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Abstract

Accurate real depth annotations are difficult to acquire, needing the use of special
devices such as a LiDAR sensor. Self-supervised methods try to overcome this problem
by processing video or stereo sequences, which may not always be available. Instead, in
this paper, we propose a domain adaptation approach to train a monocular depth estima-
tion model using a fully-annotated source dataset and a non-annotated target dataset. We
bridge the domain gap by leveraging semantic predictions and low-level edge features to
provide guidance for the target domain. We enforce consistency between the main model
and a second model trained with semantic segmentation and edge maps, and introduce
priors in the form of instance heights. Our approach is evaluated on standard domain
adaptation benchmarks for monocular depth estimation and show consistent improve-
ment upon the state-of-the-art.

1 Introduction
State-of-the-art depth estimation methods are capable of inferring an accurate depth map
from a monocular image by relying on deep learning methods that require a large amount
of data with annotations [16, 36]. Annotations in the form of precise depth measurements
are typically provided by special tools such as a LiDAR sensor [20] or structured light de-
vices [55]. Thus, obtaining depth annotations is costly and time-consuming. Much research
has focused on developing methods not relying on directly acquired depth annotations by
leveraging stereo [19, 22] or video sequences [5, 23, 60] for self-supervision. These re-
search directions have shown promise, but a stereo pair or video sequence may not always
be available in existing datasets. The use of synthetic data provides a way to obtain a large
amount of accurate ground truth depth in a fast manner, however, synthetic data and real data
have usually a domain gap due to the difficulty of generating photorealistic synthetic images.
To that end, domain adaptation techniques [47, 63] can help to transfer the models trained on
an annotated source dataset S to a target dataset T , reducing the burden of training a model
for a new environment or camera.

Research results have shown that the domain gap for semantic segmentation and in-
stance detection can be reduced by introducing depth information during training [9, 41].
A different direction, which leverages semantic information to reduce the domain gap in
depth estimation, has been less studied and mainly in multi-task scenarios [2, 35]. Existing
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Figure 1: Overview of the data available and proposed supervision. The source domain S
contains both RGB and ground truth depth data, and the target domain T contains RGB data
only. We train a depth estimation model to achieve high performance in T by leveraging
semantic annotations to introduce semantic consistency in T . The semantic annotations are
obtained using a panoptic segmentation model trained with external data.

datasets with semantic annotations are large and diverse in scenes as well as cameras used,
hence models trained on these diverse semantic datasets are capable of generalizing to dif-
ferent settings [37]. Several works [5, 39] have shown that using pretrained models to obtain
semantic annotations can also bring improvements in the depth estimation task. Motivated
by these findings, we exploit readily-available panoptic segmentation models as guidance to
bridge the gap between two different domains and to improve monocular depth estimation.

Domain adaptation approaches benefit from pseudo-labelling [6, 53] and consistency of
predictions in the source and target domains [10, 62]. Therefore, we propose an approach
that leverages semantic annotations to enforce consistency for depth estimation between the
two domains, and to provide depth pseudo-labels to the target domain by using the size of the
detected objects. Figure 1 shows an overview of the task. Our main contributions are: (1) the
proposal of an approach to form depth pseudo-labels in the target domain by using object
size priors, which are learnt in an instance-based manner in the annotated source domain;
(2) the introduction of a consistency constraint with predictions from a second model trained
on high-level semantics and low-level edge maps; (3) state-of-the-art results in the task of
monocular depth estimation with domain adaptation from VirtualKITTI [17] to KITTI [20].

2 Related Work

2.1 Monocular Depth Estimation
Self-Supervision. Early depth estimation methods rely on supervised training, using anno-
tations from LiDAR [20] or structured light scanners [55]. Due to the difficulty of obtaining
depth annotations, several works have focused on using either stereo pairs or video self-
supervision. Xie et al. [59] regressed a discretized disparity map and used a pixel-wise
consistency loss with a second camera view, and Garg et al. [19] extended it to predict con-
tinuous depth values. The accuracy was further improved in Monodepth [22] by forcing the
network to predict from a single image both left and right disparities and adding a consis-
tency term. A stereo pair was used in Luo et al. [42] to supervise a model that synthesized
the right view from the left image, and then processing both views by a stereo-matching
network. Other notable approaches include the use of adversarial techniques and cycle-
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Figure 2: Overview of the approach. We train a depth estimation network GD with both target
T and source S images. Source images are adapted to the style of the target images. For S,
we use ground truth supervision, while we enforce consistency with semantic information in
T . The consistency is enforced with (1) predictions from a second network GS trained with
edges and semantic maps as input, and (2) depth pseudo-labels formed using an instance
height ĥ predicted by Gh. Both GS and Gh are trained using ground truth data from S. The
architecture of Gh is given in the top right. We use ReLU between the layers of Gh.

