impossible to simultaneously run multiple processes
of the parallelized procedure, for instance, simultaneously
extracting features from different examples, and simulta-
neously conducting the detection of multiple concepts. In
addition, if the speedup by the parallelization is equal to
the number of processors (e.g., 10 times speedup with 10
processors) [7], this speedup is not so meaningful. The rea-
son is that the same level of speedup can be easily obtained
by simultaneously running multiple processes of the not-
parallelized procedure. Thus, in this paper, we concentrate
on the speedup of the procedure on a single processor.

II. MATRIX FORMULATION

This section describes matrix formulations for the Eu-
clidian distance computation and the probability density
computation of multivariate normal distributions. These are
used in our SIN method.

A. Euclidian Distance

Suppose that one example e is represented as a D-

dimensional vector, that is, e = [e!,e?,--- eP]. The Eu-
clidian distance between two examples e; = [el, -+, eP]
and ep = [ed, -+, el’] is computed as follows:
D
: d_ _dy2
dist(ey,e9) = Z(el —ef) ()
d=1

The naive approach for computing Euclidian distance among
N examples, is to use the triple-nested loop. Two outer
loops are used to set a pair of examples, and the most
inner loop is used to compute equation (1). However, this
is very slow when computing Euclidian distances among
a large number of high-dimensional examples. Our SIN
method requires to compute Euclidian distances among
30,000 training examples, each of which is represented as
a 16, 384-dimensional vector.

To speed up the Euclidian distance computation, we
expand equation (1) as follows:

D D D
dist(eq,es) = z:(e’{l)2 -2 Z efed + z:(eg)2 ()
d=1 d=1 d=1
In the above equation, the Euclidian distance computation
is divided into three parts, 1. sum of the squared value in
each dimension of e;, 2. inner product between e; and es,
and 3. sum of the squared value in each dimension of es.



Based on the above expansion, we re-formulate the com-
putation of Euclidian distances between a set of M examples
and a set of N examples. Suppose the former and latter
sets are represented by the D x M matrix EM and the
D x N matrix EN. The M x N matrix, D(EM, EN),
which represents Euclidian distances between examples in
EM and examples in EN, can be computed as follows:

D(EM, EN)
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where em; (1 < ¢ < M) and en; (1 < j < N)
represent the i-th example in EM and the j-th example
in EN, respectively. Values of their d-th dimension are
denoted by emy and en{. The first matrix in equation (3) is
constructed by the following three steps: 1. take the square of
each element in £ M, 2. compute the row-wise summation
of these squared values, and 3. create N copies of the
‘transposed’ row-wise summation. These steps can be easily
implemented using general matrix manipulation libraries like
MATLAB. The third matrix in equation (3) is constructed in
a similar way to the first matrix, where the only difference is
to create M copies of the row-wise summation in the third
step. Finally, the second term in equation (3) is the inner
product between EM and EN.

We present a preliminary experimental result showing the
effectiveness of the above Euclidian distance computation.
The second row in table I shows the computation time of
the naive approach based on equation (1), and the third row
shows the computation time of the batch approach based
on matrix operation in equation (3). Note that Euclidian
distances computed by both approaches are the same. The
second and third columns in Table I represent the computa-
tion times required for computing Euclidian distances among
1,000 and 5, 000 examples respectively, where each example
is represented as a 16384-dimensional vector. As shown in
Table I, the batch approach is surprisingly faster than the
naive approach, and will be utilized in SVM training and
testing in section III-C.

Table I
COMPARISON IN COMPUTATIONAL TIMES BETWEEN THE NAIVE AND
BATCH APPROACHES.

[ [ 1,000 examples [ 5,000 examples ]
200 (sec) 5,027 (sec)
0.5 (sec) 9.7 (sec)

Naive
Batch

B. Multivariate Normal Distribution

We extend the batch Euclidian distance computation to the
batch probability density computation of multivariate normal
distributions. A multivariate normal distribution gj(z) is
defined as follows (k is the index to deal with multiple
multivariate normal distributions later):

