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Abstract: This paper adresses the problem of fault estimation for continuous-time Takagi-
Sugeno (T-S) fuzzy systems with interval time varying delay. The approach is based on a
fuzzy Adaptive Fault Diagnostic Observer (AFDO). By considering an appropriate Lyapunov
function, less conservative linear-matrix-inequality (LMI) conditions for the existence of the
fault estimator are proposed. Furthermore, a pole placement is introduced in order to guarantee
a faster convergence of estimation errors on the states and the faults. An efficient example is
provided to illustrate the effectiveness of the proposed result.
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1. INTRODUCTION

As is well known, Takagi-Sugeno(TS) Fuzzy observer de-
sign is become an active research field owing to its partic-
ular importance in observer-based control, fault diagnosis,
and Fault Tolerant Control(FTC)of the nonlinear systems
(Zhang and al. (2002), Chadli and El Hajjaji (2006), Kim
and Lee (2000), Boukas and El Hajjaji (2006), Oudghiri
M. and al (2008)). Different design techniques of TS fuzzy
observer are been developed in the literature (Akhenak
(2004), D. Ichalal and al. (2010), D. Ichalal and al. (2009),
Chadli M. and al (2009), Bouattour M. and al (2010)).
Among these techniques, we can find the Adaptive Fault
Diagnostic Observer (AFDO) technique which allow to
estimate the state vector and actuator fault simultaneously
(Jiang and al. (2006), Zhang and al. (2008), Zhang and
al. (2009)).
On the other hand, time delay is one of the instability
sources in dynamical processus. For this reason, T-S fuzzy
model has been extended to deal with nonlinear systems
with time delay. Different delay-independent methodolo-
gies have been proposed for analysis and synthesis for T-
S fuzzy systems with time delay (Chen and Liu (2005),
Lee and al. (2000), Xu and Lam (2005)). It is generally
recognized that delay-dependent results are usually less
conservative than delay-independent ones. That’s why,
delay-dependent techniques have been reported in (Li and
al. (2004), Guan and Chen (2004), Chen and Liu (2005)).
Considering the AFDO design, the problem of fault es-
timation for linear system are treated in Zhang and al.
(2008). This idea is extended to deal with T-S fuzzy models
with constant time delay in Zhang and al. (2009). The

obtained result is delay-independent. By adopting the free
weighting matrix technique, a delay-dependent results are
obtained for linear system with bounded time delay Jiang
and al. (2009). However, the use of too many free weight-
ing matrices makes the design method more complicate .
To the best of our knowledge, so far, the problem of fault
estimation of T-S fuzzy systems with interval time varying
delay has not been addressed in the literature.
Motivated by the aforementioned observation, in this pa-
per, we study the fault estimation for Takagi-Sugeno fuzzy
systems with interval time varying delay based on AFDO.
A pole placement is introduced in order to deliver suffi-
ciently fast and well-responses of fault estimation.

Notations W +WT is denoted as W + (∗) for simplicity.

2. PROBLEM FORMULATION AND
PRELIMINARIES

Consider an T-S fuzzy system with time-varying delay.
The ith rule of the system is expressed in the following
IF-THEN rules.
Plant Rule i(i = 1, 2, · · · , r): If θ1 is µi1 and · · · and θp
is µip THEN

ẋ(t) =Aix(t) +Aτix(t − τ(t)) +Biu(t)

+Eif(t) (1)

y(t) =Cx(t)

where θj(x(t)) and µij(i = 1, · · · , r, j = 1, · · · , p) are
respectively the premise variable and the fuzzy sets; ψ(t) is
the initial conditions; x(t) ∈ ℜnx is the state; u(t) ∈ ℜnu
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is the control input; f(t) ∈ ℜnf represents the actuator
fault vector. It is assumed that the derivative of f(t) with

respect to time is norm bounded, i.e. ‖ḟ(t)‖ ≤ f1 and
0 ≤ f1 <∞. r is the number of IF-THEN rules.