consistency [48, 49]. Stereo images are not always available, hence video self-supervision
has also been researched. Simultaneous learning of depth and pose was addressed in Zhou
et al. [64], which given three video frames, projected the t+1 and t-1 views to the refer-
ence view t. Joint pose, depth and optical flow learning was proposed in GeoNet [60], and
Monodepth2 [23] focused on improving the pixel reprojection loss and the multi-scale loss.
Depth and Semantic Information. Mousavian et al. [46] trained a single network for both
semantic and depth prediction in a multi-task manner by using a shared backbone and task-
specific layers. In that direction, Chen et al. [7] trained a network capable of selecting
between depth or semantic segmentation output by only changing an intermediate task layer.
In Zhang et al. [61] the two tasks, semantic segmentation and depth estimation, were refined
alternately in a progressive manner by using a task attention module to propagate informa-
tion from one task to the other. Jiao et al. [31] proposed a novel unit to share information
between the two tasks. Another method, Guizilini et al. [24] used a pretrained semantic
segmentation network to guide the feature maps of the depth network using pixel-adaptive
convolutions. In MegaDepth [39], a new diverse depth dataset was collected from the inter-
net using Multi-View Stereo and Structure-from-Motion to retrieve depth information, where
semantic information was used to filter spurious depth values and to define ordinal labels.
Atapour-Abarghouei and Breckon [2] assumed the availability of temporal information both
in training and test time, where the different video frames were fused together to predict
depth and semantic segmentation in a multi-task approach. Struct2Depth [5], which is more
related to our work, used precomputed masks of object instances to tackle the problem of
dynamic objects in video self-supervision by imposing object size constraints.

2.2 Domain Adaptation
Domain adaptation is attracting more and more attention due to the lack of sufficient volume
of annotated data for supervised training. It showed some success in areas such as clas-
sification [53, 57] and semantic segmentation [10, 56]. Popular approaches include style
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adaptation of the source images to match the target images [28], enforcing consistency of
predictions [15, 52, 54], adversarial approaches to match either the features [18, 57] or the
outputs [56] of the two domains, and using pseudo-labels [6, 53].
Depth Estimation. Image translation techniques have also been used for domain adaptation
for depth estimation tasks [1, 47, 62, 63]. Atapour-Abarghouei and Breckon [1] generated
synthetic data using the video-game GTA V and used a cycle-consistency approach. Addi-
tionally, during inference [1] translated the target domain images to the style of the source
domain before estimating the depth, adding computational burden. Our approach builds upon
T2Net [63], which also uses an image translation network but without a cycle-consistency
loss, reducing the complexity due to the lower number of networks needed. In T2Net, the
target domain images are not translated during inference contrary to [1]. GASDA [62] fo-
cused on the scenario where stereo supervision is available in the target domain, and added
stereo photometric guidance and depth prediction consistency between original and style-
transferred target domain images. GASDA [62] averages during test time the depth pre-
dicted for a given target image and its corresponding style-transferred image, increasing the
inference-time complexity. AdaDepth [47] used an adversarial approach to align both output
and feature distributions between the source and target domain, along with feature consis-
tency to avoid mode collapse. In a multi-task setup, Kundu et al. [35] developed a cross-task
distillation module and contour-based content regularization to extract feature representa-
tions with greater transferability. Several synthetics datasets have been generated that can be
used for depth estimation. Virtual KITTI [17] provides a synthetic version of KITTI. SYN-
THIA [51] provides multi-camera images and depth annotations, whereas CARLA [13] of-
fers a simulated environment where virtual cameras can be placed arbitrarily. In non-driving
settings, some synthetic datasets that provide depth annotations are also available [38, 44].