B S
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where z is a D-dimensional vector representing a descriptor
(e.g., a SIFT descriptor is a 128-dimensional vector). jt;, and
¥\, are the mean vector and the covariance matrix of g (),
respectively. We assume that > is a diagonal matrix where
D dimensions are independent from each other. This can be
easily satisfied by applying in advance Principle Component
Analysis (PCA) to descriptors [8], [9]. Under the above

independence condition, gi(x) is simplified as follows:

gk (x) = N(x|pg, Xg) =
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where 29, ,ug and ag are respectively values of x, mean
vector and variance vector (diagonal covariance matrix) in
the d-th dimension (1 < d < D). It should be noted that
the exponential part (i.e., expor, = > (v% — pd)?/od ) can
be considered as a Euclidian distance, where the distance in
each dimension is weighted by the inverse of the variance.
Just like Euclidian distance, expoy can be rewritten as:
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Based on equation (6), we now consider the batch compu-
tation where exponential parts (expoi) for K multivariate
normal distributions are computed for a set of N descrip-
tors. The input for this computation is the following three
matrices, the N x D matrix X (set of N descriptors), the
K x D matrix (set of K mean vectors) and the K x D
matrix (set of K variance vectors). The batch computation
outputs the N x K matrix £EX PO, where each element
at the i-th row and k-th column represents the exponential
part expo;, of the i-th descriptor for the k-th multivariate
normal distribution. The batch computation is conducted by

(6)



the following matrix operation:
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Each term in the above equation is an extension of the
corresponding term in equation (6), in order to process
N descriptors and K multivariate normal distributions in
batch. It is clear that equation (8) can be easily computed
using general matrix manipulation libraries. Once EX PO
is computed, probabilistic densities of N descriptors for
K multivariate normal distributions are computed by the
following three steps: 1. multiply each element in £X PO
by —%, 2. take the exponential of each element in the
multiplied EX PO (the resulting N x K matrix is denoted
by EXPQ’), and 3. multiply the k-th column in EX PO’
by the constant values of the k-th multivariate normal distri-

bution (i.e., 1/4/(2m)? [T o). The above batch processing

is used to extract the GMM supervector representation of an
example in section III-B.

III. OUR SIN METHOD

Fig. 2 illustrates an overview of our SIN method. Our
method is based on the method developed by Inoue er al
[8], [9]. First, given training examples for a concept, the
method represents them using image, motion and audio
features. It should be noted that, in this paper, a feature
means a set of descriptors sampled from an example. In
accordance with this, each example is represented using
the GMM supervector representation which characterizes
the distribution of descriptors. Then, for each feature, an
SVM is constructed to distinguish test examples with the
concept’s presence from the other test examples. SVMs for
all the features are fused into a classifier, in order to account
characteristics of different features. For each test example,
the fused classifier outputs an ‘evaluation score’ representing
the likelihood of the concept’s presence. Finally, 2,000 test
examples with the highest evaluation scores are returned as
a detection result.

A. Features

The following six features are used in our SIN method:

(7) 1. SIFT-Har: A Scale-Invariant Feature Transform (SIFT)

descriptor represents the edge shape of a local image region
(patch), and is useful for characterizing characterizing a
local shape of an object. SIFT-Har is defined as a set of
128-dimensional SIFT descriptors at regions, detected by
applying Harris-Affine region detector [10] to every other
frame in an example.

2. SIFT-Hes: This feature is defined as a set of SIFT
descriptors at regions, detected by applying Hessian-Affine
region detector to every other frame in an example [10].
The difference between SIFT-Har and SIFT-Hes is only in
region detectors. This causes that compared to SIFT-Har,
SIFT-Hes is more useful for characterizing a blob and ridge
of an object.

3. Traj-Disp: Dense trajectories are extracted by tracking
densely sampled points with optical flow fields [11]. Here,
points are sampled at every fifth pixel in each video frame
in an example. Traj-Disp is defined as a set of displacement
descriptors, each is a 30-dimensional vector representing a
sequence of displacements of a tracked point. This feature
is useful for characterizing the shape of a local motion.

4. Traj-HOG: Traj-HOG 1is defined as a set of 96-
dimensional vector HOG descriptors, each of which repre-
sents edges around a dense trajectory. Thus, Traj-HOG is
useful for characterizing the appearance of a moving object
in an example [11].

5. MFCC: Mel-Frequency Cepstral Coefficient (MFCC) rep-
resents the short-term power spectrum of an audio signal,
using frequency bands which are defined based on the human
auditory system’s responses [12]. Based on [9], an MFCC
descriptor in our SIN method consists of original MFCC
coefficients, their deviation (AM EFCC), their acceleration
(AAMFCC), and the deviation and acceleration of the
audio energy (AE and AAF). In total, the MFCC descriptor
is a 38-dimensional vector.

