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Abstract 
Robust parameter design has been successfully applied 
to a variety of engineering problems for enhancing the 
robustness of the system; however, it cannot deal with 
multiple dynamic quality systems.  Although several 
other approaches have been presented to resolve this 
problem, they are unable to efficiently treat the 
situations that the control factors have continuous 
values. This study incorporates desirability functions 
into a hybrid neuro-ants technique to optimize the 
parameter design of multiple dynamic quality systems 
with continuous parameters. The objective is to find 
the best parameter settings so as to maximize 
simultaneously the robustness of each response.  The 
proposed approach is illustrated with a constructed 
example. 
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1. Introduction 
Parameter design is a critical phase in 

developing new products because it mostly determines 
the total production cost and quality.  The robust 
design introduced by Taguchi is conventionally 
applied to optimize the parameter design problems, 
which uses orthogonal array to arrange the 
experiments and employs signal-to-noise ratios (SNRs) 
to evaluate the performance of the response of each 
experimental run.  Through the robust design, the 
optimal factor/level combination can be determined to 
simultaneously reduce the response variation and 
bring the mean close to the target value.  Although the 
robust design method has wide applications in practice, 
it is hard to use in multiple responses problems, 
especially in dynamic systems (Maghsoodloo et al., 
2004; Robinson et al., 2004; Zang et al., 2005).  
Recently, the parameter design problems containing 
multiple dynamic responses have increasingly 
received attentions.  Several researchers have begun to 
study this problem, such as the literature by Tong et al. 

(2004), Wu and Yeh (2005), and Wang and Tong 
(2005).  Considering a dynamic with multi-response 
system, suppose that there are r output responses 

1 2( , ,..., )rY y y y=  which are determined by a set of 
control factor vector 

1 2( , ,..., )px x x=X  and by a set of 
signal levels 

1 2( , ,..., ).sM M M M=   The dynamic multi-
response system can be defined as: 

( , )jk jk k jky f M e= +X                                                (1) 
for j =1,2,…,r;  k = 1,2,…,s. 

where fjk denotes the function between the control 
factors and the jth response at the kth level of signal 
factor; and ejk is a random error. 

For each dynamic response, assumes that a linear 
form exists between the response and the signal 
factors.  The ideal function can be expressed as 
y M eβ= + , where y denotes the response, M stands 
for the signal factor, β  is the slope or system 
sensitivity, and e represents the random error.  Further, 
dynamic systems can be classified into dynamic 
nominal-the-better (DNB), dynamic larger-the-better 
(DLB), and dynamic smaller-the-better (DSB) 
according to the desired target slope.  Hence, the ideal 
target function is replaced as tY M eβ= + , where 

tβ  is 
the desired target slope.  For the response type DNB, 
DLB, and DSB, the value of the slope is 0 tβ< < ∞ , 

tβ = ∞ , and 0tβ = , respectively. 
Despite of several approaches are presented for 

resolving multiple dynamic systems, those methods 
can only obtain the discrete combinations among the 
specified control factor levels.  In other words, they 
are unable to achieve the real optimal factor 
combination if the control factors have continuous 
values.  In this work, we propose a novel optimization 
approach using desirability functions and a hybrid 
neuro-ants technique for resolving the multiple 
dynamic systems, the obtained parameter settings can 
be any value within their bounds.  The hybrid neuro-
ants integrates artificial neuro networks (ANNs) and 
continuous ant colony optimization (CACO) to model 
the system and to optimize the parameter design. 



2. The Proposed Approach 
The proposed approach consists of three stages.  

First, experimental data are collected to train an ANN 
to represent the response function model of a dynamic 
multi-response system, fjk, which is capable of 
predicting the corresponding responses by giving a 
specific factor combination.  Second, the objective 
function of the system is formulated by using 
desirability functions to transform and integrate the 
predicted responses.  Finally, a CACO algorithm is 
utilized to obtain the optimal objective value and the 
corresponding factor combination.  Figure 2 shows the 
flowchart of the approach.  
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Figure 2.  The flowchart of the proposed approach 

2.1. Response function modeling 
This stage uses an ANN to model the response 

function.  The input and output data are assigned as 
the level values for the control factor, noise factor, and 
signal factor, and the responses, respectively.  A well-
trained neural network represents the system’s 
response model, i.e., ˆ ( , )jk jk ky f M= X .  For detailed 
discussion on how an ANN applied to parameter 
design, readers can refer to Rowlands et al. (1996), 
Chiu et al. (1997), and Su and Chang (2000).  The 
processes of this stage are as follows: 

Step 1.  Collect the training and testing patterns for 
input and output layers from the experimental data. 