3 Method
In this section we introduce our domain adaptation for Depth Estimation via Semantic Con-
sistency (DESC) approach. An overview is presented in Figure 2. During inference we only
apply our depth estimation network GD to our target images. Semantic annotations are pre-
dicted for our source and target datasets using a panoptic segmentation model [34] trained
with external data, providing per image detected instances and a semantic segmentation map.

3.1 Pseudo-Labelling using Instance Height
The height of the detected object instances can provide a strong cue for distance estima-
tion. Struct2Depth [5] used the instance height to deal with moving objects in video self-
supervision. Thus, Struct2Depth retrieved an approximate distance to the objects by solving

D̂≈ f ·h
H

(1)

where D̂ is an approximate distance to the object, f is the focal length in pixels, H is the
predicted instance size in pixels and h is the physical height of the object. It is assumed
that the entire object instance is placed at a distance D̂, that f is known, and that the real
object size h is unknown. In Struct2Depth [5], the object size was set as a shared learnable
parameter ĥ for the class car, i.e., all of the detected instances of class car were assumed to
have the same height. We argue that predicting a ĥ per object instance rather than class can
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provide a better height estimate, as it can take into account both intra-class variations and
occlusions in the detected instances. Furthermore, instead of learning ĥ in an unsupervised
manner as in Struct2Depth [5], we can improve the estimation using source domain data.
Therefore, we use a network Gh, with a simple architecture presented in Figure 2, to predict
a ĥi for an instance i from the dimensions of its bounding box, the detected binary instance
mask and the predicted class label. We train Gh using labels in the source data by retrieving
hGT,i, which is the ground truth physical object size for instance i. To retrieve hGT,i we use

hGT,i =
Hi·D̂S,i

fS
, where the instance depth D̂S,i is obtained directly from the depth ground

truth. To obtain D̂S,i we use D̂i = median(MS,i�yS), where MS,i is the binary segmentation
instance mask for a source domain detected instance i,� refers to the Hadamard product, yS
is the ground truth depth, and the median operation is performed only for non-zero values.
Thus, Gh is trained in the source domain with LI,S = 1

nI
∑i |ĥS,i− hGT,i|, where nI is the

number of detected instances. In the target domain, Gh is used to predict a height ĥT ,i for
a detected instance i, and then ĥT ,i is used to retrieve a depth pseudo-label D̂T ,i computed
using Equation 1. We use the depth pseudo-labels D̂T ,i to provide supervision for GD in the
target domain using a sum of pixel-wise L1 losses over all detected instances i,

LI,T =
φ

pI
∑

i
‖(

D̂T ,i

φ
−GD(xT ))�MT ,i‖1 (2)

where pI is the sum of non-zero pixels for all the binary segmentation masks MT ,i, xT is
an image from T and φ is a learnable scalar. The scalar φ is used to correct any scale
mismatch in the predictions of GD(xT ) due to camera differences between S and T [26].
When computing D̂T ,i we use the focal length fT of the target domain camera, although
as we will show in Section 4, φ automatically scales the values to the correct range even
for unknown fT . As we use a panoptic segmentation model trained with external data to
extract semantic annotations, some of the classes detected may be present in T but not in S,
e.g., person in Virtual KITTI→KITTI. For those classes, Gh can also learn an instance-based
height prior in an unsupervised manner via consistency with GD in LI,T .

3.2 Consistency of Predictions using Semantic Information
Many works [15, 52, 54] have shown that constraining the learning process by requiring con-
sistency in a domain adaptation setting reduces the performance gap. Similar observations
have been made in semi-supervised learning [8], where a contrastive loss is used between
different views of the same scene obtained via data augmentation. Following these findings,
we enforce consistency between the predictions generated by our main depth estimation net-
work, GD, and a secondary network, GS, whose input data xSem is formed by two channels
that have a low domain gap: a semantic segmentation map and an edge map.
Semantic Structure. A semantic segmentation map provides information on the high-level
structure of the scene, and this high-level structure helps to predict the depth structure. The
information is introduced in the form of an integer corresponding to the semantic class label,
as we experimentally found it to yield better performance than one-hot encoding.
Edge Map. Deep learning networks tend to use texture cues [21] for predictions. We use an
edge map to reduce the impact of the texture differences between domains, and to provide
a different modality of the data to the network. Edges include information about the shapes
of objects, and this shape information is valuable in depth related tasks [29, 30]. Edges also
present less variation and need less adaptation in domains with semantically similar scenes.
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Lower is better Higher is better