6. STD-RGB-SIFT: An RGB-SIFT descriptor is the combi-
nation of SIFT descriptors, each of which is independently
extracted from one of RGB channels [13]. This is robust to
changes in illumination, such as light intensity change and
light color change. STD-RGB-SIFT is defined as a set of
RGB-SIFT descriptors, sampled at every sixth pixel in every
other frame in an example.

For each feature, PCA is applied to descriptors in order to
reduce the computational complexity, and make dimensions
independent from each other [8]. For each of features other
than Traj-Disp, descriptors are projected into 32-dimensional
vectors. Descriptors for Traj-Disp are projected into 30-
dimensional vectors. Here, although the number of dimen-
sions of an original displacement descriptor is the same to
that of the projected one, the latter consists of mutually
independent dimensions.
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Figure 2.

B. GMM Supervector Representation

Based on [8], [9], for each feature, each example is
represented by the GMM supervector which characterizes
the distribution of descriptors in the example. The tradi-
tional Bag-of-Visual-Words (BoVW) model represents the
distribution of descriptors using the pre-specified template
(i.e., visual words). Compared to this, the GMM supervector
representation is more flexible where a GMM representing
the distribution of descriptors is adaptively estimated for
the example. The effectiveness of the GMM supervector
representation is validated in [8], [9].

A GMM (Gaussian Mixture Model) is defined as the
following probability density function:

K
p(@]0) =D wigk(x), ©)
k=1

where x is a descriptor, g (z) is the k-th multivariate normal
distribution (mixture component), and wy is its mixture
weight. The GMM is defined as the set of parameters,
0 = {wy, pur, Sk 1, for each of K multivariate normal
distributions.

Since enough descriptors for estimating GMM parameters
cannot be obtained for an example with a short duration,
these parameters are estimated using Maximum A Posteriori
(MAP) adaptation [8], [9]. MAP adaptation consists of the
following two steps:

1. Universal Background Model (UBM) construction: A
UBM is a GMM which represents the distribution of de-
scriptors in the general case, and serves as the prior distribu-
tion. In our implementation, for each feature, a UBM with
K = 512 multivariate normal distributions is constructed
using 1.5 million descriptors, randomly sampled from train-

An overview

(Detection result)

of our SIN method.

ing examples. This UBM construction is conducted using
Hidden Markov Model Toolkit (HTK) [12].

2. MAP adaptation: Using a maximum posteriori approach,
parameters of the UBM are adapted so as to match the
distribution of descriptors in an example. Let z; be the i-th
descriptor in the example (1 < ¢ < ). Based on [8], [9],
only the mean vector of each multivariate normal distribution
is adapted as follows:

Wi gy ()

25:1 Wk gr ()
(10
where the UBM is defined as the set of parameters § =
{wg, ik, f]k}ff:l (the k-th multivariate normal distribution
is gr), and 7 (= 20) is the pre-specified parameter. c;i
represents the ‘occupation’ probability of a descriptor x;
being associated with gi. Also, c;; can be considered as the
contribution of x; to the adapted mean vector (i. Intuitively,
if ¢;, is small, the effect of x; on (i} is small. Overall,
equation (10) indicates that if many descriptors do not match
with g (i.e., their contributions are small), ji;, remains close
to the mean vector i of the UBM. In contrast, if many

descriptors match with gg, (i moves toward their mean.
In MAP adaptation, the biggest computational burden is
to compute probability densities of each descriptor x; for K
multivariate normal distributions (gx). For example, when
the UBM has K = 512 multivariate normal distributions and
one million descriptors are sampled from an example, the
number of probability density computations is 512 millions.
Thus, we utilize the batch computation described in section
II-B. Considering the memory limitation, for K = 512
multivariate normal distributions, the batch computation is
conducted every 100,000 descriptors. It is straightforward

_ N
. T + L CikTg
L = i D CinTi , where ¢;;, =

T+ Ezj\il Cik




to incorporate this divisional computation into MAP adapta-
tion, where summations in equation (10) (i.e., > ¢;rx; in the
numerator and Y ¢;;, in the denominator) can be separately
computed for every set of 100, 000 descriptors, and separate
computation results are finally summed up.

Table II shows the efficiency of MAP adaptation using
our batch computation. Each computational time in Table II
includes the time of PCA for projecting SIFT descriptors
into lower-dimensional descriptors, and the time of MAP
adaptation using those projected descriptors. As shown in
Table II, even for about 2.8 million descriptors, PCA and
MAP adaptation can complete in about 76 seconds. This
efficient MAP adaptation enables us to deal with descriptors
which are sampled densely in both the spatial and temporal
dimensions, like RGB-SIFT descriptors in SDT-RGB-SIFT.

