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1. INTRODUCTION

In recent years, protecting and exploring marine resources and
developing marine related technologies have gradually become an
important strategy of major marine countries in the world. Under-
water images or videos are common but essential information car-
rier for observation, fishery industry and intelligent analysis in
underwater vehicles. In the practical operation, some tasks such
as underwater exploration, underwater terrain browsing, fish den-
sity analysis, sea-hood health status analysis and even automatic
recognition and detection rely on high-quality underwater images
to ensure the smooth progress of visual analysis tasks. However,
compared with the natural images, the real raw underwater images
and videos usually suffer from more complex imaging interfering
impacts, e.g., light scattering and absorbing by suspended particles,
light darkening in deep water environment, camera blurring, and so
on. No matter act alone or jointly, these interference factors result
in underwater images significant visual degradation effects such as
low contrast and brightness, color deviation, details blur and many
kinds of noise. Figure 1 shows the visual contract effects between
the degenerate underwater images affected by noise and color devi-
ation. It can be seen that the noise and color deviation by the degra-
dation of underwater images are the important factors affecting the
quality of underwater images. Underwater image restoration can
improve the visibility by eliminating the adverse effects and restor-
ing destroyed content in the imaging process [1].
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Underwater images or videos are common but essential information carrier for observation, fishery industry and intelligent anal-
ysis system in underwater vehicles. But underwater images are usually suffering from more complex imaging interfering impacts.
This paper describes a novel residual two-fold attention networks for underwater image restoration and enhancement to elimi-
nate the interference of color deviation and noise at the same time. In our network framework, nonlocal attention and channel
attention mechanisms are respectively embedded to mine and enhance more features. Quantitative and qualitative experiment
data demonstrates that our proposed approach generates more visually appealing images, and also provides higher objective

© 2021 The Authors. Published by Atlantis Press B.V.

This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

Figure 1 Three images in the top row are ground truth images,

three images in the below row are degraded images.

In past few decades, underwater image enhancement and
restoration methods range from two categories, i.e., physical priori
model-based methods and data-driven techniques. Physical priori
model-based methods tend to construct a model that can describe
the degradation process of underwater images. And then, they
usually adopt any optimizer to estimate parameters of model. For
example, Trucco and Olmos-Antillon [2] designed a simplified
Jaffe- MeGlamery underwater imaging model, the parameters used
in the filter can be estimated by a contrast quality decision func-
tion. Fan et al. [3] proposed point spread function (PSF) and used


https://doi.org/10.2991/ijcis.d.201102.001
https://www.atlantis-press.com/journals/ijcis/
https://orcid.org/0000-0001-7030-821X
http://creativecommons.org/licenses/by-nc/4.0/

B. Fu et al. / International Journal of Computational Intelligence Systems 14(1) 88-95 89

it in underwater image restoration. Many scholars have applied the
dark channel model which proposed by He et al. [4] to underwater
image restoration. Some statistics properties-based methods do
not build the physical represent model, but construct subjective
statistics criteria in some aspects (e.g., histogram), so as to achieve
satisfactory visual effect. Ramesh [5] used histogram equaliza-
tion, noise de-noising filter and repeated interpolation method to
improve underwater images quality and enhance detail informa-
tion. Although the physical priori model-based methods improve
the quality of underwater images, these methods usually are self-
learning rather data-learning. Less learning data often leads to
inaccurate estimation of model’s parameters, and disable to obtain
satisfactory restoration effect.

With rapid development of deep learning technology, more and
more deep learning tools, e.g., convolutional neural network
(CNN), recurrent neural network (RNN) and generative adversa-
tive network (GAN) are respectively applied in the computer vision
tield and achieved significantly improved performances [6-9].