Method Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Cap 80m
AdaDepth [47] 0.214 1.932 7.157 0.295 0.665 0.882 0.950
T2Net [63] 0.173 1.396 6.041 0.251 0.757 0.916 0.966
DESC 0.156 1.067 5.628 0.237 0.787 0.924 0.970

AdaDepthS [47] 0.167 1.257 5.578 0.237 0.771 0.922 0.971

Cap 50m
AdaDepth [47] 0.203 1.734 6.251 0.284 0.687 0.899 0.958
T2Net [63] 0.165 1.034 4.501 0.235 0.772 0.927 0.972
DESC 0.149 0.819 4.172 0.221 0.805 0.934 0.975

AdaDepthS [47] 0.162 1.041 4.344 0.225 0.784 0.930 0.974

Table 1: Results for Virtual KITTI→KITTI in KITTI [20] Eigen [14] split. Results from
T2Net are recomputed using median scaling and the official pretrained model. AdaDepthS is
a semi-supervised method using additionally 1000 annotated KITTI images for training.

Consistency. As both networks GD and GS receive different input modalities, forcing con-
sistency between them for the predictions of the target domain can significantly increase the
target-domain performance of both models. We propose to supervise GS with source domain
depth ground truth yS by using a pixel-wise L1 loss, LCon,S , and then force consistency of
predictions in the target domain via LCon,T . Then, assuming N is the total number of pixels,

LCon,S =
1
N
‖GS(xSem,S)− yS‖1, LCon,T =

1
N
‖GD(xT )−GS(xSem,T )‖1 (3)

3.3 Training Loss
We now present the modules used in DESC in addition to our semantic consistency losses.
Depth Estimation Loss. Our model GD outputs a multiscale prediction that is supervised
using source domain ground truth with LD, which is a pixel-wise multiscale L1 loss [62, 63].
Image Translation. Image translation has been demonstrated to effectively reduce the do-
main gap [62, 63]. We adopt the approach from T2Net [63], where a network GS→T trans-
lates the source image to the target domain without cycle consistency. T2Net [63] uses a
least-squares adversarial term LGAN [43] to produce examples xS→T having a similar distri-
bution to xT , and leverages the constraint imposed by LD to ensure xS→T is geometrically
consistent with xS . The method also uses a L1 identity loss LIDT = 1

N ‖GS→T (xT )− xT ‖1
to force GS→T (xT )≈ xT , i.e., LIDT forces GS→T to behave as an identity mapping for xT .
Smoothing. We use for the target data the smoothing termLSm introduced in Monodepth [22],
and successfully used in domain adaptation [62, 63] methods for depth estimation.
Overall Loss. Our final model is trained using the following loss

L= λS(LD+LCon,S+LI,S)+λT (LCon,T +LI,T )+λSmLSm+λIDTLIDT +λGANLGAN (4)

where λS ,λT ,λSm,λIDT ,λGAN are hyperparameters to balance the different terms.

4 Experiments
We discuss the experimental setup before presenting our evaluation results.
Setup. We use Pytorch 1.4 and an NVIDIA 1080TI GPU. We obtain the semantic annota-
tions in both S and T , by using a ResNet-101 [25] panoptic segmentation model [33] trained
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Lower is better Higher is better

Method Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Only Source [62] 0.223 2.205 7.055 0.305 0.672 0.872 0.945
+ Img. 0.199 2.436 7.137 0.280 0.753 0.890 0.950
+ Img. + Con. (only edges) 0.187 1.330 6.094 0.258 0.708 0.905 0.966
+ Img. + Con. 0.173 1.235 5.776 0.244 0.748 0.919 0.969
+ Img. + Ins. 0.171 1.332 5.818 0.250 0.771 0.918 0.966
+ Img. + Ins. (λSm = 0.1) 0.165 1.157 5.670 0.245 0.774 0.921 0.968
DESC - Full (1 h per class [5]) 0.160 1.107 5.746 0.243 0.780 0.920 0.968
DESC - Full (unknown fT ) 0.156 1.084 5.654 0.237 0.783 0.926 0.971
DESC - Full 0.156 1.067 5.628 0.237 0.787 0.924 0.970