Table 11
EXAMPLES OF COMPUTATION TIMES REQUIRED FOR PCA AND MAP
ADAPTATION USING OUR BATCH COMPUTATION.

# of descriptors
Computational time

95,411
3.8 (sec)

589,251
17.4 (sec)

2,785,939
75.9 (sec)

After MAP adaptation for an example ez, its GMM
supervector representation ¢(ex) is constructed as follows

(81, [9]:

M1
, where jiy = ViR (Sr) 2 (11)

Let be ¢(ex1) and ¢(exz) as GMM supervectors for two
examples ex; and exo, respectively. The GMM supervector
representation is designed in such a way that, the Euclidian
distance between ¢(exq) and ¢(exz) becomes the sum
of squared Mahalanobis distances between mean vectors
adopted for ex; and ex, (each squared distance is weighted
by the corresponding mixture weight).

C. SVM Training and Test

For a concept, given training examples represented by
GMM supervectors, we build an SVM which distinguishes
test examples where the concept is present from the rest
of test examples. In particular, the following RBF kernel is
adopted in the SVM [14]:

K(p(exy), plexz)) = exp(—rllp(ex1) — eas)|[*) (12)
= exp(— dist(¢(ex1), (ex2))),

where v is a pre-specified parameter (in our case, 7y is
set to the inverse of the average Euclidian distance among
training examples). It should be noted that, once kernel
values between each pair of examples are computed, SVM
training and testing are relatively fast using general SVM
solvers like “precomputed kernel in Libsvm library” [14]. As

shown in equation (12), the exponential part of RBF kernel
includes the Euclidian distance computation. Thus, the batch
computation described in II-A is utilized to compute in
batch kernel values among training examples (multiplying
distances by ~ and taking their exponentials are clear).

In our implementation of SVM training, considering the
memory limitation, we divide training examples into sets
of 5,000 examples, and conduct the batch computation
of kernel values for each set pair. In SVM testing, we
repeat the batch computation of kernel values between 5, 000
test examples and 10, 000 training examples. Regarding the
computational time, when 30,000 training examples and
137,327 test examples (in IACC.1.B) are used (each exam-
ple is represented by 16, 384-dimensional GMM supervector
for SIFT-Har), the above SVM training and testing complete
in about two hours. Compared to this, SVM training and
testing with the naive kernel value computation take more
than one week. We will report the precise computational
time of SVM training and testing at the workshop. Finally,
we use ‘probabilistic outputs’ of an SVM, where each test
example is assigned a probability of the concept’s presence
based on its distance to the decision boundary of the SVM
[15]. Such probabilistic outputs are used in the fusion of
SVMs on different features.

D. Fusion

In order to improve the concept detection performance, we
fuse SVM testing results on different features. Our fusion
approaches are classified into two types, weighted linear
combination and rough set theory. Below, we present these
approaches by associating them with our submitted runs.

1) Weighted Linear Combination: For a test example
ex, this approach computes the fusion score F'S(ex) based
on the following weighted linear combinations of SVM
probabilistic outputs on different features [9]:

Score(ex) = Z ay - proby(ex) (13)
fer

where I'in L_A_kobe_muro_l5_4 is the set of five features
1. SIFT-Har, 2. SIFT-Hes, 3. Traj-Disp, 4. Traj-HOG and 5.
MFCC, while F in L_A_kobe_muro_l6_1 is the set of six
features, including the above five features and 6. STD-RGB-
SIFT. In equation (13), oy > 0 is the weight for the feature
fin F where 3, ay = 1. In addition, probs(ex) is the
SVM probabilistic output for ex on f. Intuitively, when the
SVM on f achieves more accurate concept detection, its
weight oy should become larger.

To obtain such a set of weights, we build an SVM on
each feature using a half of training examples, and compute
the set of weights using the other half of training examples.
We employ gradient-ascend approach where the Average
Precision (AP) is used to compute the gradient vector, which
indicates the direction for improving the AP with the current
set of weights. Note that SVMs for proby(ex) are build



using all the training examples. Building of these SVMs
is separated from building of SVMs used in the above
weight computation. In other words, we assume that weights
obtained for SVMs built with a half of training examples are
applicable for SVMs built with all the training examples.
Although this weight computation has much room to be
improved, our preliminary experiment showed that it can
work in most cases, where the weighted fusion of SVMs on
different features outperforms SVMs on single features.