As a kind of typical methods of data-driven techniques, under-
water image enhancement methods based on deep learning can
fully learning parameters of model or target function through huge
amount of data. Some researchers have attempted to utilize the deep
learning techniques to the underwater image enhancement. For
example, Li ef al. [10] used GAN to estimate clear image through
a large number of training image data sets and some underwa-
ter depth data as an end-to-end input, so as to restore image fea-
tures and enhance visual effect. Zhu et al. [11] introduced a notion
of image translation to generate two training sets, and peer sub-
networks can learn self-style and transfer by adversarial loss each
other. It got obvious visual color restoration effect but still owned
some deficiencies in geometry restoration effect. Islam et al. [12]
introduced many factors, ie., image content, color and texture
details to design target function of network. However, abovemen-
tioned methods usually only consider one degradation factor, we
are unable to observe a deep learning method for underwater image
enhancement which take into account many kinds of underwater
degradation factors. Meanwhile, the phenomenon of gradient dis-
appearing and exploding often appears in networks for underwater
image enhancement, which limits the training performance.

In this paper, focus on underwater image degradation problem with
multiple factors, i.e., color deviation and noise, we propose a novel
residual two-fold attention network named RTFAN. In RTFAN,
nonlocal attention and channel attention (CA) mechanisms are
introduced into a whole residual network framework to suppress
noise and enhance details respectively. Quantitative and qualitative
experiment data demonstrates that our proposed approach gener-
ates more visually appealing image, and also provides higher objec-
tive evaluation index score.

2. RELATED WORK

Nowadays, a number of successful deep learning approaches toward
different underwater image degradation have been proposed, e.g.,
de-noising, color restoring and de-blurring problems, etc. [13]. Dif-
ferent architectures of deep neural networks often show different
characteristics of data processing. From an architecture perspec-
tive, the methods mentioned above can be basically divided into

(1) encoder to decoder, (2) generative adversative, (3) multi-branch
and (4) modular architectures.

In general, methods based on encoder to decoder architecture are
adopted in restoring details of images, so as to often be applied in
de-noising and de-blurring tasks. For example, Sun et al. [14] used
pixel to pixel (P2P) network which an encoder to decoder model
to enhance underwater images. Compare to encoder to decoder
model, GAN model owns an additional adversative discrimina-
tor, so it can consider more constraint for image color style. Li et
al. [10] used GAN to restore image features and enhance visual
effect. Uplavikar et al. [15] used domain adversarial learning to
learn agnostic model where it can enhance multi-types underwa-
ter images. Fabbri et al. [16] used gradient penalty as the soft
constraint on the underwater output which named underwater gen-
erative adversarial network (UGAN).

Although these two categories of methods have achieved good
results, they are not good at dealing with underwater degraded
images with multiple degradation factors. There are two reasons
leading to the shortcomings of the above algorithms. Firstly, under-
water image features extracting becomes more difficulty with mul-
tiple degradation factors interfering. It leads to that the feature
extracted by the convolution layer is not accurate enough, which
is not conducive to the recovery of features. Secondly, due to the
inaccuracy of feature extraction, it is often necessary to increase the
network depth. But simply increasing the depth will produce gra-
dient disappearance or explosion. Multi-branch architecture is usu-
ally adopted to overcome the above problems. For example, Wang et
al. [17] presented a deep CNN method for enhancement of under-
water images, namely, UIE-Net, which is composed of three sub-
networks, and each branch can focus on extracting some specific
features. Another modular architecture such as residual network
and dense net can also increase the number of network layers by
skip connection. Due residual architectures can partly prevent the
phenomenon of gradient disappearing, thus increasing the num-
ber of layers of the network and improving the effect of feature
extraction. Guo et al. [18] introduced a multi-scale dense block,
named DenseGAN which employs the use of dense connections,
residual learning and multi-scales network for underwater image
enhancement.

Attention mechanism is another effective way to enhance network
features. The core ideal of attention mechanism is enhancing some
particular encoder features. At present, there are two types of atten-
tion mechanisms, i.e., CA and spatial attention (SA). The CA atten-
tion acts on the channel scale, weighting different channel features
and SA attention is weighted on the spatial scale, weighting differ-
ent spatial regions. Zhang et al. [19] introduced CA attention to
improve the performance of the network and propose a residual CA
networks named RCAN. Some scholars try to introduce manifold
constraints into deep networks to mine local features correlation
and suppress noise. Liu et al. [9] proposed a recurrent network for
image reconstruction. Zhang et al. [20] proposed a residual nonlo-
cal attention network for high-quality image restoration. It also has
good performance in image de-noising, mosaic removal, compres-
sion, artifact reduction and super-resolution.