GS 0.186 2.164 7.011 0.282 0.763 0.894 0.949

Table 2: Ablation study of DESC for Virtual KITTI→KITTI in Eigen split [14] capped at
80m. Img. refers to using image translation, Ins. to using instance-height pseudo-labels
(Section 3.1) and Con. to the consistency of predictions constraint (Section 3.2).

in COCO-Stuff [3, 40] from the Detectron 2 library [58]. We employ a U-Net [50] for GD
and GS, and a ResNet-based model for GS→T . Both image translation and depth estima-
tion architectures are the same as the architectures used in [62, 63]. Following [62], we set
λS = 50, λGAN = 1, λSm = 0.01, and following [63] we set λIDT = 100. Similarly to the
original implementation of [62], we first pretrain the networks to reach good performance in
S before introducing the consistency terms, i.e., with λT = 0. Afterwards, we freeze GS→T
to reduce the memory footprint, and we introduce the semantic consistency terms by setting
λT = 1 unless stated otherwise. The batch size is set to 4, with a 50/50 target and source
data ratio, we use Adam [32] with learning rate 10−4 and we train for 20,000 iterations after
pretraining. To obtain the edge map for GS we use a Canny Edge detector [4]. We randomly
change the brightness, saturation and contrast of the images for data augmentation.
Virtual KITTI→KITTI. We follow the same experimental settings as in [62, 63]. Both
Virtual KITTI [17] and KITTI [20] images are downscaled to 640x192, and following [63]
we cap the Virtual KITTI [17] ground truth depth at 80m.
Cityscapes→KITTI. Cityscapes [11] provides disparity maps computed using Semi-Global
Matching [27]. We use the official training set, consisting of 2975 images of size 2048x1024.
We set the horizon line approximately in the center by cropping the upper part, resulting in
images of 2048x964. We then take the 2048x614 center crop to have the same aspect ratio
as in KITTI and rescale the images to 640x192. We use λT = 5 for this experiment.
Evaluation in KITTI. We follow the same evaluation protocol, metrics and splits as in Eigen
et al. [14] for KITTI, using the evaluation code from Monodepth2 [23]. The predictions are
upscaled to match the ground truth size. The results are reported using median scaling as in
past methods [5, 47, 64], except when using stereo supervision in KITTI. We provide results
for both ground truth depth capped at 80m and between 1-50m as done in [62, 63].

4.1 Quantitative Results

Comparison with State-of-the-Art. Table 1 compares the performance of DESC with the
Virtual KITTI→KITTI state-of-the-art methods not using stereo nor video self-supervision
in KITTI. DESC performs better than AdaDepth [47] and T2Net [63], with a Sq. Rel. error
almost 24% lower than T2Net. We also include AdaDepthS, which is a version of AdaDepth
that uses 1000 annotated KITTI images for training in addition to Virtual KITTI ground
truth. We improve upon AdaDepthS in most metrics without using any KITTI annotations.
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Lower is better Higher is better

Method Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Virtual KITTI→ KITTI
Source + Stereo 0.131 1.154 5.518 0.227 0.837 0.937 0.971
T2Net [63] + Stereo 0.126 1.114 5.429 0.223 0.839 0.938 0.971
GASDA [62] 0.124 1.018 5.202 0.217 0.846 0.944 0.973
DESC + Stereo 0.119 0.935 5.050 0.217 0.843 0.942 0.974

Only KITTI
Monodepth2 (w/o pre.) [23] 0.130 1.144 5.485 0.232 0.831 0.932 0.968
Monodepth2 (ImageNet pre.) [23] 0.109 0.873 4.960 0.209 0.864 0.948 0.975

Table 3: Results in KITTI Eigen split (80m cap) for methods using stereo data in KITTI.
Due to an evaluation error in [62], results from GASDA are recomputed using the official
pretrained models. We include the state-of-the-art stereo-trained method Monodepth2 [23].