the interval time varying delay satisfies

0 < τm ≤ τ(t) ≤ τM , τ̇(t) ≤ β (2)

Denote

τ1 =
τm + τM

2
; τ2 =

τM − τm

2

The AFDO is constructed as
Observer Rule i(i = 1, 2, · · · , r): If θ1 is µi1 and · · · and
θp is µip THEN

˙̂x(t) =Aix̂(t) +Aτix̂(t− τ(t)) +Biu(t)

+Eif̂(t)− Li(ŷ(t)− y(t)) (3)

ŷ(t) =Cx̂(t)

Denote ex(t) = x̂(t) − x(t), ey(t) = ŷ(t) − y(t), ef (t) =

f̂(t)− f(t)

then the error dynamic is given by

ėx(t) = [(A(t) − L(t)C)ex(t)

+Aτ (t)ex(t− τ(t)) + E(t)ef (t)]

ey(t) =Cex(t)

where

A(t) =

r
∑

i=1

hiAi;Aτ (t) =

r
∑

i=1

hiAτi;E(t) =

r
∑

i=1

hiEi

3. RESULT

In this section, we first present useful lemma and then
present the main result.

Lemma 1. For a symmetric positive definite matrix P , the
following inequality holds

2xT y ≤ xTPx+ yTP−1y

Lemma 2. Consider a negative definite matrix Π < 0.
Given a symmetric matrix X of appropriate dimension
such that XTΠX < 0, then, ∃λ ∈ ℜ+ such that

XTΠX ≤ −2λX − λ2Π−1

Lemma 3. Given matrices M,E, F (t) with compatible di-
mensions and F (t) satisfying F (t)TF (t) ≤ I.
Then, the following inequalities hold for any ǫ > 0
MF (t)E + ETF (t)TMT ≤ ǫMMT + ǫ−1ETE

Definition 1. A subset D of the complex plane is called
an LMI region if there exist a symmetric matrix α and a
matrix β such that

D = {z ∈ C, fD(z) < 0}

with

fD(z) = α+ βz + βT z̄

A dynamical system is called D stable if all its poles lie in
D (that is, all eigenvalues of the matrix A lie in D).

Lemma 4. Chilali and Gahinet (1996) A is D stable if and
only if there exists a symmetric matrix P > 0 such that

α⊗ P + β ⊗AP + βT ⊗ PAT < 0

where ⊗ denotes the Kronecker product of matrices

Theorem 1. For given positif scalar λ, if there exist sym-
metric positive definite matrices P , Ql(l = 1, 2, 3, 4, 5),
Rm(m = 1, 2, 3, 4), M and matrices Y i and Fi such that
the following LMI hold

α⊗ P + β ⊗AT
i P − β ⊗ CTY T

i

+βT ⊗ PAi − βT ⊗ YiC < 0, i = 1, 2, · · · , r (4)

Ξij + Ξji < 0, i, j = 1, 2, · · · , r, i ≤ j (5)

ET
i P = FiC, i = 1, 2, · · · , r (6)

then A(t)−L(t)C is D stable and the fuzzy Fast Adaptive
Fault Estimation (FAFE) algorithm

˙̂
f(t) = −Γ

r
∑

i=1

hiFi(ėy(t) + ey(t)) (7)

can realize that ex(t) and ef(t) are uniformly ultimately
bounded.

In this case, the Li are given by

Li = P−1Yi (8)

Ξij =



















ξ11ij R4 PAτi 0
∗ ξ22 R3 Q2 +R1

∗ ∗ ξ33 0
∗ ∗ ∗ ξ44
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

0 ξ16ij ξ17ij
0 0 0
R3 −AT

τiPEj A
T
τiP

−Q2 +R2 0 0
ξ55 0 0
∗ ξ66ij ET

i P

∗ ∗ ξ77ij



















where

ξ11ij = PAi − YiC +AT
i P − CTY T

i +Q4 +Q5 −R4;

ξ16ij =−AT
i PEj + CTY T

i Ej ;