Inspired by the advantages of the attention mechanism, such as
the enhancement of specific network features, and deeper net-
work architecture by skip connection. We propose a novel two-fold
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attention residual network for underwater image enhancement and
restoration with noise and color degradation factors simultaneously
interfere. In our solution, residual architecture is adopted to ensure
network deep enough, and a nonlocal attention is conducted in
shallow layer to suppress noise and extract color features, and CAis
conducted in subsequent layers to enhance detail features.

3. METHODOLOGY

The real raw underwater images usually suffer from complex imag-
ing interfering impacts, e.g., light scattering and absorbing by sus-
pended particles, light darkening, which leads to color deviation,
noise effects of underwater images. In this paper, focus on under-
water images degradation problem with multiple factors, i.e., color
deviation and noise, we propose a novel residual two-fold attention
network named RTFAN.

3.1. Underwater Image Modelling

According to Jaffe-MeGlamery underwater imaging model, under-
water imaging is mainly composed of three parts, ie., direct
component, forward scattering component and back scattering
component. Figure 2 shows the basic composition of the underwa-
ter model [21]. Where, x denotes the target position and D denotes
the depth of the water. D(x) represents the distance from the target
to the sea level and d(x) represents the distance between the target
and the acquisition equipment.

The underwater image model can be formally expressed as follows:
1(x) = J(0)t(x) + A1 — #(x)) (1)

Here, x denotes the x-th pixel in image, I(x) denotes degraded
underwater image, J(x) denotes the source clear image, ¢(x) denotes
transmittance of scene light, A (1 — #(x)) is the background scatter-
ing component. And underwater image is also degraded by noise
n, and n is assumed to be ii.d Gaussian noise with zero mean,
variance o2.
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Figure 2 Figure of underwater imaging model.

The degraded image F(x) taking into account noise and color devi-
ation can be expressed as follows:

F(x) = J(x)t(x) + A0l —Hx))+n (2)
So, we can express source image J(x) as follows:

_Fx)—A(l—tx)) —n

J(x) e

(©)

3.2. Objective Function Minimization

Given a source domain X (degraded image F(x)) and an expected
domain E, we adopt any neural network can get the mapping func-
tion as follows: G : X{F(x)} - E. Our goal is to apply our neural
network to learn the mapping function to achieve automatic under-
water image restoration and enhancement. The minimization form
of the objective function is follows:

o1
arg m1n§||E —](x)||% (4)
J(x)

Here, E denotes the expected image, J(x) denotes the source clear
image. The goal of our algorithm is to find a mapping that mini-
mizes the function by training the network.

3.3. Architecture of Residual Two-Fold
Attention Networks (RTFAN)

Figure 3 shows a basic architecture of our RTFAN, includes three
parts, i.e., shallow feature de-noising module, deep feature enhance-
ment module and reconstruction module. In shallow feature de-
noising module, there are one convolution layer and one nonlocal
de-noising module named Conv_nl, respectively. The nonlocal de-
noising module can suppress noise and extract feature. The deep
feature enhancement module is to further mine the image details,
and it consists of four residual CA blocks (RCAB), one convolu-
tion layer and one long skip connection, detailed RCAB structure is
shown in Figure 4 [19]. In RCAB, there are two Conv layers, a Relu
activation layer and a CA module, which is introduced in section
3.4.2. Following the structure of RCAB, there is a deconvolutional
layer to reconstruct the image.

Based on the RTFAN, we further formalize the objective function
of formula into the following minimum loss function.

min L (Iggpan (F(x)) , J(x)) (5)

Here, Ippsn denotes mapping function training by RTFAN model,
F(x) denotes degraded underwater image, J(x) denotes clear image.

