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Abstract

This paper presents the framework and results from the team “Florida International University-University of Miami (FIU-UM)”
in the TRECVID 2018 Ad-hoc Video Search (AVS) [1] task. We submitted four manually-assisted runs as follows.

« M_D_FIU_UM.18_1 & M_D_FIU_UM.18_3: Convolutional Neural Network (CNN) features + linear Support Vector Machine
(SVM), scores from other sources, two different sets of concepts and weighted combinations (“and”, “or”, & “mix” operations)

e M_D_FIU_UM.18_2: CNN features + linear SVM, scores from other sources, weighted combination (“and”, “or”, & “mix”
operations) + rectified linear score normalization

e M_D_FIU_UM.18_4: CNN features + linear SVM, scores from other sources, weighted combination (“and”, “or”, & “mix”
operations) + fuse different score sets (“merge” operation)

Our framework includes the following processing steps: (1) manual extraction of the most important keywords based on a given
query, (2) generation of CNN features from keyframes, (3) generation of scores for each concept using the linear SVM classifier,
(4) generation of additional scores from multiple pre-trained models for image classification, object, scene, and action detection,
(5) just-in-time concept learning for keywords not found in the concept bank, and (6) integration of the scores using the “and”,
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“or”, “mix”, and “merge” operators. The performance results show that our first run (M_D_FIU_UM.18_1), which includes our
best-weighted combination scores, outperforms the other three runs. This year, the FIU-UM team achieved the second highest
score in the manually-assisted run and ranked third among all the submitted runs (combining manually-assisted and automatic
runs). The submission details are listed as follows.

o Class: M (Manually-assisted runs)

o Training type: D (JACC & non-IACC non-TRECVID data)

o Team ID: FIU-UM (Florida International University - University of Miami)
e Year: 2018

I. INTRODUCTION

The core purpose of the TREC Video Retrieval Evaluation (TRECVID) is to stimulate progress in the domain of content-
based analysis and content retrieval from digital video data. From the years 2010 to 2015, TRECVID project [2] addressed the
challenge of Semantic Indexing (SIN), which aims to identify the semantic tags that a given video segment contains. This task
was elevated, in 2016, to a more comprehensive Ad-hoc Video Search (AVS) task that looks for not only the video segments
containing persons, objects, activities, locations, etc. but also segments with their combinations. The AVS task remains the
same for this year as well, i.e., to model the end user search use-cases for concepts in video segments and their combinations.

The automatic metric-based evaluation of video segments is a fundamental process for retrieval and categorization of video
content [3-10, 10-12]. However, there are several challenges that impede the automatic annotation of semantic concepts such
as data imbalance, scalability, and semantic gap problems [13-21]. Some of the main research directions for semantic concept
retrieval include: (1) developing robust learning approaches that adapt to the increasing size and the diversity of video content;
(2) fusing information from other sources such as audio and text; and (3) detecting low-level and mid-level features that have
high discriminating capabilities [16, 20, 22-29].

In the AVS task, there are 346 high-level semantic concepts provided by IACC, where each concept contains a list of ground
truth labels provided for training. Given the master shot reference test collection (IACC.3) and 30 Ad-hoc queries, the goal
is to return at most 1000 shot IDs for each query, where each query can be a combination of the 346 concepts and/or some
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Fig. 1. The designed framework for the TRECVID 2018 AVS task

other concepts not included in the training set. The shot IDs from the test collection are ranked according to their likelihood
of containing the target query. The submission result is rated by using the mean inferred average precision (mean xinfAP) [30]
based on the assessment of a 2-tiered random sampling (1-150@100% and 151-10002.5%).

The remainder of this paper is structured as follows. Section 2 explains the framework proposed by our team, alongside
with the details of the methods used at each run. Section 3 evaluates the performance of each submission and demonstrates
the submission results. Section 4 concludes the paper with discussions and key takeaways, and suggests future directions for
next year’s submission.

II. THE PROPOSED FRAMEWORK

As shown in Figure 1, the proposed framework incorporates several state-of-the-art pre-trained deep learning models.
For the concepts provided by TRECVID, we used three deep learning models including InceptionV3, InceptionV4, and
InceptionResNetV?2 pre-trained on the ImageNet dataset [31] to extract the features from the keyframes. For each concept, a
binary SVM classifier is trained to generate the final classification scores. Moreover, additional advanced pre-trained models
are utilized for object, scene, and action detection by generating the prediction scores of their specific concepts. Interesting
concepts (keywords) are selected based on their semantic similarity to the respective Ad-hoc query. The prediction scores from
the identified concepts contribute to the calculation of the final scores.

A. Concept Bank

Table I lists the datasets that we used to train different models for our proposed framework.