Ablation Study. Table 2 shows an ablation study of DESC. The result marked with +Img
correspond to T2Net [63] without the adversarial feature module, and with a lower smoothing
weight λSm as we use λSm = 0.01 instead of the λSm = 0.1 used for the T2Net implementation
shown in Table 1. The lower λSm we use accounts for the better results of T2Net in Table 1.
We chose a smaller λSm for our experiments because a larger λSm blurs the predictions, lead-
ing to a worse result after enforcing consistency with GS due to the loss of detail. However,
a larger λSm is beneficial when consistency with GS is not applied as shown by the improved
results of +Img.+Ins. (λSm = 0.1) compared to +Img.+Ins.. Both the instance-based pseudo-
labelling and consistency with GS modules bring an improvement as shown in +Img.+Ins.
and +Img.+Con. compared to +Img. Using the consistency term in the case where only
edge maps are input into GS improves most metrics as shown in + Img.+Con. (only edges),
although it also shows that inputting the semantic map into GS is largely beneficial. We argue
that the better results of +Img.+Con. compared to Img are not due to a distillation process,
i.e., due to GS having a higher accuracy than GD after source data pretraining. Table 2 shows
in the line GS the accuracy when evaluating GS after source data pretraining (i.e., before GD
consistency), and its lower performance compared to +Img.+Con. suggests that consistency
is the reason for the accuracy increase. DESC - Full shows an improvement in all metrics,
also compared to learning a single h per class as in Struct2Depth [5]. For DESC - Full (un-
known fT ) we set fT to half the actual value, obtaining comparable results to when using the
correct value of fT , i.e., in DESC - Full. This result shows that φ in Equation 2 automatically
scales the instance size pseudo-labels to the correct range for unknown fT .
Stereo Supervision. Although DESC focuses on the setting where no self-supervision is
used in T , our approach can also bring an improvement in such a scenario. We train DESC
adding stereo supervision in KITTI by adding the same multiple-scale pixel-wise reconstruc-
tion method as in GASDA [62] with the same loss weight of λSt = 50. To account for the
introduced supervision in T , we increase λT = 5 and the number of training iterations to
100,000. Table 3 shows that, compared to T2Net+Stereo, our method with stereo supervi-
sion, DESC + Stereo, achieves better results in all metrics and also outperforms GASDA [62]
in most metrics. GASDA is a domain adaptation method tailored for stereo supervision that
uses two depth estimation networks and an image-translation network during inference. We
report better performance than the state-of-the-art for stereo supervision, Monodepth2 [23]
without ImageNet [12] pretraining in Monodepth2 (w/o pre.). However, ImageNet pretrain-
ing has a positive effect on the accuracy, shown in Monodepth2 (ImageNet pre.).
Evaluation on KITTI Stereo. KITTI Stereo 2015 [45] provides images annotated in a
process combining (1) static background retrieval via egomotion compensation and (2) fitting
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Lower is better Higher is better

Method Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Virtual KITTI→KITTI
T2Net [63] 0.151 1.535 6.177 0.224 0.817 0.935 0.975
DESC 0.120 0.968 5.597 0.206 0.839 0.937 0.977
GASDA [62] 0.095 1.068 5.015 0.168 0.906 0.966 0.986
DESC + Stereo 0.085 0.781 4.490 0.158 0.909 0.967 0.986

Only KITTI
Monodepth2 (w/o pre.) [23] 0.096 1.163 5.161 0.179 0.898 0.959 0.981
Monodepth2 (ImageNet pre.) [23] 0.082 0.908 4.698 0.158 0.919 0.970 0.986

Table 4: Results on the KITTI 2015 stereo 200 training set disparity images [20, 45]. We
include Monodepth2 [23], the state-of-the-art stereo method trained only in KITTI.

Lower is better Higher is better

Method Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Only Cityscapes
Source Baseline 0.189 1.717 6.478 0.257 0.740 0.919 0.968
Struct2Depth (M) [5] 0.188 1.354 6.317 0.264 0.714 0.905 0.967
Struct2Depth (M+R) [5] 0.153 1.109 5.557 0.227 0.796 0.934 0.975

Cityscapes→ KITTI
T2Net [63] 0.173 1.335 5.640 0.242 0.773 0.930 0.970
DESC (Img.+Ins.) 0.174 1.480 5.920 0.240 0.782 0.931 0.971
DESC (Img.+Con.) 0.150 0.981 5.359 0.222 0.805 0.938 0.976
DESC (Full, φ = 1) 0.169 1.142 5.936 0.261 0.741 0.919 0.967
DESC (Full, φ learnt) 0.149 0.967 5.236 0.223 0.810 0.940 0.976