ξ17ij =AT
i P − CTY T

i

ξ22 =Q1 −Q5 −R1 −R3 −R4;

ξ33 =−(1− β)Q4 − 2R3;

ξ44 =Q3 −Q1 −R1 −R2;

ξ55 =−Q3 −R2 −R3;
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ξ66ij =−ET
i PEj − ET

j PEi +M ;

ξ77ij =−2λP

+λ2((τ2)
2R1 + (τ2)

2R2 + (2τ2)
2R3 + (τm)2R4)

Proof:
Constraints (4): By using lemma (4), A(t) − L(t)C is D
stable if and only if there exist a symmetric matrix P such
that

α⊗ P + β ⊗ (A(t)− L(t)C)P

+βT ⊗ P (A(t) − L(t)C)T < 0 (9)

which can be rewritten as

r
∑

i=1

hi[α⊗ P + β ⊗ (Ai − LiC)P

+βT ⊗ P (Ai − LiC)
T ] < 0 (10)

Since the solution of det(Ai−LiC) = 0 is the same as that
det((Ai − LiC)

T ) = 0, as long as D stability is the only
concern, (10) is equivalent to

r
∑

i=1

hi[α⊗ P + β ⊗ (Ai − LiC)
TP

+βT ⊗ P (Ai − LiC)] < 0 (11)

Therefore, if (4) hold, then (A(t) − L(t)C) is D stable.

For constraints (5) and (6), Consider the following Lya-
punov function

V (t) =

6
∑

i=1

Vi(t) (12)

where

V1(t) = ex(t)
TPex(t) +

t−τm
∫

t−τ1

{ex(s)
TQ1ex(s)

+2ex(s)
TQ2ex(s− τ2)

+ex(s− τ2)
TQ3ex(s− τ2)}ds

+

t
∫

t−τ(t)

ex(s)
TQ4ex(s)ds

+

t
∫

t−τm

ex(s)
TQ5ex(s)ds

V2(t) = τ2

−τm
∫

−τ1

t
∫

t+σ

ėx(s)
TR1ėx(s)dsdσ

V3(t) = τ2

−τ1
∫

−τM

t
∫

t+σ

ėx(s)
TR2ėx(s)dsdσ

V4(t) = 2τ2

−τm
∫

−τM

t
∫

t+σ

ėx(s)
TR3ėx(s)dsdσ

V5(t) = τm

0
∫

−τm

t
∫

t+σ

ėx(s)
TR4ėx(s)dsdσ

V6(t) = ef (t)
TΓ−1ef(t)

Taking the derivation of V (t), we have

V̇1(t) = 2ex(t)
TP ėx(t) + ∆

where

∆ = ex(t− τm)TQ1ex(t− τm) + 2ex(t− τm)Q2ex(t− τ1)

+ex(t− τ1)Q3ex(t− τ1)− ex(t− τ1)
TQ1ex(t− τ1)

−2ex(t− τ1)
TQ2ex(t− τM )− ex(t− τM )TQ3x(t− τM )

+ex(t)
TQ4ex(t)− (1 − τ̇(t))ex(t− τ(t))Q4ex(t− τ(t))

+ex(t)
TQ5ex(t)− ex(t− τm)TQ5ex(t− τm)

V̇2(t) = τ2{τ2ėx(t)
TR1ėx(t) (13)

−

t−τm
∫

t−τ1

ėx(s)
TR1ė(s)ds}

Similarly, we obtain

V̇3(t) = τ2{τ2ėx(t)
TR2ėx(t)

−

t−τ1
∫

t−τM

ėx(s)
TR2ėx(s)ds}

V̇4(t) = 2τ2{2τ2ėx(t)
TR3ėx(t)

−

t−τm
∫

t−τM

ėx(s)
TR3ėx(s)ds}

V̇5(t) = τm{τmėx(t)
TR4ėx(t)

−

t
∫

t−τm

ėx(s)
TR4ėx(s)ds}

V̇6(t) =−2ef(t)
TF (t)C(ėx(t) + ex(t))