1) TRECVID: We used three pre-trained deep learning models to extract features from both the training and testing keyframes
using the 346 TRECVID concepts. These pre-trained models are described as follows.

o InceptionV3: a widely recognized image recognition model achieving up to 78.1% accuracy on the ImageNet dataset [32];

 InceptionV4: introducing more uniform modules to enable a boost in performance [33];

o InceptionResNetV2: a variation of the InceptionV3 model that borrows some ideas from Microsoft’s ResNet [34].

To perform transfer learning, we extracted features from the next-to-last layer of the networks. In the case of our pre-trained
models, we used the Average Pooling layer, resulting in a dimensional vector of size 2048 in the case of InceptionV3, and 1536



THE CONCEPT BANK DESCRIBING ALL THE DATASETS AND THE CORRESPONDING DEEP LEARNING MODELS WE USED IN OUR SYSTEM

TABLE I

Model Name Database # of concepts Concept type(s)
InceptionV3 TRECVID 346 Object, Scene, Action
InceptionV4 TRECVID 346 Object, Scene, Action
InceptionResNetV?2 TRECVID 346 Object, Scene, Action
ResNet50 ImageNet 1000 Object
VGG16 Places 365 Scene
VGG16 Hybrid (Places, ImageNet) 1365 Object, Scene
MaskR-CNN COCO 80 Object
YOLO YOLO9000 9000 Object
ResNet50 Moments in Time 339 Action
Kinetics-13D Kinetics 400 Action

for both InceptionV4 and InceptionResNetV2. For each model, we trained a binary SVM classifier on each TRECVID concept
to generate the scores. Three training datasets from the 2010-2015 SIN task, namely the IACC.1.tv10.training, IACC.1.A-C,
and TACC.2.A-C, were integrated.

2) ImageNet: ITmageNet [31] is a well-known large-scale image dataset that includes concepts from multiple domains such as
animal, instrumentation, scene, and activity, all of which appear in some of the queries. In total, ImageNet contains 1.2 million
images belonging to 1000 classes. This dataset includes a lot of common objects in the real world, and the classification accuracy
of models on this dataset has exceeded the human performance using the recent deep neural networks. In our framework, we
used a ResNet [34] pre-trained model to generate the prediction scores for concepts in each keyframe from the last dense layer.

3) Places and Hybrid: Because some of the queries specify not only the objects but also the surroundings, scene detection
is an essential part of improving the framework’s performance. PLACES365 introduces 365 scene categories, which is very
useful in the detection of location and environment [35]. It provides 1.8 million training images, where each class includes
at most 5000 images. HYBRID1365 incorporates 365 scene categories from PLACES365 and 1000 object categories from
ImageNet. Both of the datasets mentioned above are deployed on the VGG16 pre-trained CNN model to generate the prediction
scores of all concepts for each keyframe, extracted from the last fully connected layer.

4) COCO and YOLO: Although ImageNet1000 provides a lot of object concepts, it has two shortcomings. First, it is
specifically designed for image classification where we have a single and clear object that is the main focus in the picture;
and therefore, the learning models based on this dataset do not produce a good performance on images with smaller objects
compared to other object detection methods, such as Faster R-CNN [36] and Mask R-CNN [37]. Second, ImageNet models
cannot detect all the instances of an object within a single image. Thus, we incorporated two additional object detection
datasets: COCO and YOLO9000. COCO provides 80 object categories and over 200,000 images. We used the Mask R-CNN
model which is pre-trained on the COCO dataset to generate the detection scores for each object instance. Mask R-CNN is a
state-of-the-art object detection network that not only detects objects in an image but also provides pixel-level classification.
In addition, we incorporated another pre-trained object detection dataset called YOLO9k, which contains about 9,000 classes.
Both models can generate confidence scores for each detected instance. For certain queries that require a specific number N
of an object O, the confidence score Po n(I) of N times of the object O appearing in the image I can be calculated using
Equation (1).
n<N
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where n is the number of O being detected by the model and P} (I) is the i-th highest confidence score among all the
detected objects O in image I. For example, for the query “561 Find shots of exactly two men at a conference or meeting
table talking in a room”, we want to obtain a score for “exactly two men” (i.e., O = “men” and N = 2). Given a keyframe of
the shot, assume that there are three detected “person” objects (i.e., n = 3) in the image with the confidence scores of 0.99
(P5(I)), 0.85 (P3(I)), and 0.20 (P3(I)). Therefore, the returning confidence score of “exactly two men” in the image is
0.99 x 0.85 x (1 — 0.20) = 0.67.