3.4. Two-Fold Attention Mechanism

In RTFAN framework, nonlocal attention and CA are embedding
to extract and enhance features. Nonlocal attention modular is set
in shallow layers, and it focus on suppressing noise and extracting
color style features. CA modular is set in deeper layers, and it focus
on enhancing detail features.
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Figure 3 Architecture of residual two-fold attention networks (RTFANS).
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Figure 4 Residual channel attention block (RCAB).

3.4.1. Nonlocal attention modular

Motivated by literature [20,22], nonlocal attention operator is mod-
ularized into a modular block, it is shown in Figure 5. In nonlocal
attention block, input data size of B x 3 x H x W passes a convo-
lution layer with 64 filters to obtain a set of shallow features size
of B x 64 x H x W. And then compute nonlocal correlation and
enhance features. In this step, we adopt 1 x 1 convolutional oper-
ators and softmax function to learn three weight matrix Wy, Wy,
W,. Input data passes this three matrix and then passa 1 x 1 convo-
lutional operators again to get output nonlocal operator result with
size of B x 64 x H x W. The nonlocal attention block can be for-
mally expressed as follows:

T
Y = soft max ([ICO,W(X)] w? ng) W, o] (6)
Here, I-,,,, denotes a convolutional operation, X is input of network,
and Y is output. And then Y is added to X. Formula express is as
follows:

Z= ICunv(X) +Y * WZ (7)

Here, W, is initialized to 0. In order to simplify the expression, we
summarize Formulas (6) and (7) to one expression as follows:

Z= IConvfnl (X) (8)

3.4.2. CA modular

The core idea of CA is cooperative work of channels and gating
mechanism (sigmoid). Figure 6 shows basic structure of CA. Firstly,
the spatial information is transformed into channel feature with
1 x 1 x C size by a global average pooling. Secondly, convolu-
tional operation is carried out with the weight of Wy, which is
activated by Relu activation function, and the channel feature with
1 x 1 x C/r size is down-sampled with the ratio r. Then, another con-
volution operation is carried out with the weight of Wy, to upscale
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Figure 5 Nonlocal attention.

with the ratio r, 1 x 1 x C channel feature is obtained. Finally, after
being activated by sigmoid function (denoted as f), the final chan-
nel feature with 1 x 1 x C is obtained, and is further multiplied with
input to obtain output.

It can be seen from Figure 6, CA mechanism can better enhance
deeper features. In view of this characteristic of CA mechanism,
our RTFAN apply CA modular in deep layers and the deep feature
enhancement module named as Ige, . its express is as follows:

W= IRes_ca(Z) (9)
Here, Z and W denote the input and output of the deep feature
enhancement module, respectively.

In the last layer of RTFAN, we apply a deconvolution to reconstruct
features, marked as Ip,.. Thus, the expectation of the final result
estimated by RTFAN network can be expressed as follows:

E= IDec (IRES_ca (ICDnV_nl(X))) (10)

4. EXPERIMENTS
4.1. Experimental Setting

Dataset We use 5550 paired underwater images from EUVP [12] as
the data set, where 5022 pairs are used for training and the rest are
verified and tested. For the noisy image training set, the simulated
Gaussian noise is added to the original data set.

Baseline algorithm We use four existing underwater image
enhancement algorithms as baselines, including cycleGan [11],
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funieGAN [12], RCAN [19]. We also compare with our previous
work, named Color-diff Net [22]. For fair comparison, all methods’
code implementations are their publicly available versions and their
parameters are set following the guidelines in original articles. In
addition, our algorithm and all comparison algorithms adopt the
above consistent data set.

Evaluation Metric The peak signal-to-noise ratio (PSNR) and the
structural similarity (SSIM) index are adopted to measure the objec-
tive performance of our algorithm.