−2ef(t)
TΓ−1ḟ(t)

By considering equality (6), we obtain:

V̇1(t) + V̇6(t) =

2ex(t)
TP [(A(t) − L(t)C)ex(t) +Aτ (t)ex(t− τ(t))]

+∆− 2ef(t)
TF (t)Cėx(t)− 2ef(t)

TΓ−1ḟ(t) (14)

From lemma (1), we can obtain that

−2ef(t)
TΓ−1ḟ(t) ≤

ef(t)
TMef (t) + ḟ(t)TΓ−1M−1Γ−1ḟ(t) ≤

ef(t)
TMef (t) + δ (15)
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where

δ = f2
1λmax(Γ

−1M−1Γ−1)

Applying jessen’s inequality Gu and al. (2003) to deal
with the cross product items, we have

−τ2

t−τm
∫

t−τ1

ėx(s)
TR1ėx(s)ds

≤

[

ex(t− τm)
ex(t− τ1)

]T [

−R1 R1

∗ −R1

] [

ex(t− τm)
ex(t− τ1)

]

−τ2

t−τ1
∫

t−τM

ėx(s)
TR2ėx(s)ds

≤

[

ex(t− τ1)
ex(t− τM )

]T [

−R2 R2

∗ −R2

] [

ex(t− τ1)
ex(t− τM )

]

−2τ2

t−τm
∫

t−τM

ėx(s)
TR3ėx(s)ds

≤ −(τ(t) − τm)

t−τm
∫

t−τ(t)

ėx(s)
TR3ėx(s)ds

−(τM − τ(t))

t−τ(t)
∫

t−τM

ėx(s)
TR3ėx(s)ds

≤

[

ex(t− τm)
ex(t− τ(t))
ex(t− τM )

]T [

−R3 R3 0
∗ −2R3 R3

∗ ∗ −R3

]

[

ex(t− τm)
ex(t− τ(t))
ex(t− τM )

]

−τm

t
∫

t−τm

ėx(s)
TR4ėx(s)ds

≤

[

ex(t)
ex(t− τm)

]T [

−R4 R4

∗ −R4

] [

ex(t)
ex(t− τm)

]

Let η(t) = [ex(t)
T , ex(t − τm)T , ex(t − τ(t))T , ex(t −

τ1)
T , ex(t− τM )T , ef (t)

T ]T .

V̇ (t) ≤ η(t)TΩ(t)η(t) (16)

+ėx(t)
T ((τ2)

2R1 + (τ2)
2R2 + (2τ2)

2R3 + (τm)2R4)ėx(t) + δ

where

Ω(t) =















ω11(t) R4 PAτ (t)
∗ ξ22 R3

∗ ∗ ξ33
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

0 0 ω16(t)
Q2 +R1 0 0

0 R3 Aτ (t)
TPE(t)

ξ44 −Q2 +R2 0
∗ ξ55 0
∗ ∗ ω66(t)















in which

ω11(t) = P (A(t) − L(t)C) + (A(t)− L(t)C)TP

+Q4 +Q5 −R4;

ω16(t) =−(A(t)− L(t)C)TPE(t);

ω66(t) =−2E(t)TPE(t) +M

By the Schur complement, we obtain

Φ(t) =





Ω(t) φ12(t)

∗
−P ((τ2)

2R1 + (τ2)
2R2

+(2τ2)
2R3 + (τm)2R4)

−1P





where

φ12(t)
T = [ P (A(t)− L(t)C) 0 PAτ (t) 0 0 PE(t) ]

T

Applying lemma (2), if Ξij + Ξji < 0, i, j = 1, 2, · · · , r, i ≤

j, then there exist a scalar ǫ > 0 such that V̇ (t) <

−ǫ‖η(t)‖2 + δ. It follows that V̇ (t) < 0 for ǫ‖η(t)‖2 > δ,
which means that η(t) converges to a small set S =
{η(t)|‖η(t)‖2 ≤ δ

ǫ
} according to Lyapunov stability theory.