5) Moments in Time: Semantics in most of the queries are related to one or several agents (i.e., person, animal, etc.)
performing some actions. The “Moments in Time” dataset [38] provides models trained on very large, comprehensive, and
labeled datasets of three-second videos that capture people, animals, and objects in diverse and dynamic action scenes. This
model was trained using a dataset of approximately one million 3-second videos and outputs the prediction scores over 339
classes. Examples of the classes are bowling, surfing, hiking, sailing, etc. The weights for training the Moments in Time model



are taken from a 50 layer ResNet network initialized on the ImageNet dataset. For our task, the scores for the shot keyframes
were extracted from the model’s softmax layer.

6) Kinetics: The concepts from the Kinetics human action video dataset (Kinetics400) [39] were incorporated to improve
the performance of action recognition. Kinetics400 contains 400 human action classes with at least 400 video clips for each
action and a total of 306,245 clips. Kinetics400’s main advantage over its predecessors, such as HMDBS51 [40] and UCF101
[41], is the large variation for each action. For HMDBS51 and UCF101, multiple clips of the same action may be originated
from the same video, which makes these clips less variant in terms of viewpoint, lighting, etc. In comparison, each clip in
Kinetics400 was taken from different videos. The model of our choice is the InceptionV1-based Inflated 3D ConvNet (I3D)
[42], which has one of the best action recognition result so far on the UCF101 dataset. The network model was pre-trained
on Kinetics400, and the concept scores were generated directly from the output layer for all the non-keyframes extracted from
the TRECVID dataset. We extracted the scores for all the concepts using the pre-trained network on all ten non-keyframes for
each video-shot.

B. Just-in-Time Concept Learning

There are a few queries where all the models mentioned above cannot find any relevant concepts. Thus, the just-in-time
concept learning method was proposed, which automatically crawls the related images in an image search engine, such as
Google Image, as the training data, filters the outliers in the search engine results, and then trains the classifier to detect the
concepts for the corresponding query. The key concepts in the queries were manually identified as the searching keywords and
fed into our proposed toolchain. For each new concept, around 10,000 images were crawled. After the reference images were
downloaded, the features were extracted from the outputs of the first dense layers of the InceptionV3 model, followed by an
SVM classifier to determine whether the video shots include the concepts or not.

C. Query Formulation and Score Combination

1) Query Formulation: In our submission this year, all the four runs are manually-assisted runs. Given an Ad-hoc query
phrase, our team members manually formulate it into a combination of concepts based on its topic and query interface without
the knowledge of the collection or the search results. In comparison to last year, a large concept bank was built as described
in Section II.A which covers most of the concepts in the queries. Additional models were trained if certain concepts were
not included in the concept bank. For instance, given the Ad-hoc query “561 Find shots of exactly two men at a conference
or meeting table talking in a room,” the concepts “Adult”, “Indoor”, and “Male Person” from TRECVID, and the concept
“conference room” from PLACES365 were extracted, while an additional model especially for “meeting table” was trained
using the just-in-time concept training toolchain.

2) Score Combination: Four different methods, “and”, “or”, “mix”, and “merge” operations were utilized to combine the
scores from different concepts, based on the relationships among the concepts and the query.

o “and” Combination: Since the performance of the weighted geometric mean of the scores is often better than the weighted
arithmetic mean, which also has been reported by several groups in past years, the scores of the selected concepts were
fused by calculating their weighted geometric mean. To combine the score (S;) related to each concept ¢;, different
weights (w;) were used based on our empirical studies in all the runs as follows.

N

d i

Scoreguery = H S (2)
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where N is the total number of concepts integrated.

o “or” Combination: We also leveraged “or” combination in which only the maximum score of all “or” concepts was used.
Take the same query 561 as an example. There is no need for a video shot to include both “conference room” and
“meeting table”. In other words, it is sufficient if only one of these concepts is included in the video, and only the larger
score of these two concepts is used in the integration. Furthermore, if a concept can be represented by several subclasses
or different related classes, it is more reasonable to use the “or” operation to combine the scores rather than the “and”
operation.

or
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o “mix” Combination: For some queries, we need to “mix” the “and” and “or” operations. For instance, for query 561, if
two or more “or” operations are included in a query, they may be assigned with different weights based on our empirical
studies as follows.

Scorefin, = H S x H S;wé 4)

i=1 j=1



where N is the number of concepts integrated directly by the “and” operation, M is the number of groups of concepts
integrated by the “or” operation, S;- is the score obtained from Equation (3), and w; is the weight for the j-th group
obtained from the empirical studies.

o “merge” Combination: This year, we also proposed a “merge” operation as a new way to fuse the scores from the previous
three operations. Since there are different ways to interpret the query, we can use different combinations of concepts to
generate the results. The proposed “merge” operation assigns a weight to each combination of concepts (comby) to merge
the results from various interpretations of the query. The weight is determined based on the number of concepts integrated
by the “and” operation. Given the scores of several combinations (Scomb, ) With different weights (weomb, ). they are merged
using Equation (5).