4.2. Network Architecture and Training
Details

We choose the network architecture of Zhang et al. [19] as our
basic network framework. Our network consists of a shallow fea-
ture de-noising module, a deep feature enhancement module and
a reconstruction module. Among them, the shallow feature de-
noising module is composed of a convolutional layer and a nonlocal
module, while the deep feature module mainly contains four resid-
ual channel attention blocks (RCABs) and skip links. In each RCAB,
there are two convolutional layers with size of 3 x 3 filters and a
CA block module. In the CA block module, input data is squeezed
into size of 1 x 1 x C data by average pooling, then this 1 x 1 x C
descriptors are put through the convolutional layers and activated
by sigmoid function. During training step, the training images are
cut into the patches with size of 48 x 48. The batch size is set as 16,
the learning rate is set as le-4 and the ADAM is adopted as opti-
mizer of our model.

In our method, we only train 300 epoch for our model. We choose
same training dataset, iteration times and network parameter for
comparison methods. Our network framework is based on the
PyTorch platform, and all experiments are implemented on a work-
station with NVIDIA Titan X GPU and Core (TM) i7-7700K CPU.

4.3. Evaluation

4.3.1. Qualitative evaluations

Firstly, we qualitatively analyze the visual quality of degraded
images with color deviation and noise factors restored by RCAN
and RTFAN, respectively. As shown in Figure 7, most of the color
information can be recovered from the RCAN-generated result
when only the color deviation is considered. As the gaussian noise
with noise intensity of 10 is added, simple RCAN cannot achieve a
good effect of restoring color and removing noise at the same time.
The RCAN network with only CA can correct the color properly,
but it’s de-noising ability is not strong. While, RTFAN network with

HxWxC 1x1xC 1x1xC/fr 1x1xC 1x1xC HxWxC
_rﬁ- ‘ '—li—fe»l |_
input output

Global pooing function

Figure 6 Channel attention.

only nonlocal attention can achieve simple de-noising tasks, but
it cannot recover the real color information and detailed features.
However, our RTFAN model can remove noise, perform color cor-
rection and get closer to the real image in visual effect. Therefore,
we further prove the advantages in our model.

Next, we use four underwater image enhancement models based on
deep learning to make a qualitative comparison with our RTFAN
model: (1) cycleGan [11], (2) funieGAN [12], (3)Color-diff Net [22]
(our previously completed work), (4) RCAN [19]. We use the same
noise data set for training on these models, and the test results are
amplified, as shown in Figures 8-10.

Figures 8-10 shows the contrast of enhancement algorithms for
underwater images with 5, 10 and 15 intensity of Gaussian noise,
respectively. It can be seen that the cycleGan model and the funie-
GAN model cannot correct the color bias in the image, while Color-
diff Net can correct the color, but the de-noising effect is not well.
Relative to results above the performance of RCAN is better, but

RCAN (w/CA, RTFAN (w/non-
w/o non-local) local, w/o CA)

Color
deviation+ O

RCAN (W/CA, RTFAN (w/non-
w/o non-local) local, w/o CA) RTFAN (our)

Figure 7 Visual contrast between RCAN model and our residual
two-fold attention network (RTFAN) model with multiple factors.

cycleGan[11]

b e
RTFAN (our)

s
RCAN [19]

Ground True

Figure 8 Comparison of enlarged view with noise intensity of 5.



B. Fu et al. / International Journal of Computational Intelligence Systems 14(1) 88-95 93

slightly inferior to our method. As a result, our approach is gener-
ally effective, which can not only remove noise and perform color
correction, but also get closer to the real image in visual effect.

4.3.2. Quantitative evaluation

After qualitative evaluation, we use PSNR and SSIM to quanti-
tatively compare the evaluation values of our method and other
methods. As an objective standard for image evaluation, the PSNR
mainly calculates the mean square error (MSE) between the real
image and the processed image. The formula (11) is expressed as
follows:

2552
PSNR(x,y) = 10 * log, | VSEGey) (11)

cycleGan [11] funieGAN [12]

Color-diff Net [22]

RCAN [19] RTFAN (our) Ground True

Figure 9 Comparison of enlarged view with noise intensity of 10.

Color-diff Net [22]

RCAN [19]

RTFAN (our) Ground True

Figure 10 Comparison of enlarged view with noise intensity of 15.