Step 2.  Select several ANN structures for training. 
Step 3.  Set learning rate, momentum coefficient and 

execution iterations L.  
Step 4.  For each network execute Steps 5—8 L times. 
Step 5.  Initialize randomly weights between layers. 
Step 6.  Apply the sigmoid function 1/(1 )xf e−= +  to 

predict the outputs. 
Step 7.  Calculate the error between the predicted 

output and the target output. 
Step 8.  Adjust the weights of the network. 
Step 9.  Choose the best one from the several trained 

networks as the system’s response function model.  
The performance evaluation criterion for the 
network training is the root of mean-square error 
(RMSE). 

2.2. The objective function 
The desirability functions introduced by 

Harrington (1965) are modified to formulate the 
objective function of a multiple dynamic system.  The 
desirability function transforms a predicted response 
to a scale-free value d, called desirability.  It is a value 
between 0 and 1, and it increases as the desirability of 
the corresponding response increases.  For the three 
types of dynamic responses, the desirability value of 
the predicted response ˆ jky  can be developed as 
follows: 

 DNB:  exp( )DNB DNBd Z= −                    (2) 

where 
max min

max min
1

ˆ2 ( )1 ;
s

jk jk jkDNB

k jk jk

y y y
Z

s y y=

− +
=

−∑  

 DLB:   exp( (exp( )))DLB DLBd Z= − −                (3) 
where min

min
1

ˆ1 ;
s

jk jkDLB

k jk

y y
Z

s y=

−
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 DSB:   exp( (1 ))DSB DSBd Z= − +                       (4) 

where  max

max
1

ˆ1 .
s

jk jkDSB

k jk

y y
Z

s y=

−
= ∑     

For Eqs. (2)—(4), the bounds max
jky  and min

jky  
represent the upper specification limit (USL) and 
lower specification limit (LSL) for the jth response at 
the kth signal level. 

To enhance the overall performance of the multiple 
responses, we integrate the multiple desirability values 
into a single objective value:  

1

r
r

jj
D d

=
= ∏                                                               (5) 

where jd  denotes the desirability value for the jth 
response; 1,2,...,j r= . 



2.3. Optimizing by a CACO 
The CACO algorithms presented by Jayaraman 

et al. (2000) and Vijayakumar et al. (2003) are 
modified and implemented to our problem.  A CACO 
utilizes bi-level procedures which include local and 
global searches.  Local search ants select a local trail i 
with a probability ( ) ( ) ( )i i k

k
P t t tτ τ= ∑ , where k is the 

number of trail solutions, ( )i tτ  is the pheromone trail 
on solution i at time t.  After selecting the destination, 
the ant moves through a short distance 

(1 / )( , ) (1 )t T bt R R r −∆ = − , where R is maximum 
search radius, r is a random number from [0,1], T is 
the total number of iterations of the algorithm, and b is 
a positive parameter controlling the degree of 
nonlinearity.  A global search is done sequentially by 
crossover and mutation operations.  The subsequent 
values of the variables of the child are set to the 
corresponding value of a randomly chosen parent with 
a crossover probability (

cP ).  Mutation operation adds 
or subtracts a value to/from each variable with 
mutation probability (

mP ).  The mutation step size is 
the same as the above distance ( , )t R∆ .  Performing a 
CACO, ants are repeatedly sent to trail solutions in 
order to optimize the objective value.  The total 
number of ants (denoted by A) is set as half the total 
number of trail solutions (denoted by S).  The number 
of global ants (denoted by G) and the number of local 
ants (denoted by L) are set as 80% and 20% of the 
total number of ants, respectively. 
Step 1. Set parameter values including: S, A, ρ , 

0τ , cP , 

mP , T, b, R, and bounds of each control factor. 
Step 2. Create S trail solutions.  Estimate the outputs 

of the trail solutions through the ANN model.   
Step 3. Calculate the objective values of the trail 

solutions 
Step 4. Set the initial pheromone value of all trails. 
Step 5.  Repeat steps 6—9 until the stopping criteria 

has reached. 
Step 6. Send L ants to the selected trail solutions for 

local search. 
Step 7. If the solution is improved, move the ants to 

the new solution and update the pheromone value. 
Step 8. Send G ants to global trails and generate their 

offspring by crossover and mutation. 
Step 9. Evaporate pheromone for all trails. 