L A _kobe_muro_l18_3 fuses the total 18 SVMs, where
three SVMs are built on each of six features using different
subsets of training examples. These subsets are constructed
by randomly selecting three-quarter of training examples.
This kind of fusion approach is called bagging. Our prelim-
inary experiment showed that even when an SVM is built
using a large number of training examples, its performance
changes depending on used training examples. For this re-
sult, we consider that since a concept’s appearances are sig-
nificantly different depending on varied camera techniques
and environments, one SVM on each feature is not enough
for covering these diverse appearances of the concept. Thus,
we adopt the above bagging approach.

To fuse 18 SVMs in L_A_kobe_muro_l18_3, we use
the following simple approach: The weight oy obtained
for the SVM on the feature f in L_A_kobe_muro_l6_1
is divided by three, and this divided weight is used for
three SVMs on f in L_A_kobe_muro_l18_3. Since oy in
L_A_kobe_muro_l6_1 can be considered as the effective-
ness score of f, we consider that it can be equally applicable
for three SVMs on f in L_A_kobe_muro_l18_3.

2) Rough Set Theory: L_A_kobe_muro_rl18_2 uses
Rough Set Theory (RST) to fuse the same set of 18 SVMs
as L_A_kobe_muro_l18_3. RST is a set-theoretic classifi-
cation method for extracting ‘rough’ descriptions of a class
from imprecise (or noisy) data [16]. Using RST, we aim
to extract multiple classification rules which characterize
different subsets of positive examples, so that test examples
with diverse appearances of a concept can be covered.

Concept detection using RST is summarized as follows
(see [17] for more detail): For each pair of the ¢-th positive
example p; (1 < ¢ < M) and the j-th negative example
n; (1 < 7 < N), we first determine a set of SVMs,
SV M; ;, where each SVM can correctly classify p; and n;
as positive and negative, respectively. In other words, p; can
be discriminated from n; when at least one SVM in SV M; ;
is used. To obtain SV M, ;, positive and negative examples
are ranked based on their probabilistic outputs of an SVM. If
p; and n; are respectively ranked in and out of the top M-th
position, they are regarded to be correctly classified by the
SVM. Next, we compute the discernibility function df; that
represents sets of SVMs, required to discriminate p; from
all negative examples. This is achieved by using at least one
SVM in SV M; ; for all negative examples. That is, df; is
computed by taking the disjunction of SVMs in SV M, ;,

and then taking the conjunction of such disjunctions for all
negative examples:

df;i = N{VSVM; ;|1 <j< N}, (14)

df; is simplified into the minimal disjunctive normal form,
where each conjunctive term, called reduct, represents a
minimal set of SVMs required to discriminate p; from
all negative examples. Such a reduct forms a rule: A test
example is regarded to match the rule, if all SVMs in
the reduct classify it as positive. Finally, the set of 2,000
test examples which match the largest numbers of rules, is
returned as the detection result.

IV. EXPERIMENTAL RESULTS

We submitted the following four runs:

1. L_A_kobe_muro_l5_4: This is our baseline run where
one SVM is built on each of SIFT-Har, SIFT-Hes, Traj-
Disp, Traj-HOG and MFCC. SVMs are fused based on the
weighted linear combination.

2. L_A_kobe_muro_l6_1: In addition to SVMs on five
features in L_A_kobe_muro_l5_4, this run builds an SVM
on STD-RGB-SIFT. These SVMs are fused based on the
weighted linear combination.

3. L_A_kobe_muro_l18_3: This run adopts the bagging
approach where three SVMs are built on each of six features.
The total 18 SVMs are fused using the weighted linear
combination.

4. L_A_kobe_muro_rl8_2: This run fuses 18 SVMs in
L_A_kobe_muro_l18_3 using RST.

For all the above runs, an SVM is built using positive
examples collected by the collaborative annotation effort
[18]. On the other hand, negative examples are collected
as shots which are randomly selected from training videos.
Since negative examples in the collaborative annotation ef-
fort are collected based on the active learning approach, their
distribution is biased toward the decision boundary of an
SVM. Our preliminary experiment showed that rather than
such biased negative examples, randomly selected negative
examples lead to more accurate performance. In addition,
the number of negative examples is determined in such a
way that the total number of positive and negative examples
becomes 30,000'. Finally, we use Matlab engine [19] to call
the batch computations based on matrix operation in C++
programs.