Therefore, estimation errors of both the state and the fault
are uniformly ultimately bounded.

Remark 1. The purpose of introducing the pole placement
constraints is to improve the transient performance of fault
estimation.

Remark 2. Zhang and al. (2008) It is easy to solve the in-
equalities (4)-(5) by using LMI Toolbox. For equation (6),
we can make a transform into the following optimization
problem
Minimize ρ > 0
Subject to

[

ρI ET
i P − FiC

∗ ρI

]

> 0, i = 1, · · · , r (17)

Remark 3. Examples of LMI region :

• Half-plane Re(s) < −a. In this case, (4) can be
rewritten as

2aP +AT
i X − CTY T

i +XAi − YiC < 0 (18)

• Disk centred at (−q, 0) with radius r. In this case,
(4) can be rewritten as

[

−rP −rP +AT
i P − CTY T

i

−rP

]

< 0 (19)

• Conic sector with apex at the origin and inner
angle 2θ. In this case, (4) can be rewritten as
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[

sin(θ)(AT
i P − CTY T

i + PAi − YiC)
− cos(θ)(AT

i P − CTY T
i − PAi + YiC)

cos(θ)(AT
i P − CTY T

i − PAi + YiC)
sin(θ)(AT

i P − CTY T
i + PAi − YiC)

]

< 0 (20)

4. SIMULATION RESULT

Consider the following T-S fuzzy model

ẋ(t) =

2
∑

i=1

hi[Aix(t) +Aτix(t − τ(t)) +Biu(t) +Eif(t)] (21)

The membership functions for rules 1 and 2 are:

h1(x2(t)) = 1−
x2(t)

2

2.25
, h2(x2(t)) = 1− h1(x2(t))(22)

where

A1 =

[

−0.1125 −0.0200
1 0

]

, A2 =

[

−0.1125 −1.5270
1

]

Aτ1 =

[

−0.0125 −0.0050
0 0

]

, Aτ2 =

[

−0.0125 −0.2300
0 0

]

E1 = E2 = B1 = B2 =

[

1
1

]

, C = [ 0 1 ]

By solving the conditions in theorem 1, without pole
placement, we obtain

F = 103 × 1.8555

L1 =

[

1.7056
2.1580

]

, L2 =

[

0.1081
2.1555

]

First, it assumed that a constant fault f1(t) is created as

f1(t) = 0, 0 ≤ t < 5

= 20, 5 ≤ t ≤ 20 (23)

0 2 4 6 8 10 12 14 16 18 20
−5

0

5

10

15

20

25

Time (s)

Fig. 1. Fault f1(t) (Dotted) and its estimated f̂1(t) (solid)
without pole placement

Then, a time-varying fault is simulated

f2(t) = 0, 0 ≤ t < 5

= 10 sin(t− 5), 5 ≤ t ≤ 20 (24)

By solving the conditions in theorem 1, with pole cluster-
ing in the region Re(s) < −1, we obtain

F = 103 × 4.0686

L1 =

[

2.2594
2.3831

]

, L2 =

[

0.6692
2.3631

]

0 2 4 6 8 10 12 14 16 18 20
−10
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−2

0

2

4

6

8

10

Time (s)

Fig. 2. Fault f2(t) (Dotted) and its estimated f̂2(t) (solid)
without pole placement
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Fig. 3. Fault f1(t) (Dotted) and its estimated f̂1(t) (solid)
with pole placement
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Fig. 4. Fault f2(t) (Dotted) and its estimated f̂2(t) (solid)
with pole placement

5. CONCLUSION

The problem of delay dependent AFDO design to a class
of T-S fuzzy systems with interval time varying delay has
been investigated. Based in improved Lyapunov function,
a delay dependent conditions for the existence of the fault
estimator are given in terms of linear matrix inequalities.
This result overcomes the drawbacks of delay independent
results. An illustrative example has been presented to
demonstrate the potential of the method.
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