Table 5: Cityscapes→KITTI results, evaluated in KITTI [20] Eigen split (80m cap).
Struct2Depth (M+R) [5] uses three consecutive frames for refinement.

of CAD models to account for dynamic objects. The result is a denser ground truth compared
to the LiDAR depth annotations provided in KITTI, especially in the cars. DESC, which
uses instances pseudo-labels, benefits from evaluating in images with denser annotation in
the vehicles, as shown in Table 4 in the larger accuracy gap between DESC and T2Net, and
also between DESC + Stereo and GASDA compared to Table 1 and Table 3. DESC + Stereo
achieves either better (Sq Rel, RMSE) or equal (RMSE log) squared metrics results than the
state-of-the-art Monodepth2 (ImageNet pre.) without pretraining GD in ImageNet.
Cityscapes→KITTI. Table 5 shows the results for this benchmark. We improve upon T2Net
for all metrics, with a 13.9% lower absolute relative error. Most of the accuracy improvement
comes from the consistency term as shown in DESC (Img.+Con.) and DESC (Full, φ learnt).
Due to the camera difference between the datasets, the learnable scalar φ is necessary for
good performance, as shown for fixed φ = 1 in DESC (Full, φ=1). Struct2Depth [5] also uses
precomputed semantic annotations to improve its self-supervised video learning, although
Struct2Depth is not a domain adaptation method as it only trains with Cityscapes [11] data,
i.e., it does not use KITTI for training. Struct2Depth also uses a different crop for Cityscapes.
Table 5 shows that we achieve better accuracy than Struct2Depth (M+R), which uses three
frames at test time for refinement, whereas we only need a single image for inference.

4.2 Qualitative Results
Figure 3 shows predictions using DESC without stereo supervision. Compared to T2Net [63],
we find that our method contains less high-error regions due to the guidance provided by GS,
as shown in the upper-right wall of the predictions in the first row. The geometry of the
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Figure 3: Qualitative results in KITTI for models trained in Virtual KITTI→KITTI. Ground
truth depth is linearly interpolated for visualization. Green bounding boxes refer to areas of
the prediction more accurate compared to the corresponding red bounding boxes.

Figure 4: Qualitative results in KITTI for models trained in Virtual KITTI→KITTI with
stereo supervision in KITTI. Bottom row corresponds to a center crop of the original image.

instances in our method tends to be complete, e.g., the cars of the second row and the larger
car in the first row, which has large missing parts in the T2Net prediction. Figure 4 shows
predictions for domain adaptation methods using stereo supervision in KITTI. Compared to
GASDA, we observe a better recovery of fine structures, shown in the pole of the first row of
Figure 4, and better predictions of further object instances, shown in the bottom row. DESC
also predicts a better depth for the sky, as shown in the first row of Figure 4.
Limitations. Due to the consistency term with GS, our method shows some loss of detail in
fine structures compared to T2Net [63], as shown in the last row of Figure 3. Additionally,
DESC is more computationally demanding than T2Net due to the added GS. Furthermore,
our method relies on the quality of the computed semantic data, hence in settings where the
extracted annotations are of low quality, the performance of the method may degrade.

5 Conclusion
We proposed a method that leverages semantic annotations to improve the performance of
a depth estimation model in a domain adaptation setting. We used the relationship between
instance size and depth to provide pseudo-labels in the target domain. A segmentation map
and an edge map were input to a second network, whose prediction was forced to be consis-
tent with the prediction of the main network. These additions led to higher accuracy in the
settings studied. In the Virtual KITTI to KITTI benchmark, we showed a 9.8% lower abso-
lute relative error and a 23.6% lower squared relative error compared to the state-of-the-art.
As we use automatically extracted semantic annotations, our method can be easily added to
current approaches to improve their accuracy in a domain adaptation setting, as we showed
in the improvement achieved with stereo self-supervision. Approaches aiming to reduce the
detail loss due to the enforced consistency of predictions could improve the method.
Acknowledgement. This work was supported by UK EPSRC funding EP/S032398/1.
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