3. Illustrative Example 
A constructed example with multiple dynamic 

responses is studied.  This system contains six 
responses, eight control factors, three signal levels, 

and two noise levels.  The control factors x1, x2, x3, x4, 
x5, x6, x7 and x8 are allocated to orthogonal array L18 in 
order.  Table 1 lists the types and bounds of all 
responses.  The hypothetical experimental data 
obtained by the Monte Carlo simulation are given in 
Table 2. 

 
Table 1.  The specifications for the responses 

Response y1 y2 y3 y4 y5 y6
Type DLB DNB DSB DLB DNB DSB

LSL LSL USL USL LSL LSL USL USL
Bounds min

jky min
jky max

jky max
jky  min

jky  min
jky  max

jky max
jky

M1=  5 35 14 26 650 175 1.75 3.25 130
M2= 10 70 28 52 1300 350 3.5 6.5 260
M3 = 15 105 42 78 1950 525 5.25 9.75 390

 
To train ANNs, we randomly select 520 training 

patterns and 128 testing patterns from Table 2.  
Learning rate is set as between 0.01 and 0.3.  The 
momentum coefficient is 0.85.  The number of 
iterations is 40,000.  From several options of the 
trained networks, we select the structure 10-18-6 
which has the smallest testing RMSE 0.0644.  By 
using the ANN to predict the responses, the 
desirability values can be obtained as per their quality 
characteristics.  The CACO algorithm is then applied 
to maximize the objection value in Eq. (5).  The 
operational conditions of the CACO are S=200, A=100, 
ρ =0.95, 

0τ =1, cP =0.9, 
mP =0.1, T=15, and b=10.  The 

bounds for control factors x1 is (1, 2), for other factors 
are set as (1, 3).  The CACO algorithm is executed 
over 20 runs to obtain the best settings (1.2, 1.4, 2.6, 
1.1, 3, 2.2, 1, 2.9), which has the largest D value 
0.8116.  The obtained settings are not restricted to the 
level values of the experiments.  Table 3 lists the 
results of the implementation. 

4. Conclusion 
A novel approach incorporates desirability 

functions into a hybrid neuro-ants technique is 
proposed to optimize multiple dynamic systems and is 
implemented with an illustrative example.  The 
proposed approach provides a generalization solution 
for parameter design and can be applied to diverse 
industrial fields.  Through appropriate modification, 
the approach can be reduced to deal with most of the 
situations that practitioners may encounter, including 
static multiple responses, simple dynamic systems, 
and general static problems. 
 

 



 
Table 2.  The responses of the system 

Responses 
y1 y2 y3 y4 y5 y6 No 

Noise 
factor

s M1 M2  M3 M1 M2  M3 M1 M2 M3 M1 M2 M3 M1 M2  M3 M1 M2 M3

N1 54  98 171 23.8  49.0  45.3 451 1110 1198 204 543 872 1.4 4.3 6.8 111  226 321 
1 

N2 40  107 142 12.8  39.7  53.2 504 1435 1055 223 488 893 2.6 4.0 2.8 118  205 270
N1 49  80 127 19.9  34.7  55.7 742 962 1351 180 416 920 2.0 6.5 7.1  106  199 264 

2 
N2 42  151 157 22.0  52.8  62.0 493 1176 1472 251 621 855 2.5 6.9 7.4  122  176 314
N1 55  102  143 16.1  43.8  40.5 494 913 1351 188 564 901 3.3 6.7  10.0  104  206 321 

3 
N2 49  93  119 15.4  37.3  50.5 580 990 1659 253 605 815 2.9 4.7  9.3  133  188 365 

. ⋯⋯ 

N1 45  91  193 15.1  52.6  70.7 553 910 1298 251 649 856 2.3 4.1  6.8  129  162 280 
17 

N2 62  105  184 24.8  34.3  70.5 374 908 882 209 482 985 2.1 3.3  4.7  71  227 282 
N1 43  117 166 22.7  29.3  35.3 419 736 1497 323 478 719 1.7 5.8 10.5 99  233 261 

18 
N2 44 127 194 24.7  53.0  69.4 458 836 1437 254 480 703 2.6 5.4  8.3  89 161 276 

 
 

Table 3.  The results of implementing the proposed approach 
Control factor values d values 

x1 x2 x3 x4 x5 x6 x7 x8 y1 y2 y3 y4 y5 y6 
D value

1.2 1.4 2.6 1.1 3 2.2 1 2.9 0.8081 0.9422 0.6864 0.9111 0.7101 0.8454 0.8116 
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