The SSIM is an index to measure the similarity of two images, which
mainly considers the brightness, contrast and structure. The for-
mula (12) is as follows:

2, +¢1) (20, +
SSIM(x, y) = Qi + 1) (203 + 2) (12)
(12 + 1 + 1) (2 + 07 +c2)

where, (1, and u, are the mean, o2 and ayz are the variance, g,
denotes the covariance, ¢; and ¢, are the constant that’s used to
maintain stability. Table 1 compares the PSNR score and SSIM score
of our method with some of the underwater image enhancement

methods.

It can be seen that in Table 1, our algorithm has obtained obvi-
ous advantages compared with other algorithms on PSNR, but the
SSIM is a little deficient, the reason is that our RTFAN both con-
sidering de-noising and color deviation, so de-noising operation
inevitably smooths the target image, which results in changing tiny
detail construct. However, due to the underwater image is often pol-
luted by noise, it is necessary to consider de-noising item. Figure 11
shows our algorithms more superior with increasing intensity of 10
o noise.

4.4. Ablation Experiments

In order to further prove the effectiveness of our proposed algo-
rithm and highlight the superiority of the two-fold attention mech-
anism, we conduct three different tests respectively. For example,
(1) in the case of without noise, RCAN network with only CA mech-
anism; (2) RCAN network with only CA mechanism after adding
10 Gaussian noises; (3) in the case of without noise, RTFAN net-
work with only nonlocal mechanism; (4) RTFAN network with only
nonlocal mechanism after adding 10 Gaussian noises; (5) RTFAN
network with the two-fold attention mechanism after adding 10
Gaussian noises. The visual effect is shown in Figure 7. The actual
results were quantified by PSNR and SSIM, as shown in Table 2.

Whether from the visual effect or quantitative results, it can be con-
cluded that our algorithm has certain advantages in the restoration
of noisy underwater images compared with other algorithms.

Table1 The PSNR and SSIM scores of our method and some
underwater image enhancement methods (best results are highlighted, our
results are underlined).

Algorithm EIva‘lluatlon EUVP + Noise(0)
ndex 5 10 15

veleGan PSNR 16.35 16.27 16.26
¥ SSIM 0.7773 0.7295 0.6858
) PSNR 20.52 20.10 20.21
funieGAN SSIM 0.8797 0.8560 0.8381
) PSNR 22.06 21.80 21.48
Color-diff Net SSIM 0.9017 0.8842 0.8574
PSNR 22.36 22.15 21.96
RCAN SSIM 0.8936 0.8729 0.8485
PSNR 22.36 22.19 21.97
RTFAN SSIM 0.8936 0.8708 0.8498

RTFAN, residual two-fold attention network; PSNR, peak signal-to-noise ratio; SSIM, struc-
tural similarity index.
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Figure 11 The enhanced result images: (a) input, (b) cycleGan, (c) funieGAN, (d) Color-diff Net, (e) RCAN, (f) residual two-fold attention

network (RTFAN) and (g) ground truth.

Table2 Compared within and without noise (best results are
highlighted, our results are underlined).

Dataset Noise(o) Methods PSNR SSIM

EUVP 0 RCAN(w/CA) 22.430 0.90224
EUVP 0 RTFAN(w/0CA) 22.139 0.89840
EUVP 10 RCAN(w/CA) 22.151 0.87290
EUVP 10 RTFAN(w/0CA) 21.798 0.86094
EUVP 10 RTFAN 22.188 0.87075

PSNR, peak signal-to-noise ratio; SSIM, structural similarity index.

5. CONCLUSION

In this paper, we show a novel residual two-fold attention network
for underwater image restoration and enhancement to eliminate
the interference of color deviation and noise at the same time. In
our network framework, nonlocal attention and CA mechanisms
are respectively embedded to mine and enhance features. Quanti-
tative and qualitative experiment data demonstrates that our pro-
posed approach generates more visually appealing images, and also
provides higher objective evaluation index score.
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