Fig. 3 shows the ranking of all runs submitted to
TRECVID 2012 SIN (light) task, where each bar repre-
sents the MAP of one run. As can be seen from Fig. 3,
L_A_kobe_muro_l18_3 achieved the highest MAP (0.358)
among all the submitted 91 runs. The other runs are

'An SVM in the bagging approach is built using the following training
examples: three-quarter of positive examples are randomly selected, and
negative examples are then randomly selected, so that the total number of
positive and negative examples becomes 30, 000.
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also ranked at top positions. Below, we closely investi-
gate our submitted runs. First, the comparison between
the MAP of L_A_kobe_muro_l6_1 (0.348) and that of
L_A_kobe_muro_l5_4 (0.320), indicates the effectiveness
of STD-RGB-SIFT (about 9% improvement). With respect
to this, Fig. 4 shows the MAP achieved by the SVM
built on each of six features in L_A_kobe_muro_l6_1. As
shown in Fig. 4, the SVM on STD-RGB-SIFT significantly
outperforms SVMs on the other single features. This means
that spatially-temporally dense features are very useful for
accurate concept detection. In addition, it may be interesting
that the second highest MAP in Fig. 4 is achieved by the
SVM on Traj-HOG, and is significantly larger than the third
and fourth MAPs by SVMs on SIFT-Har and SIFT-Hes.
Recall that Traj-HOG is a set of HOG descriptors around
trajectories, obtained by tracking ‘densely’ sampled points in
an example. On the other hand, SIFT-Har and SIFT-Hes are
defined by SIFT descriptors at regions, detected by Harris-
Affine and Hessian-Affine region detectors, respectively.
The high MAP score on Traj-HOG may also indicate the
effectiveness of spatially-temporally dense features.

In Fig. 3, the comparison between L_A_kobe_muro_l18_3
and L _A_kobe_muro_l6_1 indicates the effectiveness of
the bagging approach, although the improvement is rel-
atively small (about 3% improvement). One main rea-
son is the simplicity of our current fusion method
for L_A_kobe_muro_l18_3, as described in section III-D.
A further improvement can be achieved when us-
ing a more sophisticated fusion method. Regarding
L_A_kobe_muro_l18_3, our main argument is not the fusion
method, but is fast SVM training and testing based on the
batch computation of kernel values, so that multiple SVMs
can be built on each feature.

Ranking of all runs submitted to TRECVID 2012 SIN (light) task.

(MAP)
0.4
0.348
0.302
03 0.276 —-—
0.231 0.238
0.2 - ——
0.114
0.1 - — —oo7x— —
. d
B SIFT-Har Trg-HOG Fusion
M SIFT-Hes W MFCC
Trg-Disp ™ STD-RGB-SIFT
Figure 4. Performance comparison among SVMs on single features in

L_A_kobe_muro_l6_1.

Finally, the MAP of L_A_kobe_muro_ri8_2 (0.323) is
smaller than L_A_kobe_muro_l18_3. This indicates the in-
effectiveness of RST. Specifically, many rules extracted by
RST are not very useful, so several test examples where a
concept is clearly absent are included in the detection result.
Thus, we plan to improve the current classification method
where each test example is classified using majority voting
of matched rules. One promising approach is weighted
majority voting where the weight of a rule is determined
by the cross-validation.



V. CONCLUSION AND FUTURE WORKS

In this paper, we introduced our SIN method which takes
advantage of matrix operation for the batch computation of
Euclidian distances among many examples, and the batch
computation of probabilistic densities of many descriptors
for multiple multivariate normal distributions. The former
enables fast SVM training and testing, and the latter enables
MAP adaptation using a huge number of descriptors, sam-
pled densely in both the spatial and temporal dimensions
(i.e., spatially-temporally dense features). Owing to these,
the run L_A_kobe_muro_l18_3 achieved the highest MAP
among all the 91 runs submitted to TRECVID 2012 SIN
(light) task.

Although MAP adaptation became fast based on the batch
computation of probability densities, descriptor sampling
(extraction) is currently very slow. Because of this, even
using 50 processors, it took about one month to extract STD-
RGB-SIFT’s GMM supervectors of all examples. Actually,
we planned to incorporate another spatially-temporally dense
feature based on Opponent SIFT descriptors [13] into our
SIN method. However, this could not finish until the submis-
sion deadline. Thus, our important future work is to develop
a method that can efficiently conduct spatially-temporally
dense sampling of descriptors. To this end, we plan to hash
regions in video frames using locality sensitive hashing [20].
Thereby, for a region which is very similar to a hashed
region, descriptor computation can be skipped. In other
words, the descriptor of the region can be approximated
as the descriptor of the hashed region, with a very small
approximation error.
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