merge

Scoregyery

= m;;:mx Weomb,, X Scombk (5)

D. Submitted Runs

The following four runs are submitted to the TRECVID 2018 AVS task by our team. In all these runs, as mentioned earlier,
we used the CNN features for TRECVID and trained a linear SVM for each concept in this dataset. We also utilized all other
scores from the proposed concept bank (e.g., ImageNet, COCO, YOLO, Moments, Places, etc.). The differences between these
runs are the way we fused the scores and how we assigned the weight to each concept.

e Manuall (M_D_FIU_UM.18_1): CNN features + linear SVM for the TRECVID dataset, scores from other sources in
the concept bank, the best set of concepts and the weighted combinations (“and”, “or”, & “mix” operations) based on
our empirical study;

e Manual2 (M_D _FIU_UM.18 2): CNN features + linear SVM for the TRECVID dataset, scores from other sources in
the concept bank, the best set of concepts and the weighted combinations (“and”, “or”, & “mix” operations) based on
our empirical study+ rectified linear score normalization introduced in [43];

e Manual3 (M_D_FIU_UM.18_3): CNN features + lincar SVM for the TRECVID dataset, scores from other sources in
the concept bank, the second best set of concepts and the weighted combinations (“and”, “or”, & “mix” operations) based
on our empirical study;

e Manual4d (M_D FIU _UM.18 4): CNN features + linear SVM for the TRECVID dataset, scores from other sources in
the concept bank, fusing different score sets (“merge” operation).

III. RESULTS
A. Evaluation

Our framework generates a list of at most 1000 video shot IDs based on the given 30 queries, the reference shots, and the
TRECVID 2017 test dataset IACC.3 [44]. This dataset contains 4593 Internet Archive videos with a total duration of 600
hours. The duration of each video is between 6.5 and 9.5 minutes. All the results are evaluated by the assessors at NIST
as described in [45]. All the top-150 results and 2.5% of the remaining results of each query are evaluated, and the mean
extended inferred Average Precision (mean xinfAP) metrics [30] are computed based on the performance of these evaluated
results. Meanwhile, the detailed metrics such as inferred interpolated recall precision and inferred precision at different depths
are given by the sample_eval software provided by NIST.

B. Performance

The performance (xinfAP) of all the runs based on our proposed framework is shown in Figure 2. All our submitted runs
(Manuall, Manual2, Manual3, Manual4) are manually-assisted runs and their xinfAP scores are 0.089, 0.079, 0.079, 0.080,
which ranked 7th, 13th, 14th, 15th among all the 51 runs, respectively. Our framework’s overall performance ranked third
among all 13 teams who submitted at least one result in the AVS task.

Figure 3 shows the inferred average precision of each query of our best run (Manuall). The x-axis of Figure 3 shows the
query number; while the y-axis presents the infAP measures of our run (shown as a dot), median performance (shown as
dashes), and the best result (shown as a box) for each query. These query-level metrics indicate that we perform the best in
queries 563, 568, 587, and 589. These good results are achieved by different parts of our proposed framework. The “boating”,
“hiking”, and “raining” concepts in Moments339 are the key concepts to retrieve the videos for queries 563, 568, and 589,
respectively. The just-in-time concept training helps to train the model to identify the concepts, including “look through the
window” in query 587, “people queue” in query 569, etc. Our framework also performs well in query 572 in which the object
detection models (COCO/YOLO) count the object “cat” which could be an important reason to obtain the current performance.
Moreover, the performance of query 578 benefits from the “or” operation of the score fusion. Since the scenes of the concepts
“in front of a garage” and “inside a garage” are significantly different, it is more reasonable to use the “or” operation to merge
them. Finally, by combining this operation and our just-in-time concept training, we can identify various scenes suitable for “a
dog playing outdoors” and train different concepts for each of them, which helps us to improve the retrieval results of query
566.
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IV. CONCLUSION AND FUTURE WORK
this notebook paper, the framework and results of the FIU-UM team in the TRECVID 2018 AVS task are presented.

This year, in addition to the classic datasets such as ImageNet, Places, and UCF101, we leveraged recently released datasets

such

as Moment339 for action recognition. Also, a new model “Mask R-CNN” is applied to improve the object recognition

performance and also to estimate the number of objects for some queries (e.g., “exactly two men at conference”). Although
we achieved a good performance this year, it can be seen that the overall score of the AVS task for all the teams is still very
low. This problem is mainly due to the complicated queries (e.g., “a truck standing still while a person is walking beside or
in front of it”), as well as the noisy and imbalanced nature of the TRECVID dataset which represents the real-world data. In
the future, we will focus on utilizing more temporal information from video datasets and a better fusion model. In addition,
we will try to generate a fully automatic video retrieval system.
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